黃雪征,張永祥,張大勝,朱新鋒,李厚運
石墨烯負載鐵鎳復合材料去除水中的2,4-二氯酚
黃雪征1,2,3*,張永祥2,張大勝4,朱新鋒1,李厚運1
(1.河南城建學院,河南省水體污染防治與修復重點實驗室,河南 平頂山 467000;2.北京工業(yè)大學城市建設學部,北京 100124;3.南陽理工學院土木工程學院,河南 南陽 473000;4.河北水利科學院研究院,河北 石家莊 050051)
通過液相還原法成功制備了石墨烯負載納米鐵鎳復合材料,該材料可高效快速地吸附水中的2,4-二氯酚(2,4-DCP)并對其進行脫氯.微觀形貌分析結果表明,粒徑為80~150nm的球形 Fe/Ni納米顆粒成功插入石墨烯片層,并主要分布在石墨烯片層邊緣和褶皺處,Fe/Ni顆粒團聚現(xiàn)象明顯減少,更多活性位點暴露出來.XRD分析和FTIR分析表明,納米零價鐵(nZVI)通過Fe-O鍵成功嵌入石墨烯(rGO)中,且Fe/Ni納米顆粒結晶度較差,外圍包覆有無定形的鐵氧化物沉淀.探討了不同制備條件如碳鐵比、鎳化率、氧化石墨烯(GO)還原程度對材料去除2,4-二氯酚(2,4-DCP)性能的影響.綜合考慮材料制備成本及對2,4-DCP的吸附脫氯性能,Fe/Ni@rGO復合材料的最優(yōu)制備條件為:石墨烯與Fe質量比1:2,鎳負載率5%,硼氫化鈉與鐵鹽的物質的量比為5:1.研究表明5種材料對2,4-DCP的去除率遵循如下順序:Fe/Ni@rGO復合材料>Fe/Ni>Fe @rGO復合材料>石墨烯> nZVI.儲存穩(wěn)定性試驗和循環(huán)試驗表明,與Fe/Ni雙金屬相比,Fe/Ni@rGO材料具有穩(wěn)定的反應活性和較高的重復利用價值.研究結果表明Fe/Ni@rGO復合材料對2,4-DCP的去除為吸附和脫氯協(xié)同作用的結果.
石墨烯;2,4-二氯酚;納米鐵;脫氯;吸附
氯酚類化合物(CPs) 廣泛用于木材、紡織和紙張等工業(yè)的防腐,并用做殺蟲劑,殺菌劑等,在世界范圍內已經使用數十年[1-2].氯酚類物質的大量生產和廣泛應用,使得氯酚類化合物通過吸附、滲透、淋濾等作用由地表進入地下水,從而給地下水及土壤造成了一定的污染,特別在一些造紙廠、化工廠的土壤及地下水中氯酚污染嚴重.由于氯酚類化合物很強的毒性、持久性、致突變性和致癌性,美國環(huán)保署在1977年頒布的"清潔水法"修正案中將11種氯酚化合物列為環(huán)境優(yōu)先污染物名單.氯酚化合物被列入"中國環(huán)境有限污染物黑名單",成為需要優(yōu)先處理的污染物[3].
為了降低氯酚廢水對地下水體的污染,眾多研究者分別采用活性炭吸附法、揮發(fā)法、溶劑萃取法、化學氧化法和好氧/厭氧生物降解法、化學還原法等多種處理技術對氯酚廢水進行了研究[4-8].吸附法投資少、操作成本低、操作簡便,為去除有機污染物,特別是氯酚類化合物有效可行的成熟技術[9].但是污染物僅僅是實現(xiàn)了相轉移,并沒有從根本上對氯酚污染物去除,且存在吸附劑重復利用困難、僅適用于低濃度廢水等缺點,污染物脫附后容易造成二次污染.氧化法處理成本高,且難以有效處理作為電子受體的含氯有機污染物[10].化學還原法采用活潑金屬,通過還原脫氯的方式,逐級脫氯,降低氯酚污染物的毒性,進一步開環(huán),生成低毒易降解的物質,所采用的還原劑金屬有鎂、鋁、鐵,鎂、鋁反應活性雖強,但表面易形成鈍化層,不利于反應的進一步進行,且鋁對環(huán)境的污染毒性較大.1994年加拿大滑鐵盧大學Gillham教授首次采用金屬鐵屑實地修復地下水[11].隨著研究的進一步深入,人們發(fā)現(xiàn)零價鐵粒度的減小會導致鐵顆粒比表面積增大,反應活性增強.1997年Wang等[12]首次采用液相還原法合成了納米零價鐵顆粒,并將納米零價鐵漿液直接注入到污染含水層用以處理三氯乙烯,開創(chuàng)了納米零價鐵在環(huán)境修復領域的應用研究.納米零價鐵由于其環(huán)境友好、還原能力強和成本低廉等受到了人們的廣泛關注,被廣泛應用于氯代烴、重金屬、多氯聯(lián)苯、有機染料、硝酸鹽等的去除研究中[13-16].但納米零價鐵在應用中存在易團聚、易鈍化、遷移能力較差等缺陷.為提高納米鐵微粒的穩(wěn)定性和遷移能力,有必要對納米鐵進行改性.納米鐵改性材料來源廣泛,涵蓋無機物、礦石、天然或合成聚合物等[17-22].
