劉陽(yáng),李慶達(dá),高亞南,耿曉勇,李彥波,王文彬,楊建國(guó),王偉
復(fù)雜截面冷彎成形圓角減薄率工藝優(yōu)化研究
劉陽(yáng),李慶達(dá),高亞南*,耿曉勇,李彥波,王文彬,楊建國(guó),王偉
(凌云工業(yè)股份有限公司 河北省汽車安全件技術(shù)創(chuàng)新中心,河北 涿州 072750)
針對(duì)復(fù)雜截面車門中導(dǎo)軌冷彎成形過(guò)程復(fù)雜、道次繁多、Z字筋圓角減薄率過(guò)大等問(wèn)題,基于車門中導(dǎo)軌冷彎成形工藝,優(yōu)化Z字筋圓角冷彎成形工藝和減薄率。利用COPRA FEA有限元仿真軟件對(duì)車門中導(dǎo)軌成形過(guò)程進(jìn)行分析,研究軋輥圓角半徑、成形速度、成形策略等對(duì)圓角減薄率的影響,結(jié)合有限元分析手段不斷優(yōu)化工藝參數(shù)來(lái)實(shí)現(xiàn)中導(dǎo)軌Z字筋圓角精確成形,最終提出最優(yōu)工藝方案并進(jìn)行實(shí)驗(yàn)驗(yàn)證。對(duì)于大圓角成形工藝,圓角處彎曲中性層完全位于料厚范圍內(nèi),在料厚方向上既有壓應(yīng)力又有拉應(yīng)力,壁厚減薄量較?。粚?duì)于小圓角成形工藝,圓角處中性層偏出內(nèi)弧面,在料厚方向上均受拉應(yīng)力,壁厚只存在減薄的趨勢(shì)。實(shí)驗(yàn)結(jié)果表明,Z字筋圓角厚度由1.33 mm變成1.46 mm,減薄率由原來(lái)的26.1%降低至18.89%。仿真結(jié)果表明,Z字筋圓角厚度由1.29 mm變成1.52 mm,減薄率由原來(lái)的28.3%降低至15.6%。對(duì)比仿真結(jié)果與實(shí)驗(yàn)結(jié)果可知,仿真分析最大誤差為4.1%,仿真結(jié)果具有一定的可靠性。最優(yōu)工藝路線如下:采用大圓角、慢速成形,成形策略為中前期大圓角成形+后期小圓角成形,成形圓角半徑分別為4.5、3.5、2.8、1 mm,彎折角度分別為45°、65°、78°、90°,該方案可以有效解決圓角減薄率過(guò)大的成形缺陷。
圓角減薄率;冷彎成形工藝;車門中導(dǎo)軌;應(yīng)力;有限元仿真;實(shí)驗(yàn);大圓角成形
中導(dǎo)軌是汽車車門系統(tǒng)的一部分,用于車門導(dǎo)向,高精度中導(dǎo)軌能夠有效減小滑動(dòng)阻力,降低噪音并吸收振動(dòng)[1]。汽車行業(yè)標(biāo)準(zhǔn)規(guī)定,鋼板的最大減薄率不能超過(guò)20%。根據(jù)現(xiàn)場(chǎng)反饋及調(diào)查結(jié)果發(fā)現(xiàn),在冷彎成形過(guò)程中,SGM458中導(dǎo)軌Z字筋圓角容易出現(xiàn)不飽滿的現(xiàn)象,經(jīng)過(guò)切片掃描檢測(cè)發(fā)現(xiàn),圓角減薄率超過(guò)26.1%,遠(yuǎn)超出汽車行業(yè)標(biāo)準(zhǔn)。
冷彎成形廣泛應(yīng)用于冷軋型材的制造中,該工藝通過(guò)連續(xù)彎曲金屬板帶來(lái)加工所需型材,其核心工藝是合理設(shè)計(jì)每道次軋輥模具形狀并對(duì)輥花截面進(jìn)行精確把控[2-5]。多道次彎折經(jīng)歷了軋輥大圓周運(yùn)動(dòng)、有限應(yīng)變等過(guò)程,具備幾何非線性、物理非線性、邊界條件非線性等成形特點(diǎn)[6-10],因此,成形工藝非常復(fù)雜且成形規(guī)律難以控制[11-14]。傳統(tǒng)冷彎成形工藝通過(guò)不斷試錯(cuò)、投制新軋輥或改制軋輥形狀,才能得到滿足要求的截形尺寸,其加工試驗(yàn)費(fèi)用較高、多次性投入成本較大。
