• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      助劑對植保無人機噴施霧滴沉積特性和棉蚜防效的影響

      2024-01-01 00:00:00李鵬飛劉富強馮宏祖鄭藝翔武剛王蘭
      棉花學(xué)報 2024年3期
      關(guān)鍵詞:螺蟲植保無人機棉蚜

      收稿日期:2024-03-18" " "第一作者簡介:李鵬飛(1996―),男,博士,547895148@qq.com。*通信作者:馮宏祖,fhzzky@163.com;王蘭,wang-lan95@163.com

      基金項目:新疆生產(chǎn)建設(shè)兵團(tuán)財政科技計劃(2021DB008);新疆生產(chǎn)建設(shè)兵團(tuán)科技創(chuàng)新人才計劃(2022CB004-01)

      摘要:【目的】探明植保無人機噴施農(nóng)藥時添加助劑對霧滴沉積特性和棉蚜防治效果(防效)的影響?!痉椒ā窟x用大疆T30植保無人機在棉花蕾期進(jìn)行田間噴霧試驗,比較添加6種助劑(牙克透、倍達(dá)通、植物三餐、農(nóng)健飛、奇功和倍倍加)對39%螺蟲·噻嗪酮懸浮劑的霧滴粒徑、密度、覆蓋率和沉積量及棉蚜防效的影響。【結(jié)果】與不添加助劑的對照相比,添加6種助劑均能提高棉花上部、中部和下部葉片上的霧滴密度、覆蓋率和沉積量。添加倍倍加、倍達(dá)通處理的霧滴粒徑、密度、覆蓋率和沉積量均較大,棉株上部、中部和下部葉片上的霧滴密度、覆蓋率和沉積量均顯著高于對照處理。添加6種助劑的各處理在藥后1 d、3 d、7 d和14 d對棉株上部、中部和下部棉蚜的防效均高于對照處理,其中,添加倍倍加處理的防效最好,倍達(dá)通處理次之?!窘Y(jié)論】添加助劑倍倍加和倍達(dá)通可改善霧滴沉積特性,對棉蚜具有較好的防效,對39%螺蟲·噻嗪酮懸浮劑防治棉蚜具有很好的增效作用。

      關(guān)鍵詞:植保無人機;助劑;螺蟲·噻嗪酮;霧滴沉積特性;棉蚜;防治效果

      Effects of adjuvants on deposition characteristics of spray droplets applied by plant protection unmanned aerial vehicle and control efficiency on Aphis gossypii

      Li Pengfei1, Liu Fuqiang1, Feng Hongzu1*, Zheng Yixiang1, Wu Gang2, Wang Lan1*

      (1. Tarim University/Key Laboratory of Integrated Pest Management of The Xinjiang Production and Construction Corps in Southern Xinjiang/Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of The Xinjiang Production and Construction Corps, Aral, Xinjiang 843300, China; 2. Agricultural Science Research Institute of 1st Division of The Xinjiang Production and Construction Corps, Aral, Xinjiang 843300, China)

      Abstract: [Objective] This research aims to explore the effects of adjuvants during pesticide spraying by plant protection unmanned aerial vehicle (UAV) on droplet deposition characteristics and control efficiency on Aphis gossypii. [Methods] Dajiang T30 UAV was selected to conduct a field spray experiment during the cotton budding stage. The effects of 6 adjuvants (Yaketou, Beidatong, Zhiwusancan, Nongjianfei, Qigong, and Beibeijia) in 39% spirotetramat buprofezin on the size, density, coverage, and deposition amount of droplets and control efficiency on A. gossypii were compared. [Results] Compared with the control without adjuvant, treatments with the" adjuvants increased the droplet density, coverage, and deposition amount on the upper, middle, and lower leaves of cotton plant. The droplet size, density, coverage, and deposition amount treated with Beibeijia and Beidatong were all higher; of which the density, coverage, and deposition amount on the upper, middle, and lower leaves of cotton plants were significantly higher than those of the control treatment. The control efficiency on A. gossypii of treatments with adjuvants in the upper, middle, and lower parts of cotton plant was higher than that of the control treatment at 1 d, 3 d, 7 d, and 14 d after application. The control efficiency of the treatment with Beibeijia was the best, followed by the treatment with Beidatong." [Conclusion] The addition of Beibeijia and Beidatong can improve the deposition characteristics of droplets and has a good control effect on A. gossypii. It also has a good synergism on the control of A. gossypii with 39% spirotetramat buprofezin suspension.

      Keywords: plant protection unmanned aerial vehicle; adjuvants; spirotetramat buprofezin; deposition characteristics of droplet; Aphis gossypii; control efficiency

      由于新疆獨特優(yōu)越的自然環(huán)境,高度機械化的生產(chǎn)方式,伴隨著“一帶一路”的發(fā)展契機,新疆棉花產(chǎn)業(yè)在我國棉花產(chǎn)業(yè)中占據(jù)主要地位,國際競爭力不斷提高。據(jù)統(tǒng)計,2023年新疆棉花播種面積為236.93萬hm2,棉花產(chǎn)量達(dá)511.2萬t,約占全國棉花總產(chǎn)量的91%[1],實現(xiàn)了質(zhì)量、效益“雙提升”。因此,保證新疆棉花安全生產(chǎn)具有重要的戰(zhàn)略意義。20世紀(jì)80年代棉蚜(Aphis gossypii)開始對新疆棉花造成危害,隨著新疆棉花種植面積的擴大,加上作物種植結(jié)構(gòu)單一,導(dǎo)致棉蚜頻發(fā),嚴(yán)重制約了棉花的優(yōu)質(zhì)、高效生產(chǎn)[2-3]。棉蚜在棉花葉片背面和芽尖嫩葉部位吸食汁液,導(dǎo)致棉株營養(yǎng)不良,蕾鈴脫落,一般造成減產(chǎn)15%~30%,嚴(yán)重時甚至絕收;同時棉蚜分泌蜜露污染棉纖維,致使棉花纖維品質(zhì)下降[4]。長期以來,棉蚜的化學(xué)防治主要依賴傳統(tǒng)的背負(fù)式噴霧器或懸掛式噴桿噴霧機進(jìn)行噴霧。傳統(tǒng)的施藥方式不僅造成農(nóng)藥利用率降低,而且農(nóng)民為保證防治效果(防效)普遍過度用藥,導(dǎo)致農(nóng)藥大量殘留,農(nóng)藥污染日趨嚴(yán)重[5-6]。農(nóng)藥在作物上的沉積效果是影響其藥效的關(guān)鍵因素,而藥液在作物上的沉積效果與植保機械有很大的關(guān)系[7]。

