摘" 要:為研究CO2在薄煤層的封存潛力與主控因素,以陜西黃陵礦區(qū)西北部薄煤層為例,運(yùn)用壓汞、液氮、核磁共振、CO2等溫吸附等試驗(yàn)方法,探討宏觀煤巖類型制約下的煤儲(chǔ)層孔裂隙系統(tǒng)與滲透性發(fā)育特點(diǎn),揭示不同含水狀態(tài)下CO2吸附能力差異及其內(nèi)在原因。結(jié)果表明:半亮煤樣品鏡質(zhì)組含量高,各級(jí)孔、裂隙系統(tǒng)發(fā)育且連通性好;半暗煤樣品惰質(zhì)組與礦物質(zhì)含量高,孔隙以微、小孔為主,孔隙連通性差;半亮煤樣品孔滲條件好于半暗煤樣品,為CO2注入提供了有利條件;煤層總體具有較強(qiáng)的CO2吸附能力,干燥條件下,半亮煤樣品對(duì)CO2的吸附量大于半暗煤樣品,而平衡水條件下,吸附量關(guān)系發(fā)生反轉(zhuǎn),源于宏觀煤巖類型制約下的潤(rùn)濕性差異;親水性更強(qiáng)的半亮煤樣品在平衡水條件下具有更高的含水率,減少了CO2的吸附空間并堵塞吼道,從而降低了其對(duì)CO2的吸附能力;薄煤層條件下CO2封存選址應(yīng)優(yōu)先考慮光亮組分含量高、水分含量低的吸附儲(chǔ)集優(yōu)勢(shì)區(qū)域;煤巖組分(類型)與水分含量將是薄煤層條件下CO2封存潛力評(píng)價(jià)的重要基礎(chǔ)參數(shù)。
關(guān)鍵詞:CO2封存;薄煤層;吸附;孔裂隙;宏觀煤巖類型
中圖分類號(hào):P 618.13
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1672-9315(2024)06-1176-10
DOI:10.13800/j.cnki.xakjdxxb.2024.0615開放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID):
收稿日期:
2024-05-
15
基金項(xiàng)目:
陜西省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2022GD-TSLD-64)
通信作者:
賀炳偉,男,陜西橫山縣人,工程師,E-mail:1518169525@qq.com
Porous characteristics and CO2 storage potential of
a thin coal seam in the northwest Huangling mining area
HE Bingwei1,2,XUE Haitao1,2,ZHOU Mingming1,2,ZHAO Qiang1,2,
YANG Xiankuo3,GUO Chen3
(1.Yan’an Checun Coal Industry(Group)Co.,Ltd.,Yan’an 717300,China;
2.Lucun No.2 Coal Mine Branch,F(xiàn)uxian County Mining Industry Development Co.,Ltd.,Yan’an 727500,China;
3.College of Geology and Environment,Xi’an University of Science and Technology,Xi’an 710054,China)
Abstract:To study the storage potential and main controlling factors of CO2 in thin coal seams,a thin coal seam in the northwest of the Huangling mining area in the Shaanxi Province was taken as an example,
and such experimental methods as mercury intrusion,liquid nitrogen,nuclear magnetic resonance,and CO2 isothermal adsorption were applied to explore the characteristics of pore fracture system and permeability of coal reservoir under the controls of macroscopic coal rock types,and to reveal the difference of CO2 adsorption capacity in different water-bearing states and its internal reasons.The results show that the vitrinite content of semi-bright coal sample is high,and the pore and fracture systems at all levels are developed and well connected;The content of inertinite and minerals in semi-dark coal sample is high,and the pores are mainly micro-pores,with poor pore connectivity;The porosity and permeability conditions of semi-bright coal sample are better than those of semi-dark coal sample,providing convenient conditions for CO2 injection.The coal seam has a strong CO2 adsorption capacity.Under dry conditions,the CO2 adsorption capacity of semi-bright coal sample is greater than that of semi-dark coal sample,while under equilibrium water conditions,the adsorption capacity relationship is reversed,which is due to the wettability difference under the controls of macroscopic coal rock types.Semi-bright coal sample with stronger wettability has higher water content under the conditions of equilibrium water state,which will reduce CO2 adsorption space and block roaring channels,thereby reducing its CO2 adsorption capacity.
The conclusions indicate that:CO2 storage sites under thin coal seam conditions should prioritize adsorption and storage advantage areas with high bright component content and low moisture content to compensate;
The coal rock composition(type)and moisture content of coal will be important basic parameters for evaluating the potential of CO2 storage in thin coal seams.