針對(duì)冷彎成形工藝及有限元分析,有不少學(xué)者進(jìn)行了研究。李沖等[15]建立了非對(duì)稱截面V字形超高強(qiáng)鋼冷彎成形有限元仿真模型,采用實(shí)驗(yàn)及有限元模擬相結(jié)合的方法,得到了一種減小V字形非對(duì)稱截面扭曲缺陷的方法。魏小平等[16]對(duì)封閉復(fù)雜截面微通道管冷彎成形進(jìn)行了輥花設(shè)計(jì),通過(guò)ABAQUS軟件模擬分析了冷彎成形全過(guò)程,驗(yàn)證了成形工藝的可行性。Su等[17]使用COPRA軟件,對(duì)多道次彎曲角度分布模型進(jìn)行了仿真分析,優(yōu)化了帽字形門檻成形工藝全過(guò)程。Xing等[18-19]和Luo等[20]對(duì)冷彎成形方矩形管建立了有限元模型,結(jié)果表明,仿真分析誤差較小,驗(yàn)證了仿真模型的準(zhǔn)確性。Jiang等[21]利用ABAQUS軟件建立了帽字形截面冷彎成形三維有限元分析模型,提出了一種精確控制高強(qiáng)度鍍鋅鋼回彈角的方法,提高了成形質(zhì)量。孫慶東等[22]應(yīng)用COPRA軟件對(duì)8字形管材進(jìn)行了輥花工藝設(shè)計(jì),并應(yīng)用ABAQUS軟件進(jìn)行了全流程成形仿真,通過(guò)仿真分析結(jié)果優(yōu)化了軋輥成形面。孫慶東等[23]針對(duì)O形管材成形工藝進(jìn)行了研究,應(yīng)用ABAQUS軟件進(jìn)行了全流程成形仿真,通過(guò)仿真分析對(duì)原軋輥的部分道次工藝進(jìn)行了優(yōu)化設(shè)計(jì),并對(duì)優(yōu)化方案進(jìn)行了生產(chǎn)驗(yàn)證,該方法對(duì)軋輥設(shè)計(jì)提供了有益的幫助。肖小亭等[24]針對(duì)中滑軌冷彎成形工藝進(jìn)行了計(jì)算機(jī)有限元模擬,并將模擬結(jié)果應(yīng)用到實(shí)際生產(chǎn)中,結(jié)果表明,仿真優(yōu)化的工藝可使冷彎成形具有較高精度。Wang等[25]基于有限元方法研究了鋁合金Z字形型材的扭曲缺陷,仿真結(jié)果表明,基于有限元分析的控制策略對(duì)扭曲缺陷具有顯著的抑制作用。Liang等[26]應(yīng)用COPRA軟件進(jìn)行了軋輥設(shè)計(jì),并結(jié)合有限元分析軟件ABAQUS建立了“b”形截面的三維有限元分析模型,分析了不同工藝參數(shù)對(duì)邊緣波的影響,最終確定了最佳的工藝參數(shù)組合。
減薄率是影響車門中導(dǎo)軌成形質(zhì)量的重要參數(shù)之一,其中復(fù)雜截面中的Z字筋圓角減薄率更加難以控制。因此,本文采用專業(yè)COPRA軟件進(jìn)行設(shè)計(jì)及仿真分析,實(shí)現(xiàn)了Z字筋圓角的成形過(guò)程,并厘清其成形原理,將圓角減薄率控制在20%范圍內(nèi),提出了一種優(yōu)化Z字筋圓角成形的工藝方法;基于中導(dǎo)軌冷彎成形工藝,通過(guò)對(duì)Z字筋圓角成形工藝的不斷優(yōu)化,從而解決了壁厚減薄率超標(biāo)問(wèn)題;最終將計(jì)算機(jī)仿真分析與工藝實(shí)驗(yàn)相結(jié)合,將優(yōu)化工藝方案運(yùn)用到實(shí)際生產(chǎn)中,從而減少了設(shè)備和人力投入,切實(shí)提高了產(chǎn)品競(jìng)爭(zhēng)力。
車門中導(dǎo)軌模型及截面形狀如圖1和圖2所示。Z字筋理論成形角度為90°,圓角半徑為1 mm,豎筋直線段較短,增大了成形難度。產(chǎn)品件材料為低合金高強(qiáng)鋼CR340/590,壁厚為1.8 mm,泊松比為0.3,彈性模量為210 GPa,屈服極限s=385 MPa,抗拉極限b=595 MPa,延伸率為22.5%。為搭建有限元模型將原材料拉伸曲線轉(zhuǎn)換成真應(yīng)力-應(yīng)變曲線,如圖3所示。
圖1 車門中導(dǎo)軌模型
圖2 車門中導(dǎo)軌截面特征
圖3 真實(shí)應(yīng)力-應(yīng)變曲線