      植保無人機作為新型的施藥裝備改變了傳統(tǒng)的藥液噴灑方式。相比于地面施藥裝備,無人機作業(yè)的優(yōu)勢在于不受田間灌溉的影響,不會對棉花造成機械損傷,甚至可在夜間作業(yè),打破了作業(yè)時間限制,在棉蚜爆發(fā)期能快速阻止棉蚜擴散[8]。植保無人機噴霧技術(shù)的迅猛發(fā)展和應(yīng)用引起了人們的廣泛關(guān)注,越來越多的研究者通過大田噴霧試驗獲得霧滴沉積特性和病蟲害防效數(shù)據(jù),研究無人機噴灑藥效的各種影響因素。Chen等[9]利用無線風(fēng)速傳感測量系統(tǒng)研究了無人機下洗風(fēng)場對噴施霧滴在水稻冠層的沉積分布規(guī)律的影響。邱白晶等[10]構(gòu)建了無人機飛行高度、速度與霧滴沉積濃度、沉積均勻性之間的關(guān)系模型。王昌陵等[11]對比了4種國產(chǎn)植保無人機施藥霧滴在小麥冠層的沉積分布。秦維彩等[12]篩選出適于高稈作物噴霧使用的無人機噴灑參數(shù)。趙冰梅等[13]研究了植保無人機在棉蚜防治中的應(yīng)用。研究人員探究了植保無人機的飛行參數(shù)設(shè)置,篩選了防治棉蚜的藥劑和助劑等[14-18]。這些研究為植保無人機的應(yīng)用提供了理論支撐。在現(xiàn)代農(nóng)業(yè)快速發(fā)展的背景下,植保無人機通過多種傳感器,應(yīng)用專用藥劑和配套的助劑,可實現(xiàn)精準(zhǔn)施藥,從而提高農(nóng)藥的利用率[19]。

      近年來,本團(tuán)隊研究了植保無人機噴施不同類型、不同用量的殺蟲劑對新疆棉田棉蚜防效的影響[14-18],發(fā)現(xiàn)39%(質(zhì)量分?jǐn)?shù),下同)螺蟲·噻嗪酮懸浮劑(suspension concentrates, SC)具有較好的效果[16]。39%螺蟲·噻嗪酮由螺蟲乙酯與噻嗪酮混配而成,是1種活性較高且具有內(nèi)吸性、觸殺作用和胃毒作用的廣譜性殺蟲劑,對蚜蟲、飛虱、木虱等害蟲具有較高毒殺活性和較好的防效,表現(xiàn)出較好的速效性和較長的持效期[20]。已有的研究表明,助劑可以通過影響藥液的理化性質(zhì),降低藥液的表面張力、提高潤濕滲透性、優(yōu)化霧滴分布的均勻性、降低霧滴在作物表面上的接觸角、增加藥液在作物上的沉積量,進(jìn)而提高農(nóng)藥的利用率[21-23]。在作物病蟲害的防治中,對于一些不能達(dá)到理想防效的藥劑,可通過添加助劑提高藥液在作物表面上的沉積量來提高防效[24-26]。螺蟲乙酯與噻嗪酮對棉蚜具有超高活性,且對哺乳動物低毒,目前有關(guān)螺蟲乙酯與噻嗪酮單劑及其與助劑混配對棉蚜防效的研究較多,但39%螺蟲·噻嗪酮SC添加助劑后能否改善植保無人機噴施的霧滴沉積特性和提高對棉蚜的防效尚不清楚。本研究以39%螺蟲·噻嗪酮SC為供試藥劑,添加6種不同的助劑,采用大疆T30植保無人機進(jìn)行噴霧,研究不同處理下的霧滴沉積特性及對棉蚜的田間防效,以期為植保無人機防治棉蚜中農(nóng)藥的減施增效提供理論指導(dǎo)和數(shù)據(jù)支撐。

      1 材料與方法

      1.1 供試材料

      噴霧作業(yè)使用大疆T30植保無人機(深圳市大疆創(chuàng)新科技有限公司),藥箱容量為30 L,最大作業(yè)飛行速度為7 m·s-1,最大有效噴幅為4~9 m,噴頭類型為SX11001VS。用賽默飛世爾(上海)儀器有限公司的Thermo Multiskan FC酶標(biāo)儀測定吸光度值。

      供試藥劑為39%螺蟲·噻嗪酮SC(登記證號:PD20182784,山東一覽科技有限公司);供試助劑見表1。

      1.2 試驗方法

      1.2.1 試驗設(shè)計。于2022年在新疆生產(chǎn)建設(shè)兵團(tuán)第一師農(nóng)業(yè)科學(xué)研究所試驗基地(阿拉爾市)開展大田試驗。該試驗地土壤質(zhì)地為壤土,肥力中等。棉花品種為新陸中85號,采用膜下滴灌、1膜4行栽培模式,株距 10 cm,行距(66+10)cm。4月19日播種。各小區(qū)的棉花長勢和田間管理措施一致。