Key words:CO2 storage;thin coal seam;adsorption;pore and fracture;macroscopic coal rock type
0" 引" 言
CO2地質(zhì)封存是碳減排的重要途徑[1-3],主要目標(biāo)地質(zhì)體包括鹽水層、煤層、廢棄油氣田等[4-6]。煤層因其對(duì)CO2良好的吸附能力,在CO2地質(zhì)封存方面具有天然優(yōu)勢(shì)[7-8],但采煤活動(dòng)誘導(dǎo)的地層結(jié)構(gòu)破壞將對(duì)CO2封存造成風(fēng)險(xiǎn)隱患。對(duì)于煤層厚度低于0.8 m的不可采煤層,可作為CO2封存的目標(biāo)層,若其周圍無可采煤層或采礦活動(dòng)有限,則可有效避免煤炭開采擾動(dòng)帶來的地質(zhì)風(fēng)險(xiǎn)。陜西延安黃陵礦區(qū)西北部侏羅系延安組含煤地層發(fā)育薄煤層[9-10],其中蘆村二號(hào)煤礦2號(hào)煤層平均厚度0.81 m,2下煤平均厚度0.24 m,3號(hào)煤平均厚度0.19 m。僅2號(hào)煤局部可采,可采范圍僅占煤礦總面積的26%,其他煤層均不可采,加之煤層埋深主體介于400~600 m,儲(chǔ)層壓力較高,為CO2地質(zhì)封存提供了有利條件。另一方面,王雙明等基于煤巖組分對(duì)煤炭進(jìn)行分質(zhì)時(shí)指出,西北地區(qū)侏羅系煤層惰質(zhì)組含量普遍較高,惰質(zhì)組與鏡質(zhì)組的相對(duì)含量空間變化顯著[11-12],受其影響,煤層諸多地質(zhì)屬性呈現(xiàn)較強(qiáng)的非均質(zhì)性特點(diǎn),進(jìn)而影響CO2在不同區(qū)域/層位的封存條件與效果。例如,以鏡質(zhì)組為主的煤層宏觀煤巖類型多表現(xiàn)為光亮煤與半亮煤,光澤較強(qiáng),以惰質(zhì)組占主導(dǎo)的煤巖類型多為半暗煤與暗淡煤,光澤整體較弱。李嬌陽等研究煤表面濕潤(rùn)性的影響因素發(fā)現(xiàn),鏡質(zhì)組分子結(jié)構(gòu)含有較多的極性含氧官能團(tuán),親水性較強(qiáng),而惰質(zhì)組分子結(jié)構(gòu)芳構(gòu)化程度高,極性親水組分含量少,化學(xué)惰性強(qiáng),導(dǎo)致親水性弱[13-15];傅貴等研究接觸角與煤中顯微組分關(guān)系得出,接觸角隨惰質(zhì)組含量增大而提高,隨鏡質(zhì)組含量增大而下降[16];HARPALANI等對(duì)CO2進(jìn)行吸附模擬試驗(yàn)發(fā)現(xiàn),潤(rùn)濕性的差異會(huì)進(jìn)一步影響煤的含水性以及對(duì)CH4、CO2等氣體的吸附能力[17-18]。
因此,以黃陵礦區(qū)西北部蘆村二號(hào)煤礦2號(hào)煤層為研究對(duì)象,采集不同煤巖類型樣品,開展顯微煤巖組分、工業(yè)組分、孔隙結(jié)構(gòu)、滲透性、CO2吸附性等分析測(cè)試,揭示宏觀煤巖類型制約下的煤層孔、裂隙結(jié)構(gòu)空間發(fā)育特點(diǎn),探討煤對(duì)CO2的吸附能力差異及其影響因素,為提高后續(xù)在薄煤層條件下實(shí)施CO2地質(zhì)封存的有效性與可靠性提供參考依據(jù)[19-21]。
1" 樣品精選與特性試驗(yàn)
1.1" 樣品來源與制備
于延安黃陵礦區(qū)西北部的蘆村二號(hào)煤礦2號(hào)煤井下新鮮工作面,采用刻槽法采集大塊煤樣,將樣品密封后送往實(shí)驗(yàn)室。在實(shí)驗(yàn)室完成煤樣宏觀描述,包括煤巖類型、煤巖組分、結(jié)構(gòu)構(gòu)造、裂隙發(fā)育情況等方面。以光澤強(qiáng)度與光亮組分比例為依據(jù),手工選
擇半亮煤與半暗煤樣品2大塊,來源于同一采樣地點(diǎn),未受明顯構(gòu)造破壞,均屬于原生結(jié)構(gòu)煤。2塊煤樣分別編號(hào)L1和L2,描述如下:L1樣品:半亮煤,鏡煤與亮煤比例約60%~65%,黑色,油脂光澤,條帶狀結(jié)構(gòu),層狀構(gòu)造,內(nèi)生裂隙較發(fā)育,含方解石脈體;L2樣品:半暗煤,鏡煤與亮煤比例約35%~40%,黑色,光澤較暗,局部呈油脂光澤,條帶狀-線理狀結(jié)構(gòu),層狀構(gòu)造,裂隙不發(fā)育,零星分布黃鐵礦。制備柱狀煤樣,用于孔隙度、滲透率及核磁共振等試驗(yàn),殘余樣品粉碎至相應(yīng)粒度,開展物質(zhì)成分(鏡質(zhì)體反射率)、孔隙結(jié)構(gòu)與CO2等溫吸附試驗(yàn),以全面揭示不同煤巖類型樣品對(duì)CO2吸附能力的差異及其主控因素。L1樣品光亮組分含量高且裂隙發(fā)育,L2樣品非光亮組分含量高且裂隙不發(fā)育,這一差異為開展不同煤巖