根據(jù)車門中導(dǎo)軌的幾何結(jié)構(gòu)特征,在COPRA RF中進(jìn)行輥花設(shè)計(jì)以及軋輥模具設(shè)計(jì)。1)輥花設(shè)計(jì):根據(jù)截型外輪廓,將截型外輪廓合并成COPRA設(shè)計(jì)所需的多義線格式,設(shè)置料厚為1.8 mm,并定義截型最低點(diǎn)為“展開基準(zhǔn)平面”的展開中心;遵循彎折角度先快后慢的原則,通過(guò)輥花展開命令對(duì)各圓角依次進(jìn)行角度展開,輥花展開計(jì)算方法為DIN6935。2)軋輥模具設(shè)計(jì):輥花截形展開后,依據(jù)各輥花形狀進(jìn)行軋輥設(shè)計(jì),在軋輥設(shè)計(jì)中,通過(guò)定義上下軸線、定義軋輥屬性、提取配輥道次和生成實(shí)體流程進(jìn)行軋輥模型生成。3)有限元模型搭建:將上述生成的CAD模型導(dǎo)入COPRA FEA軟件中進(jìn)行前處理,包括網(wǎng)格劃分、材料設(shè)置及邊界條件設(shè)置等。
將仿真模型變形體設(shè)置為計(jì)算精度較高的八節(jié)點(diǎn)線性六面體網(wǎng)格。為了提高計(jì)算壁厚方向的減薄率精度,沿厚度方向設(shè)置網(wǎng)格系數(shù)為2,沿圓弧段設(shè)置網(wǎng)格系數(shù)為2。為提高計(jì)算效率,沿截型本體直線段設(shè)置網(wǎng)格系數(shù)為1,沿軋制方向設(shè)置網(wǎng)格系數(shù)為1,生成節(jié)點(diǎn)數(shù)量為49 098,共計(jì)單元數(shù)量為31 968,如圖4所示。
圖4 網(wǎng)格劃分模型
將本次冷彎成形設(shè)置為滾動(dòng)模型;軋輥實(shí)際間距為380 mm,料帶長(zhǎng)度為軋輥間距的3倍,產(chǎn)線速度為10 m/min,設(shè)置軋輥速度為22.75 r/min,將所有軋輥設(shè)置為下軸驅(qū)動(dòng);設(shè)置軋輥與料帶之間的摩擦因數(shù)為0.17。加載以上邊界條件,得到有限元網(wǎng)格模型,如圖5所示。
圖5 車門中導(dǎo)軌有限元模型
基于中導(dǎo)軌冷彎成形工藝,初步分析冷彎成形Z字筋圓角成形精度的影響因素,進(jìn)一步從人、機(jī)、料、法、環(huán)五方面分析圓角減薄率的影響因素,如圖6所示。
通過(guò)現(xiàn)場(chǎng)調(diào)查、實(shí)驗(yàn)驗(yàn)證和比較分析等方法,對(duì)影響圓角減薄率的各個(gè)因素逐個(gè)確認(rèn),排除了人員技能、設(shè)備精度、環(huán)境溫度變化、材料性能波動(dòng)等因素。成形工藝是模具設(shè)計(jì)的靈魂,直接影響著產(chǎn)品設(shè)計(jì)質(zhì)量。對(duì)不同設(shè)計(jì)人員的不同成形工藝的產(chǎn)品進(jìn)行檢查,發(fā)現(xiàn)不同成形工藝生產(chǎn)的產(chǎn)品精度有明顯不同,即軋輥圓角半徑、成形速度、成形策略等對(duì)壁厚減薄率產(chǎn)生了一定的影響。進(jìn)一步判斷成形工藝性不佳可能是產(chǎn)生問(wèn)題的主要原因,針對(duì)該原因進(jìn)行了深入研究。因此,選擇軋輥圓角半徑、成形速度、成形策略作為冷彎成形工藝優(yōu)化的參數(shù),并制定仿真試驗(yàn)方案,如表1所示。
圖6 圓角減薄率影響因素分析圖
表1 仿真試驗(yàn)方案