      根據(jù)藥劑和助劑的田間推薦使用劑量,設(shè)以下8個處理。A:39%螺蟲·噻嗪酮SC+牙克透33.3 g·L-1;B:39%螺蟲·噻嗪酮SC+倍達(dá)通15 g·L-1;C:39%螺蟲·噻嗪酮SC+植物三餐1 g·L-1;D:39%螺蟲·噻嗪酮SC+農(nóng)健飛2.8 g·L-1;E:39%螺蟲·噻嗪酮SC+奇功1.53 g·L-1;F:39%螺蟲·噻嗪酮SC+倍倍加1.35 g·L-1;G:39%螺蟲·噻嗪酮SC;CK:清水。A~G處理下39%螺蟲·噻嗪酮SC用量均為7.3 g·L-1。每個處理重復(fù)3次,共24個小區(qū),每小區(qū)面積為2 000 m2(100 m×20 m),采用隨機區(qū)組排列,小區(qū)之間設(shè)立2 m寬的保護(hù)帶。2022年6月19日(蕾期)施藥,提前規(guī)劃各小區(qū)無人機飛行航線,按照公司推薦的飛行參數(shù),設(shè)定無人機飛行速度為5.5 m·s-1,飛行高度3 m,噴幅寬度5 m,施藥量為22.5 L·hm-2。施藥當(dāng)天平均氣溫26 ℃,相對濕度26%,無風(fēng)。

      1.2.2 采樣點布置。如圖1所示,施藥前在各個小區(qū)垂直于植保無人機飛行航線的噴幅范圍內(nèi)布置3條采樣線,采樣線間隔20 m,每條采樣線上布置19個霧滴信息采樣點,采樣點間隔1 m。每個采樣點選1株棉花,在棉株下部(距地面20 cm)、中部(距地面40 cm)和上部(距地面60 cm)葉片正面各布置1張霧滴測試卡(70 mm×30 mm)和1張麥拉片(70 mm×30 mm)。每次試驗完成后,收集采樣點上的霧滴測試卡和麥拉片,放置在密封袋中帶回實驗室,分析霧滴密度、霧滴粒徑和霧滴覆蓋率等參數(shù)。

      1.2.3 霧滴沉積特性。參考邱占奎等[27]和Gao等[28]的方法。用分析天平準(zhǔn)確稱取0.011 8 g 85%誘惑紅,用蒸餾水溶解并定容至10 mL,配制成1 000 mg·L-1的母液。用移液槍吸取一定量的母液進(jìn)行稀釋,配置成質(zhì)量濃度分別為1 000、500、250、125、62.5、10 mg·L-1的標(biāo)準(zhǔn)液,用酶標(biāo)儀在514 nm波長下測定其吸光度值,每個濃度連續(xù)測定3次,取吸光度的平均值繪制質(zhì)量濃度-吸光度值標(biāo)準(zhǔn)曲線。通過線性擬合獲得誘惑紅濃度與吸光度值之間的線性回歸方程:

      As=0.003 1Ce+0.194 6 " (1)

      式中,Ce為誘惑紅濃度(mg·L-1),As為測定溶液的吸光度值,R2=0.959 9。

      施藥前,向藥液中加入5 g·L-1誘惑紅作為噴霧染色劑,以代替藥劑來測定噴霧霧滴的沉積量[29]。噴霧結(jié)束待藥液干涸后收集水敏紙和麥拉片并裝入自封袋帶回室內(nèi),收集時注意戴手套避免水敏紙污染。用深圳市大疆創(chuàng)新科技有限公司研發(fā)的Droplet Analyzer霧滴測試儀對采集的霧滴測試卡進(jìn)行掃描,可得出霧滴粒徑(μm)、霧滴密度(個·cm-2)和霧滴覆蓋率(%)參數(shù)。

      麥拉片洗脫時,向每個自封袋中加入5 mL純凈水,120 r·min-1震蕩5 min,然后取洗脫液3 mL使用酶標(biāo)儀在514 nm波長下測定其吸光度值,根據(jù)公式(1)計算誘惑紅濃度。然后,計算單位面積的霧滴沉積量。

      β=Ce×V/S (2)

      式中,β為單位面積的霧滴沉積量(μL·cm-2);V為加入的洗脫液體積(mL);S為霧滴收集器麥拉卡的面積(cm2)。

      1.2.4 防效調(diào)查。采用5點法進(jìn)行調(diào)查,每點選3株棉花,每株掛牌分別調(diào)查棉株上部、中部和下部3片有蚜蟲的棉葉,并在施藥前1 d及施藥后1 d、3 d、7 d和14 d調(diào)查蚜蟲數(shù)量[30]。以噴施等量清水為空白對照,計算蟲口減退率和防效。

      R=(N0-N1)/N0×100%" " (3)

      E=(R1-R0)/(1-R0)×100%" "(4)

      式中,R為蟲口減退率,N0為施藥前(或噴水前)的蟲數(shù),N1為施藥后(或噴水后)的蟲口數(shù);E為防效,R1為藥劑處理區(qū)的蟲口減退率,R0為空白對照區(qū)的蟲口減退率。

      1.3 數(shù)據(jù)處理與分析

      所有試驗數(shù)據(jù)均采用Microsoft Excel 2019和 SPSS 25.0軟件進(jìn)行處理。數(shù)據(jù)進(jìn)行正態(tài)分布檢驗和方差齊性檢驗,采用單因素方差分析和鄧肯多重范圍檢驗(鄧肯氏新復(fù)極差法)進(jìn)行差異顯著性分析。

      2 結(jié)果與分析

      2.1 助劑對霧滴沉積特性的影響

      2.1.1 助劑對霧滴粒徑的影響。倍倍加處理(F處理)下棉株上部、中部和下部的霧滴粒徑均顯著高于其他6個處理(圖2)。與未添加助劑的G處理相比,F(xiàn)處理下棉株上部、中部和下部的霧滴粒徑分別顯著增加18.52%、22.00%和25.59%;B處理下棉株上部的霧滴粒徑與G處理無顯著差異,中部和下部的霧滴粒徑較G處理分別顯著增加9.21%和9.65%;A、C、D和E處理下棉株上部、中部和下部的霧滴粒徑較G處理均顯著降低。