類型CO2儲(chǔ)存相關(guān)性質(zhì)對(duì)比分析提供了基礎(chǔ)(圖1)。
1.2" 試驗(yàn)方法
對(duì)L1和L2柱狀樣品的飽和水孔隙度與絕對(duì)滲透率進(jìn)行試驗(yàn)。飽和方法為抽真空飽和24 h,隨后加壓15 MPa繼續(xù)飽和24 h。飽和樣品與干燥樣品的質(zhì)量差即為飽和水的質(zhì)量,根據(jù)水密度獲得飽和水的體積,其與樣品的外觀體積之比即為飽和水法孔隙度值。滲透率試驗(yàn)所用氣體為N2(濃度99.99%),黏度0.017 805 mPa·s(25 ℃,正常大氣壓)。將樣品在100 ℃下干燥24 h,放入滲透率試驗(yàn)儀夾持器中,設(shè)定5個(gè)進(jìn)氣壓力點(diǎn),保持有效應(yīng)力不變,分別測(cè)定每個(gè)壓力點(diǎn)的氣測(cè)滲透率,最后進(jìn)行滑脫效應(yīng)校正,獲得絕對(duì)滲透率。
獲得基本孔滲參數(shù)后,開展低場(chǎng)核磁共振試驗(yàn),包括飽和水和離心后2種狀態(tài)。核磁試驗(yàn)參數(shù)為:回波時(shí)間間隔0.1 ms,等待時(shí)間間隔2 000 ms,回波個(gè)數(shù)10 000,掃描次數(shù)8次以及溫度25 ℃。離心轉(zhuǎn)速4 000 r/min,時(shí)間90 min。按照《GB/T 19560—2008:煤的高壓等溫吸附試驗(yàn)方法》,對(duì)樣品開展CO2等溫吸附試驗(yàn),試驗(yàn)溫度30 ℃,包括平衡水和干燥2種樣品狀態(tài),吸附質(zhì)為純度99.99%的CO2,平衡壓力點(diǎn)間隔1 MPa,范圍0.5~6 MPa。干燥煤樣制備方法為將空氣干燥基樣品放入烘箱內(nèi)在100 ℃條件下烘干48 h;平衡水樣制備方法依據(jù)《煤等溫吸附試驗(yàn)中平衡水分的測(cè)定方法(MT/T 1157—2011)》。
樣品的顯微煤巖組分、鏡質(zhì)組反射率、工業(yè)分析、壓汞、液氮等試驗(yàn)按照相應(yīng)標(biāo)準(zhǔn)執(zhí)行。煤樣孔徑劃分采用十進(jìn)制劃分法,即微孔,lt;10 nm;小孔,10~100 nm;中孔,100~1 000 nm;大孔,gt;1 000 nm。核心試驗(yàn)為CO2等溫吸附試驗(yàn),是評(píng)價(jià)CO2在煤層中吸附封存潛力的關(guān)鍵。壓汞、液氮與核磁共振試驗(yàn)用于揭示煤儲(chǔ)層不同尺度的孔隙結(jié)構(gòu)特點(diǎn),進(jìn)而為分析不同宏觀煤巖類型煤樣的潤(rùn)濕性與CO2吸附性差異,乃至CO2封存效果差異提供微觀依據(jù)。
2" 結(jié)果與分析
2.1" 煤巖煤質(zhì)
依據(jù)實(shí)測(cè)鏡質(zhì)組最大反射率(Ro,max),黃陵礦區(qū)2號(hào)煤為氣煤,屬于低變質(zhì)煙煤。L1樣品顯微組分以鏡質(zhì)組含量最高,其次為惰質(zhì)組,兩者合計(jì)占比94%。L2樣品以惰質(zhì)組含量最高,且明顯大于其他組分;L2樣品的礦物含量高于L1樣品。相應(yīng),L1樣品的水分含量、揮發(fā)分產(chǎn)率大于L2樣品,而L2樣品的灰分產(chǎn)率高于L1(表1)。2個(gè)樣品物質(zhì)組分的差異構(gòu)成孔裂隙結(jié)構(gòu)與CO2吸附能力差異的基礎(chǔ)。
2.2" 低場(chǎng)核磁共振試驗(yàn)
將樣品核磁信號(hào)轉(zhuǎn)化為孔隙度,獲得飽和、離心2種狀態(tài)下孔隙度與弛豫時(shí)間T2的關(guān)系分布曲線(圖2)?;诶塾?jì)孔隙度-T2分布曲線可獲得弛豫時(shí)間截止值T2c、有效孔隙度、殘余孔隙度等關(guān)鍵參數(shù)[22-24]。結(jié)果顯示,L1樣品的孔隙度與滲透率均大于L2樣品,兩者的有效孔隙度之比為3.60,殘余(無效)孔隙度之比為1.87,總孔隙度之比為2.10,滲透率之比42.44。有效孔隙度之比的三次方與滲透率之比非常接近,符合滲透率與孔隙度的經(jīng)典關(guān)系模型(表2)。