傳統(tǒng)輥花設(shè)計(jì)采用定半徑設(shè)計(jì),即圓角半徑不變,彎折角度遵循先快后慢的原則。共設(shè)計(jì)4種方案。方案一為小圓角快速成形方式,其工藝參數(shù)如下:圓角采用定半徑成形,所有道次成形半徑為最終圓角半徑(1 mm),圓角分三道次成形,理論成形角度分別為45°、78°、90°。方案二為小圓角慢速成形方式,其工藝參數(shù)如下:首道次采用大圓角成形,成形半徑為3.2 mm,其余均采用小圓角成形(半徑為1 mm),理論成形角度分別為25°、45°、78°、90°。方案三為大圓角成形+小圓角慢速成形方式,將大圓角成形及小圓角成形道次均分,其工藝參數(shù)如下:前兩道次采用大圓角成形,成形半徑分別為4.2 mm和3.2 mm,后兩道次采用小圓角成形,成形半徑為1 mm,理論成形角度分別為45°、65°、78°、90°。方案四為大圓角成形+小圓角慢速成形方式,與方案三區(qū)別在于中前期采用大圓角成形工藝+后期采用小圓角成形工藝,其工藝參數(shù)如下:成形圓角半徑分別為4.5、3.5、2.8、1 mm,理論成形角度分別為45°、65°、78°、90°。
根據(jù)設(shè)計(jì)試驗(yàn)表進(jìn)行數(shù)值模擬,4種方案的成形結(jié)果如表2所示。
表2 試驗(yàn)分析結(jié)果
比較4種成形方案可以發(fā)現(xiàn),成形速度、軋輥圓角半徑對(duì)Z字筋圓角厚度及減薄率影響顯著,如圖7和圖8所示。對(duì)比方案一與方案二可知,方案一采用了三道次彎折,成形速度較快,快速?gòu)澱蹖?dǎo)致壁厚急劇減?。ㄒ妶D7)且減薄率迅速上升(見圖8);方案二采用了五道次彎折,成形速度較慢,慢速?gòu)澱凼贡诤駵p薄趨勢(shì)變緩(見圖7)且減薄率得到一定改善(見圖8),可見將Z字筋圓角分多次彎折成形,可以減小圓角減薄率,慢速成形具有一定優(yōu)勢(shì)。對(duì)比方案二與方案三可知,方案三前兩道次采用了大圓角成形,最后兩道次采用小圓角成形;大圓角成形可明顯降低單道次減薄率,使累積減薄率降低,但經(jīng)過(guò)兩道次小圓角成形,壁厚及減薄率快速變化。方案四在方案三的基礎(chǔ)上進(jìn)行了優(yōu)化,采用多道次大圓角成形,即前三道次采用大圓角成形,終道次采用小圓角成形;從結(jié)果可知前三道次均采用了大圓角成形,壁厚及減薄率變化平緩;但終道次采用了小圓角成形,壁厚及減薄率急劇變化。綜合以上所有方案,方案四最終累積減薄率最小,故確定為最優(yōu)成形工藝方案。
圖7 4種成形方案各個(gè)道次壁厚變化曲線
圖8 4種成形方案各個(gè)道次壁厚減薄率
下面分析討論方案三和方案四最后兩道次的成形結(jié)果,提取截型厚度方向的主應(yīng)力云圖,如圖9所示。如圖9a所示,方案三的第三道次采用了小圓角成形方式,圓角處受到的全部為拉應(yīng)力,最大拉應(yīng)力為647.5 MPa,壁厚只存在減薄的趨勢(shì)。如圖9b所示,方案四的第三道次采用了大圓角成形方式,圓角處既有壓應(yīng)力又有拉應(yīng)力,內(nèi)弧面受到較大的壓應(yīng)力后使壁厚增大,而外弧面受到的拉應(yīng)力較小,其應(yīng)力值為585.9 MPa,使壁厚減薄,大圓角成形方式綜合了壁厚增大和壁厚減薄2種趨勢(shì),故壁厚減薄量較小。
方案三和方案四最后一道次的成形方式相同,均為小圓角成形方式,如圖9c和圖9d所示,在圓角處所受到的應(yīng)力均為拉應(yīng)力,方案三圓角處的最大拉應(yīng)力為670 MPa,方案四圓角處的最大拉應(yīng)力為556 MPa,方案三圓角處受拉應(yīng)力范圍要遠(yuǎn)大于方案四的。由于方案三第四道次受力較大且范圍廣,因此,其減薄的趨勢(shì)明顯。
由板材彎曲原理可知,在受純彎曲(自由彎曲)作用時(shí),中性層不偏移,內(nèi)外拉壓應(yīng)變相等,材料厚度不會(huì)變化。當(dāng)在彎曲過(guò)程中采用大圓角成形工藝時(shí),圓角處的彎曲中性層完全居于料厚范圍內(nèi),但中性層向內(nèi)側(cè)偏移,同時(shí)存在壓應(yīng)力和拉應(yīng)力,即內(nèi)表面受小部分的壓應(yīng)力、外表面受大部分的拉應(yīng)力,內(nèi)表面受壓應(yīng)力使壁厚增大,外表面受拉應(yīng)力使壁厚減薄,故壁厚減薄率較小。當(dāng)在彎曲過(guò)程中采用小圓角成形工藝時(shí),圓角處的彎曲中性層偏出內(nèi)弧面,料厚方向均受拉應(yīng)力,壁厚只存在減薄的趨勢(shì),與較大圓角成形方式相比,壁厚減薄率較大。