      2.1.2 助劑對霧滴密度的影響。與G處理相比,添加助劑后(A~F處理)棉株上部、中部和下部的霧滴密度均有所增加(圖3)。A~F處理的棉株上部霧滴密度均顯著增加,其中,F(xiàn)處理下棉株上部霧滴密度最大,達(dá)到37.30個·cm-2,較G處理提高35.66%,與B和E處理差異不顯著。除D處理外,其他5個添加助劑處理的棉株中部霧滴密度顯著增加,其中,F(xiàn)處理下棉株中部霧滴密度最大,為22.30 個·cm-2,較G處理提高46.19%,與B、C和E處理差異不顯著。B、E和F處理的棉株下部霧滴密度較G處理分別顯著提高79.10%、123.88%和128.36%。

      2.1.3 助劑對霧滴覆蓋率的影響。A~G處理下棉株上部、中部和下部霧滴覆蓋率的變化范圍為0.7%~3.3%(圖4)。同一處理下,棉株上部的霧滴覆蓋率最大,其次為棉株中部,棉株下部的最低。與不添加助劑的G處理相比,F(xiàn)、B、A和E處理下棉株上部的霧滴覆蓋率分別顯著增加57.1%、42.9%、33.3%和33.33%;A、B、E和F處理下棉株中部的霧滴覆蓋率顯著增加,其中處理F的霧滴覆蓋率最高,為2.2%;F、B、A和E處理下棉株下部的霧滴覆蓋率分別顯著增加85.7%、57.1%、57.1%和42.9%。

      2.1.4 助劑對霧滴沉積量的影響。不同處理下棉株上部、中部和下部霧滴沉積量的變化范圍為0.049~0.667 μL·cm-2。與不添加助劑的G處理相比,A、B、E和F處理下棉株上部的霧滴沉積量分別顯著增加40.4%、68.4%、33.84%和70.96%;B、E和F處理下棉株中部的霧滴沉積量分別顯著增加57.1%、43.9%和59.9%;B和F處理下棉株下部的霧滴沉積量分別顯著增加208.2%和259.2%(圖5)。

      2.2 助劑對植保無人機噴施作業(yè)防治棉蚜效果的影響

      由圖6可知,A~F處理在藥后1 d、3 d、7 d和14 d對棉蚜的防效均高于G處理。

      施藥后1 d,A、B、E和F處理下棉株上部、中部和下部的防效均顯著高于G處理,其中F處理對棉株上部、中部和下部棉蚜的防效均最高,分別為58.8%、49.6%和39.8%,顯著高于其他6個處理,B處理次之。

      施藥后3 d,A~F處理對棉株上部、中部和下部棉蚜的防效均顯著高于G處理。A~F處理對棉株上部、中部和下部棉蚜的防效分別為65.0%~76.8%、52.9%~66.4%和48.5%~55.5%。其中,F(xiàn)處理對棉株上部、中部和下部棉蚜的防效均最高,B處理次之。

      施藥后7 d,A~F處理對棉株上部、中部和下部棉蚜的防效分別為82.3%~92.2%、71.5~83.0%和62.2%~74.0%。A~F處理對棉株上部和中部棉蚜的防效均顯著高于G處理。除了D處理,其他處理對棉株下部棉蚜的防效均顯著高于G處理。F處理對棉株上部、中部和下部棉蚜的防效均最高,B處理次之。

      施藥后14 d,A~G處理對棉株上部、中部和下部棉蚜的防效均有所下降,但A~F處理對棉株上部、中部和下部棉蚜的防效仍顯著高于G處理。以上結(jié)果表明,在39%螺蟲·噻嗪酮SC用量相同的情況下,添加助劑對棉蚜的防效均高于不添加助劑的G處理,其中添加倍倍加和倍達(dá)通處理(F和B處理)的防效較優(yōu)。

      3 討論

      植保無人機施藥具有作業(yè)效率高、對作物無機械損傷、人機分離可避免作業(yè)人員農(nóng)藥中毒等優(yōu)勢,已廣泛應(yīng)用于作物病蟲草害防治。近年來在新疆棉田蚜蟲防治中,植保無人機防治的理論和技術(shù)備受關(guān)注。前人研究報道了植保無人機防治棉蚜的作業(yè)參數(shù)和藥劑篩選[13-14],助劑對植保無人機噴施藥液的霧滴沉積特性和防效的影響[15],篩選出一批適合無人機噴霧防治棉蚜的藥劑和助劑[16-17],對比了無人機白天和夜間作業(yè)條件下棉株不同部位的霧滴沉積規(guī)律及棉蚜防效[31],優(yōu)化了植保無人機防治棉蚜的作業(yè)參數(shù)[32],為植保無人機在新疆棉田的應(yīng)用與推廣提供了科學(xué)依據(jù)。

      助劑不僅能改變藥劑的理化特性,還對霧滴的沉積特性產(chǎn)生影響[33-34]。本研究中在田間開展噴霧試驗,結(jié)果表明添加助劑牙克透、倍達(dá)通、植物三餐、農(nóng)健飛、奇功和倍倍加均可以提高棉株上部、中部和下部葉片的霧滴覆蓋率、霧滴密度和霧滴沉積量,從而增強對棉蚜的防效。在供試的6種助劑中,倍倍加和倍達(dá)通的作用效果較好。蘭玉彬等[22]的研究結(jié)果也表明,添加助劑可對藥液的霧滴沉積特性產(chǎn)生影響,其中添加倍達(dá)通增加了霧滴粒徑和沉積量,這與本研究的結(jié)果相同。添加倍倍加和倍達(dá)通后藥液的沉積特性均有所改善,這與添加助劑后霧滴的抗飄移、抗蒸發(fā)性增強有關(guān)[35]。

      合理地添加助劑可增加藥液霧滴的粒徑,降低霧滴表面張力,提高霧滴的鋪展系數(shù)和藥液的黏度,起到降低藥劑使用量并提高藥效的作用[22-36]。本研究表明,供試6種助劑對39%螺蟲·噻嗪酮SC均有一定程度的增效作用,在39%螺蟲·噻嗪酮SC用量相同的情況下,分別添加牙克透、倍達(dá)通、奇功和倍倍加這4種助劑對棉蚜的防效均顯著優(yōu)于不添加助劑的對照處理,添加倍倍加處理對棉蚜的防效最優(yōu),添加倍達(dá)通處理的防效次之。