曲線形態(tài)方面,L1樣品具有顯著雙峰特點(diǎn),且兩峰連通性好,反映各級(jí)孔隙/裂隙較為發(fā)育,而L2樣品以左峰為主,反映微小孔隙占據(jù)主導(dǎo),大孔與裂隙發(fā)育程度低,不同孔峰的連通性差。L1樣品的孔滲條件優(yōu)于L2樣品(圖2)。
2.3" 壓汞試驗(yàn)
壓汞試驗(yàn)結(jié)果顯示,L1樣品的孔隙發(fā)育程度更高,且孔隙連通性更好(表3)。從毛管壓力曲線可以看出,L1樣品最大進(jìn)汞飽和度更大,退汞效率更高,代表孔裂隙系統(tǒng)連通性更好,有利于滲透率的提高。進(jìn)汞曲線形態(tài)顯示,L1樣品的孔徑分布相對(duì)均勻,曲線形態(tài)較為平直,不存在明顯拐點(diǎn),削弱了孔徑差異可能造成的滲流瓶頸效應(yīng)[25];L2樣品進(jìn)汞曲線總體呈兩段式分布(平緩段與陡峭段),存在明顯拐點(diǎn),對(duì)應(yīng)進(jìn)汞飽和度約40%,表明孔喉配置更為復(fù)雜,孔徑分布不均,可能導(dǎo)致滲流瓶頸(圖3)。壓汞與核磁試驗(yàn)結(jié)果共同指明,L1樣品孔裂隙更加發(fā)育且連通性更好,有助于滲透率提高;L2樣品裂隙不發(fā)育,且礦物含量高,導(dǎo)致孔隙連通性變差,滲透率降低。煤樣的掃描電鏡觀測(cè)可為上述認(rèn)識(shí)提供佐證(圖4)。L1樣品中顯微裂隙較為發(fā)育,包括內(nèi)生裂隙與外生裂隙,主要發(fā)育于均質(zhì)鏡質(zhì)體內(nèi);L2樣品顯微裂隙不發(fā)育,高嶺石、黃鐵礦等礦物充填孔隙的現(xiàn)象較為常見,可見植物胞腔孔。
2.4" 液氮試驗(yàn)
液氮試驗(yàn)結(jié)果顯示,L1樣品的比表面積、孔體積、平均孔徑均大于L2樣品(表4)。在低溫氮?dú)馕剑摳竭^程中,因毛細(xì)管凝聚與蒸發(fā)原理,脫附曲線較吸附曲線會(huì)發(fā)生遲滯現(xiàn)象,導(dǎo)致吸附分支與脫附分支分離,形成‘滯后環(huán)’[26]。本研究中,滯后環(huán)主要分布于相對(duì)壓力(P/P0)gt;0.5區(qū)間,L1樣品的滯后環(huán)更明顯,反映兩端開口的開放型孔隙更加發(fā)育,L2樣品滯后環(huán)不明顯,反映一端閉合的半封閉孔隙更發(fā)育。2個(gè)樣品脫附曲線在P/P0約0.5處存在一個(gè)突降的拐點(diǎn),代表了墨水瓶孔的存在,對(duì)應(yīng)孔徑約2.76 nm,為瓶頸寬度。
L1樣品的拐點(diǎn)更為明顯,反映墨水瓶孔更加發(fā)育。
在低壓階段(P/P0lt;0.5),吸附曲線與脫附曲線趨
于重合,滯后環(huán)消失,說明孔徑lt;2.76 nm的超微
孔隙多為半封閉孔,透氣性差(圖5)。
液氮試驗(yàn)對(duì)表征微、小孔隙的孔徑分布更為有效。液氮孔徑分布顯示,L1樣品的孔隙發(fā)育程度較高,孔徑分布曲線在1.98 nm與5.58 nm處存在2個(gè)峰值,2個(gè)峰相互連通;L2樣品孔隙發(fā)育程度低,在孔徑2.16 nm處存在一個(gè)峰值(左鋒),在孔徑6~9 nm范圍存在另一個(gè)較弱的峰(右峰),2個(gè)峰之間互不連通,存在孔隙溝通的瓶頸效應(yīng)(圖6)。前文指出,L2樣品孔隙類型以半封閉不透氣型孔為主??傊琇1樣品孔隙發(fā)育且連通性好,有利于CO2注入與封存;而L2樣品孔隙發(fā)育程度低且孔隙連通性、開放性差,不利于CO2注入。
液氮比表面積分布曲線形態(tài)與孔徑分布曲線形態(tài)基本一致,L1樣品的比表面積發(fā)育水平顯著高于L2樣品。比表面積發(fā)育程度隨孔徑的降低而增強(qiáng),微孔隙為比表面積主要貢獻(xiàn)者。L2樣品極低的比表面積限制了對(duì)氣體的吸附性。綜合考慮孔體積與孔比表面積,L1樣品對(duì)氣體的儲(chǔ)集與吸附性能將全面高于L2樣品(圖7)。
2.5" CO2等溫吸附試驗(yàn)
吸附試驗(yàn)直接獲得的吸附量為Gibbs吸附量[27-29],又稱過剩吸附量,與真實(shí)吸附量(又稱絕對(duì)吸附量)之間存在一定差異,尤其在高壓狀態(tài)下,不能反映煤樣真實(shí)的CO2吸附量。因此,絕對(duì)吸附量公式為
Vab=Vex/1-ρgρa(bǔ)
(1)