與小圓角成形方式相比,當(dāng)采用大圓角成形工藝成形到相同角度時(shí),會(huì)顯著降低減薄率。但受到最終截面圓角大小的限制,無(wú)法一直采用大圓角,所以成形策略為中前期成形采用多道次大圓角彎折,后期采用小圓角成形,將壁厚大量減薄集中作用到最后一個(gè)道次。雖然后期小圓角成形工藝會(huì)導(dǎo)致壁厚減薄率由8.7%到15.3%,使壁厚減薄率急劇增大;但是綜合判斷可知,中前期大圓角成形工藝+后期小圓角成形工藝仍然比小圓角慢成形效果明顯。
根據(jù)車門中導(dǎo)軌有限元仿真優(yōu)化結(jié)果進(jìn)行軋輥設(shè)計(jì),重新修理、投制4個(gè)道次的軋輥模具,優(yōu)化后軋輥模具如圖10所示。
圖9 主應(yīng)力分布云圖
圖10 實(shí)驗(yàn)軋輥模具圖
圖10中陰影部分圓角為壁厚優(yōu)化對(duì)象,第一道次是對(duì)Z字筋圓角采用大圓角成形(半徑為4.5 mm),快速成形至45°;第二道次是采用大圓角成形(半徑為3.5 mm),以較快速度成形至65°;第三道次是采用大圓角成形(半徑為2.8mm),慢速成形至78°;第四道次是采用小圓角成形(1 mm),慢速成形至90°。因此,提出了一種優(yōu)化Z字筋圓角成形新工藝路線:中前期大圓角成形+后期小圓角成形,成形圓角半徑分別為4.5、3.5、2.8、1 mm,彎折角度分別為45°、65°、78°、90°;在生產(chǎn)線上對(duì)實(shí)驗(yàn)工裝進(jìn)行安裝和調(diào)試,最終得到產(chǎn)品件Z字筋圓角厚度由1.33 mm變成1.46 mm。車門中導(dǎo)軌實(shí)驗(yàn)件截面掃描結(jié)果(實(shí)線為理論截型,虛線為實(shí)驗(yàn)件切片掃描截型)如圖11所示,可以看到,其減薄率由26.1%降低至18.89%,滿足國(guó)際汽車行業(yè)標(biāo)準(zhǔn)要求。經(jīng)過(guò)實(shí)際軋輥多道次彎折的成形產(chǎn)品圖如圖12所示,可以看到,產(chǎn)品輪廓清晰,Z字筋圓角成形飽滿,截型尺寸精度滿足要求,并且拉彎成形芯子貼合截型內(nèi)腔,可以為后續(xù)拉彎工序提供保證,使客戶滿意度提高。
圖11 成形后的工件切片
圖12 產(chǎn)品圖
1)對(duì)于小圓角成形工藝,圓角處彎曲中性層偏出內(nèi)弧面,在料厚方向上均受拉應(yīng)力,壁厚只存在減薄的趨勢(shì)。
2)對(duì)于大圓角成形工藝,圓角處彎曲中性層完全位于料厚范圍內(nèi),同時(shí)存在壓應(yīng)力和拉應(yīng)力。內(nèi)弧面受到較大的壓應(yīng)力使壁厚增大,而外弧面受到較小的拉應(yīng)力,使壁厚減?。淮髨A角成形工藝優(yōu)勢(shì)明顯。
3)工藝實(shí)驗(yàn)件Z字筋圓角厚度由1.33 mm變成1.4 6mm,減薄率由26.1%降低至18.89%;仿真分析件Z字筋圓角厚度由1.29 mm變成1.52 mm,減薄率由原來(lái)的28.3%降低至15.6%。對(duì)比仿真結(jié)果與實(shí)驗(yàn)結(jié)果可知,仿真分析最大誤差為4.1%,仿真方法具有可靠性及工程實(shí)用性。
4)使用有限元軟件COPRA FEA對(duì)車門中導(dǎo)軌Z字筋進(jìn)行成形分析,得到優(yōu)化成形工藝路線如下:采用大圓角、慢速成形,成形策略為中前期大圓角成形+后期小圓角成形,成形圓角半徑分別為4.5、3.5、2.8、1 mm,彎折角度分別為45°、65°、78°、90°。該方案可以有效解決圓角減薄率過(guò)大的成形缺陷。
[1] 丁振, 周鵬, 王旭, 等. 汽車車門集成導(dǎo)軌形式[J]. 汽車實(shí)用技術(shù), 2019(1): 109-110.