      4 結(jié)論

      無人機噴施條件下,添加助劑牙克透、倍達(dá)通、植物三餐、農(nóng)健飛、奇功和倍倍加影響39%螺蟲·噻嗪酮懸浮劑在棉花葉片上的霧滴沉積特性,提高藥劑對棉蚜的防效。在供試的助劑中,添加倍倍加和倍達(dá)通能顯著增加棉株上部、中部和下部葉片上的霧滴覆蓋率、霧滴密度和霧滴沉積量,能明顯增大霧滴粒徑,顯著提高藥后1 d、3 d、7 d和14 d對棉蚜的防效,對39%螺蟲·噻嗪酮懸浮劑防治棉蚜具有很好的增效作用。

      參考文獻(xiàn):

      [1] 國家統(tǒng)計局. 國家統(tǒng)計局關(guān)于2023年棉花產(chǎn)量的公告[EB/OL]. (2023-12-25) [2024-03-01]. https://www.stats.gov.cn/

      sj/zxfb/202312/t20231225_1945745.html.

      National Bureau of Statistics. Announcement of the National Bureau of Statistics on cotton production in 2023[EB/OL]. (2023-

      12-25) [2024-03-01]. https://www.stats.gov.cn/sj/zxfb/202312/

      t20231225_1945745.html.

      [2] 馬祁. 新疆棉田棉蚜及其防治[J]. 新疆農(nóng)業(yè)大學(xué)學(xué)報, 2002, 25(S1): 47-50.

      Ma Qi. Occurring and controlling of Aphis gossypii in cotton fields in Xinjiang[J]. Journal of Xinjiang Agricultural University, 2002, 25(S1): 47-50.

      [3] 陶春林, 幸慶午. 新疆棉蚜大量發(fā)生的原因及其防治[J]. 中國棉花, 2004, 31(8): 37.

      Tao Chunlin, Xing Qingwu. Causes and prevention of Aphis gossypii in Xinjiang[J]. China Cotton, 2004, 31(8): 37.

      [4] 王孝法, 孟昭璋, 羅教祥. 新疆植棉區(qū)棉蚜分布危害特點及治理對策[J]. 新疆農(nóng)業(yè)科學(xué), 2000(S1): 85-87.

      Wang Xiaofa, Meng Zhaozhang, Luo Jiaoxiang. Distribution and harm characteristics of Aphis gossypii in cotton growing area of Xinjiang and its control measures[J]. Xinjiang Agricultural Sciences, 2000(S1): 85-87.

      [5] 李娜, 劉冰, 陸宴輝. 氟啶蟲胺腈對新疆棉田棉蚜及其天敵種群的影響[J/OL]. 新疆農(nóng)業(yè)科學(xué), 2021, 58(11): 2062-2068[2023-

      03-01]. https://doi.org/10.6048/j.issn.1001-4330.2021.11.012.

      Li Na, Liu Bing, Lu Yanhui. Effects of sulfoxaflor on Aphis gossypii and natural enemies in Xinjiang cotton field[J/OL]. Xinjiang Agricultural Sciences, 2021, 58(11): 2062-2068[2024-

      03-01]. https://doi.org/10.6048/j.issn.1001-4330.2021.11.012.

      [6] 帕提瑪·烏木爾汗, 郭佩佩, 馬少軍, 等. 新疆地區(qū)棉蚜田間種群對10種殺蟲劑的抗性[J/OL]. 植物保護(hù), 2019, 45(6): 273-278[2024-03-01]. https://doi.org/10.16688/j.zwbh.2018459.

      Patima Wumu’erhan, Guo Peipei, Ma Shaojun, et al. Resistance of different field populations of Aphis gossypii to ten insecticides in Xinjiang[J/OL]. Plant Protection, 2019, 45(6): 273-278[2024-03-01]. https://doi.org/10.16688/j.zwbh.2018459.

      [7] 焦雨軒, 薛新宇, 丁素明, 等. 不同植保機械施藥對棉蚜防效的影響[J/OL]. 農(nóng)機化研究, 2022, 44(3): 159-164, 170[2024-03-

      01]. https://doi.org/10.13427/j.cnki.njyi.2022.03.029.

      Jiao Yuxuan, Xue Xinyu, Ding Suming, et al. Effects of different plant protection machinery on Aphis control[J/OL]. Journal of Agricultural Mechanization Research, 2022, 44(3): 159-164, 170[2024-03-01]. https://doi.org/10.13427/j.cnki.njyi.2022.03.029.

      [8] 陳盛德, 蘭玉彬, 李繼宇, 等. 植保無人機航空噴施作業(yè)有效噴幅的評定與試驗[J/OL]. 農(nóng)業(yè)工程學(xué)報, 2017, 33(7): 82-90[2024-03-01]. https://doi.org/10.11975/j.issn.1002-6819.2017.07.

      011.

      Chen Shengde, Lan Yubin, Li Jiyu, et al. Evaluation and test of effective spraying width of aerial spraying on plant protection UAV[J/OL]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(7): 82-90[2024-03-01]. https://doi.org/10.11975/j.issn.1002-6819.2017.07.011.

      [9] Chen S D, Lan Y B, Li J Y, et al. Effect of wind field below unmanned helicopter on droplet deposition distribution of aerial spraying[J]. International Journal of Agricultural and Biological Engineering, 2017, 10(3): 67-77.

      [10] 邱白晶, 王立偉, 蔡東林, 等. 無人直升機飛行高度與速度對噴霧沉積分布的影響[J/OL]. 農(nóng)業(yè)工程學(xué)報, 2013, 29(24): 25-

      32[2024-03-01]. https://doi.org/10.3969/j.issn.1002-6819.2013.

      24.004.

      Qiu Baijing, Wang Liwei, Cai Donglin, et al. Effects of flight altitude and speed of unmanned helicopter on spray deposition uniform[J/OL]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(24): 25-32[2024-03-01]. https://doi.

      org/10.3969/j.issn.1002-6819.2013.24.004.