式中" Vab為絕對(duì)吸附量,cm3/g;Vex為過剩吸附量,cm3/g;ρg為CO2自由相密度,g/cm3,根據(jù)氣體狀態(tài)方程獲得,為溫度與壓力的函數(shù);ρa(bǔ)為CO2吸附相密度,g/cm3,取為定值1.18 g/cm3[30-34]。不同含水狀態(tài)與壓力條件下煤樣對(duì)CO2的絕對(duì)吸附量見表5,可見煤樣對(duì)CO2的吸附能力較強(qiáng),當(dāng)壓力超過2 MPa,平衡水樣吸附量可超過15 cm3/g,干燥樣吸附量可超過20 cm3/g。
基于Langmuir模型擬合吸附試驗(yàn)數(shù)據(jù),R2均大于0.98,說明Langmuir模型可較好描述CO2的吸附規(guī)律。平衡水條件下的CO2吸附量小于干燥條件,反映了水分對(duì)CO2吸附的不利影響。干燥條件下,L1樣品的吸附量大于L2樣品,而平衡水條件下,L1樣品的吸附量卻小于L2樣品(圖8)。L1樣品具有更加發(fā)育的孔隙空間與比表面積,一方
面為CO2吸附提供了空間,導(dǎo)致干燥條件下L1樣品對(duì)CO2的吸附量大于L2樣品;另一方面,孔隙發(fā)育導(dǎo)致L1樣品吸水性變強(qiáng),平衡水條件下的含水率為8.97%,L2樣品僅為5.83%,從而削弱了L1樣品在平衡水條件下對(duì)CO2的吸附能力。樣品間潤(rùn)濕性差異可進(jìn)一步支撐上述分析結(jié)果。對(duì)2個(gè)樣品開展干燥狀態(tài)下的接觸角測(cè)試,每個(gè)樣品測(cè)3
次,取平均值。結(jié)果顯示,L1樣品接觸角為48.05°,L2樣品接觸角為63.23°(圖9)。L1樣品具有更強(qiáng)的親水性,與其孔隙發(fā)育、鏡質(zhì)組(親水組
分)含量高的特征相符。由此導(dǎo)致L1樣品在平衡水條件下的含水率更高,樣品中親水組分的表面被水分占據(jù),減少了CO2的吸附空間并堵塞吼道,從而對(duì)CO2在孔隙表面的吸附造成負(fù)面影響。
Langmuir模型能夠較好描述煤樣對(duì)CO2的吸附行為,可根據(jù)上述擬合結(jié)果估算目標(biāo)區(qū)薄煤層
對(duì)CO2的潛在吸附態(tài)封存量,但需進(jìn)一步查明儲(chǔ)層
具體的含水條件、煤巖類型、溫壓條件以及煤厚空間變化特點(diǎn),以確保封存量計(jì)算結(jié)果的可靠性。CO2地質(zhì)封存應(yīng)優(yōu)先選擇在光亮組分含量高、水分含量低的區(qū)域開展,以達(dá)到最佳的封存效果。
3" 結(jié)" 論
1)L1半亮煤樣品鏡質(zhì)組含量高,各級(jí)孔、裂隙系統(tǒng)發(fā)育且連通性好,有效孔隙度與滲透率較高;L2半暗煤樣品惰質(zhì)組與礦物質(zhì)含量高,孔隙以微、小孔為主,大孔與裂隙發(fā)育程度低,且孔隙連通性差。L1樣品的孔滲條件、微孔隙發(fā)育程度與比表面積全面優(yōu)于L2樣品,具有更為有利的CO2注入與儲(chǔ)集條件。
2)干燥條件下,L1樣品對(duì)CO2的吸附量大于L2樣品,而平衡水條件下,L1樣品的吸附量小于L2樣品。這種反轉(zhuǎn)源于2個(gè)樣品潤(rùn)濕性的差異,L1樣品孔裂隙發(fā)育且鏡質(zhì)組含量高,親水性更強(qiáng),導(dǎo)致平衡水條件下含水率高于L2樣品,從而限制了對(duì)CO2的吸附。Langmuir模型可有效描述煤樣對(duì)CO2的吸附行為。
3)黃陵礦區(qū)西北部薄煤層具有封存CO2的地質(zhì)潛力,CO2封存效果與宏觀煤巖類型制約下的孔隙空間發(fā)育特征與吸附能力密切相關(guān)。CO2封存選址應(yīng)優(yōu)先考慮光亮組分含量高、水分含量低的區(qū)域,以達(dá)到最佳的封存效果。在更精細(xì)尺度揭示煤巖煤質(zhì)的空間變化特點(diǎn),可有效指導(dǎo)薄煤層條件下CO2封存有利區(qū)預(yù)測(cè)與優(yōu)選。
參考文獻(xiàn)(References):
[1]" 鄒才能,吳松濤,楊智,等.碳中和戰(zhàn)略背景下建設(shè)碳工業(yè)體系的進(jìn)展、挑戰(zhàn)及意義[J].石油勘探與開發(fā),2023,50(1):190-205.
ZOU Caineng,WU Songtao,YANG Zhi,et al.Progress,challenge and significance of building a carbon industry system in the context of carbon neutrality strategy[J].Petroleum Exploration and Development,2023,50(1):190-205.[2]