DING Zhen, ZHOU Peng, WANG Xu, et al. Car Door Integrated Lead Rail Form[J]. Automobile Applied Technology, 2019(1): 109-110.
[2] 韓飛, 劉繼英, 艾正青, 等. 輥彎成型技術(shù)理論及應(yīng)用研究現(xiàn)狀[J]. 塑性工程學(xué)報(bào), 2010, 17(5): 53-60.
HAN Fei, LIU Ji-ying, AI Zheng-qing, et al. State of the Art of Research on Roll Forming Process[J]. Journal of Plasticity Engineering, 2010, 17(5): 53-60.
[3] TRAUB T, CHEN X, GROCHE P. Experimental and Numerical Investigation of the Bending Zone in Roll Forming[J]. Nternational Journal of Mechanical Sciences, 2017, 131/132: 956-970.
[4] CHA W G, KIM H L, KIM N S. A Study on the Development of Dedicated FEA Tool for Roll Forming of Asymmetrical U-Channel[J]. Advanced Materials Research, 2012, 445: 73-78.
[5] LIU M M, LIU Y L, LI Y. The Evolution of Cross-Sectional Dimension for Double Wall Brazed Tube in the Multi-Pass Roll Forming[J]. IOP Conference Series: Materials Science and Engineering, 2022, 1270(1): 1-9.
[6] TRAN Q H, CHAMPLIAUD H, FENG Z K, et al. Analysis of the Asymmetrical Roll Bending Process Through Dynamic FE Simulations and Experimental Study[J]. The International Journal of Advanced Manufacturing Technology, 2014, 75:5-8.
[7] CHEN L, ZHANG Z Y, WANG Y. The Study of Steel Channel’s Cold Bending Forming Process through Numerical Simulation[J]. Advanced Materials Research, 2012, 1601: 430-432.
[8] 王占一, 劉曉立, 馬希青, 等. TA2圓管輥彎成型邊波缺陷及機(jī)理研究[J]. 精密成形工程, 2023, 15(2): 51-59.
WANG Zhan-yi, LIU Xiao-li, MA Xi-qing, et al. Edge Wave Defects and Mechanism of TA2 Round Tube Roll Forming[J]. Journal of Netshape Forming Engineering, 2023, 15(2): 51-59.
[9] 李凡, 王安恒, 王雷, 等. 基ABAQU二次開發(fā)的非對(duì)稱Z截面型材多道次滾彎成型工藝[J]. 鍛壓技術(shù), 2023, 48(4): 152-161.
LI Fan, WANG An-heng, WANG Lei, et al. Multi-Pass Roll Bending Process of Asymmetric Z-Section Profiles Based on ABAQUS Secondary Development[J]. Forging & Stamping Technology, 2023, 48(4): 152-161.
[10] 鄭子君, 劉志芳. 變曲率型材滾彎的壓下量逐點(diǎn)設(shè)計(jì)法及其適用條件[J]. 塑性工程學(xué)報(bào), 2021, 28(1): 7-13.
ZHENG Zhi-jun, LIU Zhi-feng. Roll Bending of Uneven Curvature Profile: A Point-Wise Design Scheme of Downfeed and Its Applicable Condition[J]. Journal of Plasticity Engineering, 2021, 28(1): 7-13.