      [11] 王昌陵, 宋堅利, 何雄奎, 等. 植保無人機飛行參數(shù)對施藥霧滴沉積分布特性的影響[J/OL]. 農(nóng)業(yè)工程學(xué)報, 2017, 33(23): 109-116[2024-03-01]. https://doi.org/10.11975/j.issn.1002-

      6819.2017.23.014.

      Wang Changling, Song Jianli, He Xiongkui, et al. Effect of flight parameters on distribution characteristics of pesticide spraying droplets deposition of plant-protection unmanned aerial vehicle[J/OL]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(23): 109-116[2024-03-01]. https://

      doi.org/10.11975/j.issn.1002-6819.2017.23.014.

      [12] 秦維彩, 薛新宇, 周立新, 等. 無人直升機噴霧參數(shù)對玉米冠層霧滴沉積分布的影響[J/OL]. 農(nóng)業(yè)工程學(xué)報, 2014, 30(5): 50-

      56[2024-03-01]. https://doi.org/10.3969/j.issn.1002-6819.2014.

      05.007.

      Qin Weicai, Xue Xinyu, Zhou Lixin, et al. Effects of spraying parameters of unmanned aerial vehicle on droplets deposition distribution of maize canopies[J/OL]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(5): 50-56[2024-03-01]. https://doi.org/10.3969/j.issn.1002-6819.

      2014.05.007.

      [13] 趙冰梅, 張強, 朱玉永, 等. 多旋翼植保無人機在棉蚜防治中的應(yīng)用效果[J/OL]. 中國植保導(dǎo)刊, 2017, 37(2): 61-63[2024-

      03-01]. https://doi.org/10.3969/j.issn.1672-6820.2017.02.015.

      Zhao Bingmei, Zhang Qiang, Zhu Yuyong, et al. Application effect of multi-rotor plant protection UAV in Aphis gossypii control[J/OL]. China Plant Protection, 2017, 37(2): 61-63[2024-03-01]. https://doi.org/10.3969/j.issn.1672-6820.2017.02.

      015.

      [14] 王喆, 馮宏祖, 馬小艷, 等. 無人機施藥對棉蚜的防治效果及經(jīng)濟效益分析[J/OL]. 農(nóng)藥學(xué)學(xué)報, 2019, 21(3): 366-371[2024-

      03-01]. https://doi.org/10.16801/j.issn.1008-7303.2019.0043.

      Wang Zhe, Feng Hongzu, Ma Xiaoyan, et al. Efficacy of insecticide spray drone on Aphis gossypii control and the benefit evaluation[J/OL]. Chinese Journal of Pesticide Science, 2019, 21(3): 366-371[2024-03-01]. https://doi.org/10.16801/j.issn.1008-

      7303.2019.0043.

      [15] 周川浩, 武剛, 馮宏祖, 等. 5種噴霧助劑對吡蟲啉和啶蟲脒防治棉蚜的影響[J/OL]. 農(nóng)藥, 2018, 57(8): 620-623[2024-03-

      01]. https://doi.org/10.16820/j.cnki.1006-0413.2018.08.022.

      Zhou Chuanhao, Wu Gang, Feng Hongzu, et al. Effects of five kinds of synergistic additives on field control of imidacridine and chlordimidine on Aphis gossypii[J/OL]. Agrochemicals, 2018, 57(8): 620-623[2024-03-01]. https://doi.org/10.16820/j.cnki.1006-0413.2018.08.022.

      [16] 李鵬飛, 馮宏祖, 王蘭,等. 無人機施藥防治南疆棉田不同發(fā)生程度蚜蟲效果及關(guān)鍵時期[J/OL]. 中國棉花, 2022, 49(4): 18-

      21[2024-03-01]. https://doi.org/10.11963/cc20220042.

      Li Pengfei, Feng Hongzu, Wang Lan, et al. The control effect and key period of unmanned air vehicle spraying on Aphis of different occurrence degrees in cotton fields in Southern Xinjiang[J/OL]. China Cotton, 2022, 49(4): 18-21[2024-03-01]. https://doi.org/10.11963/cc20220042.

      [17] 張亞林, 周吉輝, 王蘭, 等. 無人機和滴灌施藥對棉蚜及其天敵的影響[J/OL]. 中國棉花, 2018, 45(9): 26-29[2024-03-01]. https://doi.org/10.11963/1000-632X.zylhq.20180912.

      Zhang Yalin, Zhou Jihui, Wang Lan, et al. Effect of insecticides on Aphis gossypii and its natural enemies with different ways of unmanned aerial vehicle and drip irrigation[J/OL]. China Cotton, 2018, 45(9): 26-29[2024-03-01]. https://doi.org/10.11963/1000-632X.zylhq.20180912.

      [18] 沙帥帥, 王喆, 肖海兵, 等. P20植保無人機作業(yè)參數(shù)優(yōu)化及其施藥對棉蚜防效評價[J/OL]. 中國棉花, 2018, 45(1): 6-8[2024-03-01]. https://doi.org/10.11963/1000-632X.sssw1.20171211.

      Sha Shuaishuai, Wang Zhe, Xiao Haibing, et al. Optimizing operation parameters of an unmanned aerial vehicle P20 and its application effects for spaying insecticides to control cotton aphid[J/OL]. China Cotton, 2018, 45(1): 6-8[2024-03-01]. https://doi.org/10.11963/1000-632X.sssw1.20171211.

      [19] 袁會珠, 薛新宇, 閆曉靜, 等. 植保無人飛機低空低容量噴霧技術(shù)應(yīng)用與展望[J/OL]. 植物保護(hù), 2018, 44(5): 152-158, 180[2024-03-01]. https://doi.org/10.16688/j.zwbh.2018307.

      Yuan Huizhu, Xue Xinyu, Yan Xiaojing, et al. Applications and prospects in the unmanned aerial system for low-altitude and low-volume spray in crop protection[J/OL]. Plant Protection, 2018, 44(5): 152-158, 180[2024-03-01]. https://doi.org/10.16688/

      j.zwbh.2018307.