王思佳,李少華,呂鵬飛,等.CO2地質(zhì)封存中重力對(duì)氣水
兩相流動(dòng)特性影響研究[J].工程熱物理學(xué)報(bào),2024,45(3):845-849.
WANG Sijia,LI Shaohua,LV Pengfei,et al.Study on the effect of gravity on gas-water two-phase flow characteristics in CO2 geological storage[J].Journal of Engineering Thermophysics,2024,45(3):845-849.[3]
李琦,劉桂臻,李小春,等.多維度視角下CO2捕集利用
與封存技術(shù)的代際演變與預(yù)設(shè)[J].工程科學(xué)與技術(shù),
2022,54(1):157-166.
LI Qi,LIU Guizhen,LI Xiaochun,et al.Intergenerational evolution and presupposition of CCUS technology from a multidimensional perspective[J].Advanced Engineering Sciences,2022,54(1):157-166.[4]
姚艷斌,孫曉曉,萬磊.煤層CO2地質(zhì)封存的微觀機(jī)理研
究[J].煤田地質(zhì)與勘探,2023,51(2):146-157.
YAO Yanbin,SUN Xiaoxiao,WAN Lei.Micromechanism of geological sequestration of CO2 in coal seam[J].Coal Geology amp; Exploration,2023,51(2):146-157.[5]
桑樹勛,劉世奇,陸詩建,等.工程化CCUS全流程技術(shù)及
其進(jìn)展[J].油氣藏評(píng)價(jià)與開發(fā),2022,12(5):711-725,733.
SANG Shuxun,LIU Shiqi,LU Shijian,et al.Engineered full flowsheet technology of CCUS and its research progress[J].Reservoir Evaluation and Development,2022,
12(5):711-725,733.[6]
YIN H,ZHOU J P,XIAN X F,et al.Experimental study of
the effects of sub-and super-critical CO2 saturationon the mechanical characteristics of organic-rich shales[J].Energy,2017,132:84-95.[7]
LIU S,HARPALANI S,PILLALAMARRY M.Laboratory
measurement and modeling of coal permeability with continued methane production:Part 1-Laboratory results[J].Fuel,2012,94:110-116.[8]
包琦,葉航,劉琦,等.不同地質(zhì)體中CO2封存研究進(jìn)展
[J].低碳化學(xué)與化工,2024,49(3):87-96.
BAO Qi,YE Hang,LIU Qi,et al.Research progress on CO2 storage in different geological formations[J].Low-Carbon Chemistry and Chemical Engineering,2024,49(3):87-96.[9]
唐恩賢.黃陵礦業(yè)公司智能化開采核心技術(shù)及其應(yīng)用
實(shí)踐[J].中國(guó)煤炭,2019,45(4):13-18,113.
TANG Enxian.Core technology of intelligent mining inthe Huangling Mining Company and its application practice[J].
China Coal,2019,45(4):13-18,113.[10]
陳冬冬.煤油氣共生礦井圍巖氣多因素耦合區(qū)域預(yù)測(cè)技術(shù)——以鄂爾多斯盆地黃陵礦區(qū)為例[J].煤田地質(zhì)與勘探,2018,46(2):49-53.