[11] 陳霞, 常慶明, 黃志鎮(zhèn), 等. 輥彎工藝參數(shù)優(yōu)化[J]. 機(jī)械科學(xué)與技術(shù), 2009, 28(4): 553-556.
CHEN Xia, CHANG Qing-ming, HUANG Zhi-zhen, et al. Optimization of Technical Parameters of Roll Forming[J]. Mechanical Science and Technology for Aerospace Engineering, 2009, 28(4): 553-556.
[12] CHENG J J, CAO J G, RUAN K, et al. Study on Twist Defect of Thin-Walled Components with Asymmetric Section during Roll Forming[J]. IOP Conference Series: Materials Science and Engineering, 2022, 1270(1): 1-8.
[13] 顧澤中, 孟珂, 任錕, 等. 支架類槽鋼冷彎成型參數(shù)設(shè)計(jì)及優(yōu)化[J]. 鍛壓技術(shù), 2022, 47(10): 90-95.
GU Ze-zhong, MENG Ke, REN Kun, et al. Design and Optimization on Cold Bending Parameters for Sporting Channel Steel[J]. Forging & Stamping Technology, 2022, 47(10): 90-95.
[14] 白璐, 劉俊, 王子昂. 基于薄壁管材冷彎工藝的空心芯棒形狀參數(shù)研究[J]. 塑性工程學(xué)報(bào), 2022, 29(8): 28-35.
BAI Lu, LIU Jun, WANG Zi-ang. Research on Shape Parameters of Hollow Mandrel Based on Cold Bending Process of Thin-Wall Tubes[J]. Journal of Plasticity Engineering, 2022, 29(8): 28-35.
[15] 李沖, 韓飛. 非對(duì)稱截面輥彎成型扭曲有限元分析[J]. 鍛壓技術(shù), 2023, 48(1): 66-71.
LI Chong, HAN Fei. Finite Element Analysis on Twist Defect in Roll Forming of Asymmetric Section[J]. Forging & Stamping Technology, 2023, 48(1): 66-71.
[16] 魏小平, 鄒天下, 李大永. 不銹鋼微通道管輥彎成型設(shè)計(jì)和有限元仿真研究[J]. 現(xiàn)代交通與冶金材料, 2022, 2(4): 56-60.
WEI Xiao-ping, ZOU Tian-xia, LI Da-yong. Finite Element Simulation of Stainless Steel Microchannel Tubes[J]. Modern Transportation and Metallurgical, 2022, 2(4): 56-60.
[17] SU C J, LI X M, FENG Z Y, et al. Rebound Control in Multipass Roll Forming of Cap-Shaped Parts Based on Segmental Boundary Optimization Function[J]. Materials & Design, 2023, 225: 1-13.
[18] XING M L, LIU J Y, WANG Y H, et al. Prediction and Optimization of Wear Depth on Rectangular Tube Surface in Roll Forming[J]. Metals, 2022, 13(1): 68-76.
[19] 邢夢(mèng)龍, 杜鳳山, 付玉濤. 矩形管輥彎成型角部充滿度分析及試驗(yàn)驗(yàn)證[J]. 中國(guó)機(jī)械工程, 2023, 34(7): 866-874.
XING Meng-long, DU Feng-shan, FU Yu-tao. Analysis and Experimental Verification of Corner Filling Degree of Rectangular Tube Roll Forming[J]. China Mechanical Engineering, 2023, 34(7): 866-874.
[20] LUO Z Y, SUN M, ZHANG Z, et al. Finite Element Analysis of Circle-to-Rectangle Roll Forming of Thick-Walled Rectangular Tubes with Small Rounded Corners[J]. International Journal of Material Forming, 2022, 15(6): 36-44.
[21] JIANG L F, TAO X H, LIN Y C, et al. Influence of Base Level of the Roll Flower Pattern on the Roll Forming Quality of the Hat-Shaped Section[J]. International Journal of Modern Physics B, 2022, 36(12/13): 1-9.
[22] 孫慶東, 王傳紅, 任友亮, 等. 8形管冷彎成型工藝設(shè)計(jì)與有限元分析[J]. 機(jī)械設(shè)計(jì)與制造, 2017(10): 199-202.
SUN Qing-dong, WANG Chuan-hong, REN You-liang, et al. Roll Forming Process Design and Finite Element Analysis for 8 Form Tube[J]. Machinery Design & Manufacture, 2017(10): 199-202.