      [20] 張力卜, 馬超, 段小莉, 等. 33%螺蟲·噻嗪酮懸浮劑的制備和防效測定[J/OL]. 農(nóng)藥, 2021, 60(10): 720-723, 737[2024-03-

      01]. https://doi.org/10.16820/j.cnki.1006-0413.2021.10.004.

      Zhang Libo, Ma Chao, Duan Xiaoli, et al. Preparation and field control effect of spirotetramat-buprofezin 33% SC[J/OL]. Agrochemicals, 2021, 60(10): 720-723, 737[2024-03-01]. https://doi.org/10.16820/j.cnki.1006-0413.2021.10.004.

      [21] 胡紅巖, 陳宇楠, 宋賢鵬, 等. 噴霧量及助劑對棉花苗期植保無人飛機作業(yè)效果的影響[J/OL]. 農(nóng)藥學(xué)學(xué)報, 2022, 24(4): 825-833[2024-03-01]. https://doi.org/10.16801/j.issn.1008-

      7303.2022.0050.

      Hu Hongyan, Chen Yunan, Song Xianpeng, et al. Influence of the spray volumes and adjuvants on operational efficacy of plant protection unmanned aerial vehicle at the seedling stage of cotton[J/OL]. Chinese Journal of Pesticide Science, 2022, 24(4): 825-833[2024-03-01]. https://doi.org/10.16801/j.issn.1008-

      7303.2022.0050.

      [22] 蘭玉彬, 單常峰, 王慶雨, 等. 不同噴霧助劑在植保無人機噴施作業(yè)中對霧滴沉積特性的影響[J/OL]. 農(nóng)業(yè)工程學(xué)報, 2021, 37(16): 31-38[2024-03-01]. https://doi.org/10.11975/j.issn.1002-6819.2021.16.005.

      Lan Yubin, Shan Changfeng, Wang Qingyu, et al. Effects of different spray additives on droplet deposition characteristics during plant protection UAV spraying operations[J/OL]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(16): 31-38[2024-03-01]. https://doi.org/10.11975/j.issn.1002-6819.2021.16.005.

      [23] 陳曉, 劉德江, 王果, 等. 噴霧參數(shù)及助劑類型對植保無人飛機在棉花中期噴霧霧滴沉積分布的影響[J/OL]. 農(nóng)藥學(xué)學(xué)報, 2020, 22(2): 347-352[2024-03-01]. https://doi.org/10.16801/j.issn.1008-7303.2020.0051.

      Chen Xiao, Liu Dejiang, Wang Guo, et al. Effect of spray parameters and adjuvant type on droplet deposition deposition of plant protection unmanned aerial vehicle in mid-growth-

      cotton field[J/OL]. Chinese Journal of Pesticide Science, 2020, 22(2): 347-352[2024-03-01]. https://doi.org/10.16801/j.issn.1008-7303.2020.0051.

      [24] 王明, 陳奕璇, 蘇小計, 等. 添加助劑對植保無人飛機低容量噴霧在矮化密植蘋果園中霧滴沉積分布及蘋果黃蚜防治效果的影響[J/OL]. 植物保護(hù)學(xué)報, 2019, 46(6): 1316-1323[2024-

      03-01]. https://doi.org/10.13802/j.cnki.zwbhxb.2019.2018201.

      Wang Ming, Chen Yixuan, Su Xiaoji, et al. Effects of adjuvants in low volume spraying by unmanned aerial vehicle on the deposition distribution of pesticide droplets and control efficiency against Aphis spiraecola in apple orchards of high-

      density dwarfing cultivation pattern[J/OL]. Journal of Plant Protection, 2019, 46(6): 1316-1323[2024-03-01]. https://doi.org/10.13802/j.cnki.zwbhxb.2019.2018201.

      [25] 陳奕璇, 石鑫, 覃貴亮, 等. 植物油助劑Aero-mate 320對植保無人機稻田低容量噴霧沉積利用率的提升效果及其機理分析[J/OL]. 植物保護(hù)學(xué)報, 2021, 48(3): 510-517[2024-03-01]. https://doi.org/10.13802/j.cnki.zwbhxb.2021.2021839.

      Chen Yixuan, Shi Xin, Qin Guiliang, et al. The mechanism and effect of the vegetable oil adjuvant Aero-mate 320 in improving the deposition utilization rate of pesticides applied by plant protection unmanned aerial vehicles in rice field[J/OL]. Journal of Plant Protection, 2021, 48(3): 510-517[2024-03-01]. https://

      doi.org/10.13802/j.cnki.zwbhxb.2021.2021839.

      [26] 景亮亮, 柴軍發(fā), 趙斌榮, 等. 三種噴霧助劑與殺蟲劑混配防治煙粉虱的減量增效作用[J/OL]. 應(yīng)用昆蟲學(xué)報, 2021, 58(5): 1166-1175[2024-03-01]. https://doi.org/10.7679/j.issn.2095-

      1353.2021.118.

      Jing Liangliang, Chai Junfa, Zhao Binrong, et al. Synergistic effect of three kinds of spray adjuvants mixed with three kinds of pesticides on Bemisia tabaci[J/OL]. Chinese Journal of Applied Entomology, 2021, 58(5): 1166-1175[2024-03-01]. https://

      doi.org/10.7679/j.issn.2095-1353.2021.118.

      [27] 邱占奎, 袁會珠, 樓少巍, 等. 水溶性染色劑誘惑紅和麗春紅-

      G作為農(nóng)藥沉積分布的示蹤劑研究[J]. 農(nóng)藥, 2007, 46(5): 323-325.

      Qiu Zhankui, Yuan Huizhu, Lou Shaowei, et al. The research of water soluble dyes of allura red and ponceau-G as tracers for determing pesticide spray distribution[J]. Agrochemicals, 2007, 46(5): 323-325.

      [28] Gao S C, Wang G B, Zhou Y Y, et al. Water-soluble food dye of Allura Red as a tracer to determine the spray deposition of pesticide on target crops[J/OL]. Pest Management Science, 2019, 75(10): 2592-2597[2024-03-01]. https://doi.org/10.1002/

      ps.5430.