CHEN Dongdong.Prediction technology of surrounding rock gas zones by multiple factor coupling in coal mines with coal-oil-gas coexistence[J].Coal Geology amp; Exploration,2018,46(2):49-53.
[11]
王雙明,段中會(huì),馬麗,等.西部煤炭綠色開發(fā)地質(zhì)保障
技術(shù)研究現(xiàn)狀與發(fā)展趨勢(shì)[J].煤炭科學(xué)術(shù),2019,47(2):1
-6.
WANG Shuangming,DUAN Zhonghui,MA Li,et al.
Research status and future trends of geological assurance technology for coal green development in western China[J].Coal Science and Technology,2019,47(2):1-6.[12]
郭晨,王生全,師慶民,等.神府南部礦區(qū)低階煤化學(xué)組
與工藝性質(zhì):特征、關(guān)系與實(shí)踐[J].煤田地質(zhì)與勘探,
2021,49(1):87-99.
GUO Chen,WANG Shengquan,SHI Qingmin,et al.
Chemical compositions and technological properties of low-rank coals in the south Shenfu mining area:Characteristics,relationship and practice[J].Coal Geology amp; Exploration,2021,49(1):87-99.[13]
何杰.煤的表面結(jié)構(gòu)與潤(rùn)濕性[J].選煤技術(shù),2000(5):13-15.
HE Jie.Surface structure and wettability of coal[J].Coal Preparation Technology,2000(5):13-15.[14]
郝朝瑜,王繼仁,馬念杰,等.水分潤(rùn)濕煤體對(duì)煤自燃影
響的熱平衡研究[J].中國(guó)安全科學(xué)學(xué)報(bào),2014,24(10):54-59.
HAO Chaoyu,WANG Jiren,Ma Nianjie,et al.Thermal equilibrium study on effect of wetting on coal spontaneous combustion[J].China Safety Science Journal,2014,24(10):
54-59.[15]
李嬌陽,李凱琦.煤表面潤(rùn)濕性的影響因素[J].煤炭學(xué)
報(bào),2016,41(S2):448-453.
LI Jiaoyang,LI Kaiqi.Influence factors of coal surface wettability[J].Journal of China Coal Society,2016,41(S2):448-453.[16]
傅貴,秦鳳華.我國(guó)部分礦區(qū)煤的水潤(rùn)濕性研究[J].阜新礦業(yè)學(xué)院學(xué)報(bào)(自然科學(xué)版),1997,16(6):666-669.
FU Gui,QIN Fenghua.Study on water wettability of coal in some mining areas in China[J].Journal of Fuxin Mining Institute(Natural Science),1997,16(6):666-669.[17]
HARPALANI S,PRUSTY B K,DUTTA P.Methane/CO2 sorption modeling for coalbed methane production and CO2 sequestration[J].Energy amp; Fuels,2006,20(4):1591-1599.[18]
張黎明,林健云,司磊磊,等.高階煤吸附孔結(jié)構(gòu)特征及其對(duì)甲烷吸附能力的影響[J].工礦自動(dòng)化,2024,50(7):147-155.
ZHANG Liming,LIN Jianyun,SI Leilei,et al.Features of adsorption pore structure in high-rank coal and its influence on methane adsorption capability[J].Journal" of" Mine" Automation,2024,50(7):147-155.
[19]
韓思杰,桑樹勛,段飄飄,等.改進(jìn)的深部煤層CO2地質(zhì)封存潛力評(píng)價(jià)方法——以沁水盆地鄭莊區(qū)塊3#煤層為例[J].中國(guó)礦業(yè)大學(xué)學(xué)報(bào),2023,52(4):772-788.
HAN Sijie,SANG Shuxun,DUAN Piaopiao,et al.Modified assessment method of CO2 geologic storage capacity in deep coal and its application in the Zhengzhuang Block,Qinshui Basin[J].Journal of China University of Mining amp; Technology,2023,52(4):772-788.[20]
LANGMUIR I.The constitution and fundamental properties of solids and liquids.part I.solids.[J].Journal of the American Chemical Society,1917,38(5):102-105.[21]
BRUNAUER S,EMMET P H,TELER E.Adsorption of gases in multimolecular layers[J].Journal of the American Chemical Society,1938,60(2):309-319.[22]
姚艷斌,劉大錳,湯達(dá)禎,等.沁水盆地煤儲(chǔ)層微裂隙發(fā)育的煤巖學(xué)控制機(jī)理[J].中國(guó)礦業(yè)大學(xué)學(xué)報(bào),2010,39(1):6-13.