[23] 孫慶東, 王傳紅, 徐小青, 等. O形管輥彎成型有限元仿真與孔形優(yōu)化設(shè)計(jì)[J]. 現(xiàn)代制造工程, 2016(12): 112-116.
SUN Qing-dong, WANG Chuan-hong, XU Xiao-qing, et al. O Form Tube Forming Finite Element Simulation and Roll Shape Optimization Design[J]. Modern Manufacturing Engineering, 2016(12): 112-116.
[24] 肖小亭, 楊東, 廖毅娟. 抽屜導(dǎo)軌中滑軌輥彎成型工藝及CAE分析[J]. 鍛壓技術(shù), 2010, 35(2): 31-34.
XIAO Xiao-ting, YANG Dong, LIAO Yi-juan. Roll- Forming Process and CAE Analysis of Drawer Idler Slide Rail[J]. Forging & Stamping Technology, 2010, 35(2): 31-34.
[25] WANG A H , XUE H Q, BAYRAKTAR E, et al. Analysis and Control of Twist Defects of Aluminum Profiles with Large Z-Section in Roll Bending Process[J]. Metals, 2019, 10(1): 31-39.
[26] LIANG C, LI S N, LIANG J C, et al. Method for Controlling Edge Wave Defects of Parts during Roll Forming of High-Strength Steel[J]. Metals, 2021, 12(1): 53-65.
Optimization of Fillet Thinning Rate Process for Cold Bend Forming with Complex Sections
LIU Yang, LI Qing-da, GAO Ya-nan*, GENG Xiao-yong, LI Yan-bo, WANG Wen-bin, YANG Jian-guo, WANG Wei
(Hebei Automobile Safety Parts Technology Innovation Center, Lingyun Industry Co., Ltd., Hebei Zhuozhou 072750, China)
The work aims to optimize the cold bend forming process and thinning rate of the Z-shaped rib fillet based on the cold bend forming process of the guide rail in the complex cross-section car door, so as to solve the problems of complex processes, numerous passes and excessive thinning rate of the Z-shaped rib fillet. COPRA FEA finite element simulation software was used to analyze the forming process of the middle guide rail in the car door, and study the effects of roller fillet radius, forming speed, forming strategy, etc. on the fillet thinning rate. By combining finite element analysis methods, the process parameters were continuously optimized to achieve accurate forming of the Z-shaped rib fillet in the middle guide rail. Finally, the optimal process plan was proposed and verified through experiments. In the forming process of large fillet, the bending neutral layer of fillet was within the range of material thickness, and there were both compressive and tensile stresses in the direction of material thickness, resulting in a smaller reduction in wall thickness. In the forming process of small fillet, the bending neutral layer of the fillet deviated from the inner arc surface, and the material thickness direction was subject to tensile stress, resulting in a trend of only thinning the wall thickness. The experimental results showed that the thickness of the Z-shaped fillet changed from 1.33 mm to 1.46 mm, and the thinning rate decreased from 26.1% to 18.89%. The simulation results showed that the thickness of the Z-shaped fillet changed from 1.29 mm to 1.52 mm, and the thinning rate decreased from 28.3% to 15.6%. The comparison between simulation and experimental results showed that the maximum error of simulation analysis was 4.1%, which verified the reliability of the simulation results. The optimal process route is to use large fillet and slow forming. The forming strategy is to use large fillet in the early stage and small filler in the later stage. The forming radius of the fillet is 4.5, 3.5, 2.8 and 1 mm, and the bending angle is 45°, 65°, 78° and 90°. This process plan can effectively solve the forming defect of excessive fillet thinning rate.
fillet thinning rate; cold bend forming process; middle guide rail of car door; stress; finite element simulation; experiment; large fillet forming
10.3969/j.issn.1674-6457.2023.011.020
TG386;TG306;TG335
A
1674-6457(2023)011-0171-08
2023-05-19
2023-05-19
劉陽(yáng), 李慶達(dá), 高亞南, 等. 復(fù)雜截面冷彎成形圓角減薄率工藝優(yōu)化研究[J]. 精密成形工程, 2023, 15(11): 171-178.
LIU Yang, LI Qing-da, GAO Ya-nan, et al. Optimization of Fillet Thinning Rate Process for Cold Bend Forming with Complex Sections[J]. Journal of Netshape Forming Engineering, 2023, 15(11): 171-178.
通信作者(Corresponding author)
責(zé)任編輯:蔣紅晨