      [29] Shan C F, Wang G B, Wang H H, et al. Effects of droplet size and spray volume parameters on droplet deposition of wheat herbicide application by using UAV[J/OL]. International Journal of Agricultural and Biological Engineering, 2021, 14(1): 74-81[2024-03-01]. https://doi.org/10.25165/j.ijabe.20211401.

      6129.

      [30] 中國國家標(biāo)準(zhǔn)化管理委員會. 農(nóng)藥 田間藥效試驗準(zhǔn)則(二) 第75部分: 殺蟲劑防治棉花蚜蟲: GB/T 17980.75-2004[S]. 北京: 中國標(biāo)準(zhǔn)出版社, 2004: 130.

      Standardization Administration of China. Pesticide-guidelines for the field efficacy trials (Ⅱ)-Part 75: Insecticides against cotton aphid: GB/T 17980.75-2004[S]. Beijing: Standards Press of China, 2004: 130.

      [31] 田志偉, 薛新宇, 崔龍飛, 等. 植保無人機晝夜作業(yè)的霧滴沉積特性及棉蚜防效對比[J/OL]. 農(nóng)業(yè)工程學(xué)報, 2020, 36(5): 69-77[2024-03-01]. https://doi.org/10.11975/j.issn.1002-6819.

      2020.05.008.

      Tian Zhiwei, Xue Xinyu, Cui Longfei, et al. Comparison of droplet deposition characteristics and cotton aphid control effect of plant protection UAV working during the day and night[J/OL]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(5): 69-77[2024-03-01]. https://doi.org/

      10.11975/j.issn.1002-6819.2020.05.008.

      [32] 白微微, 陳曉, 丁瑞豐, 等. 植保無人飛機噴霧參數(shù)及助劑類型對殺蟲劑防治棉蚜的增效作用[J/OL]. 農(nóng)藥學(xué)學(xué)報, 2020, 22(2): 333-339[2024-03-01]. https://doi.org/10.16801/j.issn.1008-

      7303.2020.0050.

      Bai Weiwei, Chen Xiao, Ding Ruifeng, et al. Synergism of spray parameters of plant protection unmanned aerial vehicle and adjuvant types to insecticides against Aphis gossypii[J/OL]. Chinese Journal of Pesticide Science, 2020, 22(2): 333-339[2024-03-01]. https://doi.org/10.16801/j.issn.1008-7303.2020.

      0050.

      [33] 石伶俐, 陳福良, 鄭斐能, 等. 噴霧助劑對三唑磷在水稻葉片上沉積量的影響[J]. 中國農(nóng)業(yè)科學(xué), 2009, 42(12): 4228-4233. Shi Lingli, Chen Fuliang, Zheng Feineng, et al. The influence of triazophos deposition on rice leaves by adding spray adjuvants[J]. Scientia Agricultura Sinica, 2009, 42(12): 4228-4233.

      [34] 張文君, 何雄奎, 宋堅利, 等. 助劑 S240 對水分散性粒劑及乳油藥液霧化的影響[J/OL]. 農(nóng)業(yè)工程學(xué)報,2014, 30(11): 61-

      67[2024-03-01]. https://doi.org/10.3969/j.issn.1002-6819.2014.

      11.008.

      Zhang Wenjun, He Xiongkui, Song Jianli, et al. Effect of adjuvant S240 on atomization of water dispersible granule and emulsion solution[J/OL]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(11): 61-67[2024-03-01]. https://doi.org/10.3969/j.issn.1002-6819.2014.11.008.

      [35] 周曉欣. 霧滴蒸發(fā)規(guī)律的探索及幾種航空噴霧助劑的評價[D]. 沈陽: 沈陽農(nóng)業(yè)大學(xué), 2017.

      Zhou Xiaoxin. Droplets evaporation rule of exploration and evaluation of several aviation spray adjuvants[D]. Shenyang: Shenyang Agricultural University, 2017.

      [36] 劉永強, 張貴森, 周超, 等. 陽離子助劑1227和C8-10及有機硅助劑Breakthru S240對三種殺蟲劑的增效作用[J]. 昆蟲學(xué)報, 2011, 54(8): 902-909.

      Liu Yongqiang, Zhang Guisen, Zhou Chao, et al. Synergistic action of cationic adjuvants 1227 and C8-10 and the silicone adjuvant Breakthru S240 to three insecticides[J]. Acta Entomologica Sinica, 2011, 54(8): 902-909.

      (責(zé)任編輯:王小璐" " 責(zé)任校對:王國鑫)" " ●

      猜你喜歡
      螺蟲植保無人機棉蚜
      Hap1型棉蚜在5種春季雜草上的生長發(fā)育情況
      低劑量啶蟲脒和雙丙環(huán)蟲酯對棉蚜繭蜂寄生功能的影響
      22%螺蟲乙酯·噻蟲啉懸浮劑分析方法研究
      棉蚜取食被棉長管蚜危害棉花后其相關(guān)酶的活性
      螺蟲乙酯及其代謝產(chǎn)物在獼猴桃中的殘留消解動態(tài)
      不同藥劑應(yīng)用植保無人機防治小麥赤霉病田間防效試驗
      植保無人機的重要性與發(fā)展前景
      浙江嘉興市植保無人機推廣前景與發(fā)展建議
      果蔬中螺蟲乙酯的檢測技術(shù)及消解動態(tài)研究進(jìn)展
      無人植保機飛防棉花蚜蟲效果研究
      改则县| 木里| 锡林浩特市| 青河县| 大安市| 公安县| 新龙县| 邮箱| 巴彦淖尔市| 偃师市| 郧西县| 民权县| 驻马店市| 莱州市| 上杭县| 清徐县| 晋中市| 石家庄市| 买车| 呈贡县| 淅川县| 安阳县| 瑞金市| 永定县| 比如县| 嘉禾县| 临清市| 东阳市| 游戏| 长寿区| 松江区| 庆城县| 湘潭县| 赣榆县| 宜君县| 邹城市| 闵行区| 微山县| 海口市| 镇赉县| 肇州县|