YAO Yanbin,LIU Dameng,TANG Dazhen,et al.Influence and control of coal petrological composition on the development of microfracture of coal reservoir in the Qinshui Basin[J].Journal of China University of Mining & Technology,2010,39(1):6-13.[23]
翟成,孫勇,范宜仁,等.低場(chǎng)核磁共振技術(shù)在煤孔隙結(jié)構(gòu)精準(zhǔn)表征中的應(yīng)用與展望[J].煤炭學(xué)報(bào),2022,47(2):
828-848.
ZHAI Cheng,SUN Yong,F(xiàn)AN Yiren,et al.Application and prospect of low-field nuclear magnetic resonance technology in accurate characterization of coal pore structure[J].Journal of China Coal Society,2022,47(2):828-848.[24]
唐巨鵬,田虎楠,潘一山.煤系頁巖瓦斯吸附-解吸遲滯
效應(yīng)核磁共振譜實(shí)驗(yàn)研究[J].力學(xué)學(xué)報(bào),2021,53(8):
2193-2204.
TANG Jupeng,TIAN Hunan,PAN Yishan.Experiment of adsorption-desorption hystersis of gas in coal shale by using nuclear magnetic resonance spectrums[J].Chinese Journal of Theoretical and Applied Mechanics,2021,53(8):
2193-2204.[25]
王士路,張開仲,杜聯(lián)營(yíng),等.構(gòu)造煤微觀孔隙結(jié)構(gòu)形態(tài)
學(xué)特征及定量分析[J].西安科技大學(xué)學(xué)報(bào),2021,41(5):
862-871.
WANG Shilu,ZHANG Kaizhong,DU Lianying,et al.
Morphological characteristics of microscopic pore structure of tectonic coal and its quantitative analysis[J].Journal of Xi’an University of Science and Technology,
2021,41(5):862-871.[26]
汪雷,湯達(dá)禎,許浩,等.基于液氮吸附實(shí)驗(yàn)探討煤變質(zhì)
作用對(duì)煤微孔的影響[J].煤炭科學(xué)技術(shù),2014,42(S1):
256-260.
WANG Lei,TANG Dazhen,XU Hao,et al.Influence of metamorphism on micropores in coal seams based on Nitrogen adsorption experiment[J].Coal Science and Technology,2014,42(S1):256-260.[27]
韓文成,李愛芬,方齊,等.含水煤巖超臨界等溫吸附模
型的對(duì)比分析[J].煤炭學(xué)報(bào),2020,45(12):4095-4103.
HAN Wencheng,LI Aifen,F(xiàn)ANG Qi,et al.Comparative analysis of isothermal adsorption models for coals with water content under supercritical conditions[J].Journal of China Coal Society,2020,45(12):4095-4103.[28]
DUBININ M M.The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces[J].Chemical Reviews,1960,60(2):
235-241.[29]
SHI Q M,CUI S D,WANG S M,et al.Experiment study on CO2 adsorption performance of thermal treated coal:Inspiration for CO2storage after underground coal thermal treatment[J].Energy,2022,254:124392.[30]
HARPALANI S,PRUSTY B K,DUTTA P.Methane/CO2
sorption modeling for coalbed methane production and CO2 sequestration[J].Energy amp; Fuel,2006,20(4):1591-1599.[31]
DUBININ M M,ASTAKHOV V A.Development of the
concepts of volume filling of micropores in adsorption of gases and vapors by microporous adsorbents[J].Bulletin of the Academy of Sciences of the USSR,Division of Chemical" Science,1971,20(1):3-7.
[32]葉博,馬繼業(yè),史立川,等.馬嶺地區(qū)長(zhǎng)81優(yōu)質(zhì)儲(chǔ)層控制因素及分布規(guī)律[J].西安科技大學(xué)學(xué)報(bào),2019,39(6):1016-1025.
YE Bo,MA Jiye,SHI Lichuan,et al.Control factors and distribution regularity of Chang 81 high quality reservoir in Maling area,Ordos Basin[J].Journal of Xi’an University of Science and Technology,2019,39(6):1016-1025.
[33]尚婷.鄂爾多斯盆地子長(zhǎng)地區(qū)上古生界盒8段儲(chǔ)層特征[J].西安科技大學(xué)學(xué)報(bào),2015,35(5):623-629.
SHANG Ting.Characteristics of He 8 member reservoir of Upper Paleozoic in Zichang area,Ordos Basin[J].Journal of Xi’an University of Science and Technology,2015,35(5):623-629.
[34]席明利,羅順社,呂奇奇,等.馮地坑-洪德地區(qū)延長(zhǎng)組長(zhǎng)8-長(zhǎng)4+5致密砂巖儲(chǔ)層特征[J].西安科技大學(xué)學(xué)報(bào),2015,35(1):1-8.
XI Mingli,LUO Shunshe,LV Qiqi,et al.Sandstone reservoir features of the Chang 8 and Chang 4+5 members in the Yanchang formation of Fengdikeng-Hongde area[J].Journal of Xi’an University of Science and Technology,2015,35(1):1-8.
(責(zé)任編輯:李克永)