本研究通過引入過渡金屬鎳作為脫氯加氫催化劑,與納米零價鐵組合形成納米雙金屬體系,同時以還原氧化石墨烯作為載體,將納米鐵鎳雙金屬顆粒負載在石墨烯片層上,研制出具有協(xié)同效應的石墨烯負載納米雙金屬體系,比較分析材料與nZVI、石墨烯、石墨烯負載鐵、Fe/Ni納米雙金屬的吸附-脫氯性能.通過調整制備過程中C:Fe質量比、鎳負載率(Ni與Fe的質量比)、氧化石墨烯還原度等因素制備系列石墨烯負載納米鐵鎳雙金屬材料,通過對2,4-DCP的去除效果優(yōu)選最佳制備工藝條件,并考察最優(yōu)工藝下制備的石墨烯負載雙金屬型納米鐵復合材料的儲藏穩(wěn)定性能以及重復利用性能,揭示材料去除2,4-DCP的反應機理.
試劑:六水硫酸鎳,鹽酸,2, 4-二氯酚,2-氯酚,4-氯酚,苯酚,硼氫化鈉,七水硫酸亞鐵等(以上試劑均為分析純).氧化石墨烯購自深圳穗衡石墨烯科技公司,厚度2nm左右,片層直徑0.4 ~10mm,純度>99%.
儀器:JJ-1型精密定時電動攪拌器(北京中興偉業(yè)儀器有限公司),HY-6型雙層調速多用振蕩器(江蘇省金壇市榮華儀器制造有限公司), SHIMADZU LC-2030C 3D型高效液相色譜(島津企業(yè)管理(中國)有限公司),JEM2100F型透射電子顯微鏡(日本電子株式會社),BT100-1L型流量型蠕動泵(保定蘭格恒流泵有限公司儀舊本理學公司), D8advance bruker型X射線衍射儀(布魯克(北京)科技有限公司), Autosorb iQ型吸附脫附儀(美國康塔儀器公司), FD-1A-50型冷凍干燥機(上海比朗儀器制造有限公司)
取0.28g氧化石墨烯粉末加入100mL去離子水中,超聲20min,制得分散的氧化石墨烯懸浮液并轉移至三口燒瓶中,充N2鼓泡15min后將一定量的FeSO4×7H2O加入到溶液中繼續(xù)攪拌300min,然后將適量濃度的NaBH4溶液通過蠕動泵勻速緩慢滴加到溶液中,滴加完畢后繼續(xù)攪拌反應60min,再向三口燒瓶中加入一定量的硫酸鎳水溶液.機械攪拌下持續(xù)反應30min.再用無水乙醇快速真空抽濾洗滌3次,冷凍干燥24h后密封保存.通過調整氧化石墨烯和鐵的質量、鎳與鐵的質量比、氧化石墨烯的還原程度等制備一系列石墨烯負載雙金屬型納米鐵復合材料.以上操作均在氮氣環(huán)境下進行.
在室溫下,在250mL的具塞錐形瓶中加入245mL調節(jié)好pH值的去離子水,然后通過移液槍加入5mL 1000mg/L 2,4-DCP儲備液,即可配制初始濃度為20mg/L的2,4-DCP溶液,在通氮氣條件下,加入一定量的制備好的石墨烯負載雙金屬型納米鐵復合材料,將其置于臺式恒溫水浴振蕩器中振蕩,調節(jié)振蕩速率為200r/min,設置溫度為25℃,使材料與溶液充分接觸.間隔一定時間(5,10,20,45,60,90,120, 150,180,240,300min)用一次性注射器取樣2mL左右,并用孔徑0.45μm的濾膜過濾,濾液存放于高效液相自動進樣器瓶中,然后用高效液相色譜儀測出剩余2,4-DCP及產物的峰面積,通過外標法計算出2,4-DCP及產物的濃度.2,4-DCP及其降解產物鄰氯苯酚(2-CP)、對氯苯酚(4-CP)和苯酚的測定均采用高效液相色譜儀(島津LC2030C)測定.采用反相色譜柱SHIMADZU ODS-SP Column(250′4.6mm)分離,L-2420型紫外檢測器測定2,4-DCP溶液的濃度,流動相采用(CH3OH):(H2O)=60:40,流動相流速1.0mL/min;進樣量為20μL,柱溫40℃,檢測波長均為280nm.
2,4-DCP的去除率按如下公式計算:
式(1)中:2,4-DCP,0是2,4-DCP初始時刻的濃度,mg/L;2,4-DCP,t是反應進行至時刻2,4-DCP的濃度,mg/L;是2,4-DCP的去除率,%.
石墨烯負載納米鐵鎳復合材料與2,4-DCP反應前后的電鏡掃描譜圖如圖1所示.從圖中可以看出反應前球形的納米鐵鎳顆粒主要分布在石墨烯的片層邊緣或鑲嵌于褶皺處,并被石墨烯片層包裹,顆粒團聚較少.這是因為氧化石墨烯羧基官能團數量主要分布在片層邊緣,而Fe2+與氧化石墨烯的絡合主要是通過羧基絡合的,所以所產生的納米鐵鎳金屬顆粒主要分布在片層邊緣.反應后分散在石墨烯上的球形納米雙金屬鐵鎳顆粒消失,出現(xiàn)針狀晶體,顆粒表面呈團簇狀聚集體.根據反應推測,該針狀晶體為鐵的氧化物γ-羥基氧化鐵[23].
圖1 不同反應階段石墨烯負載納米鐵鎳復合材料的SEM圖像
從圖2a可以看出,由于自身磁性和納米尺度效應,純納米Fe/Ni顆粒具有明顯的鏈狀聚集體結構,甚至聚集為片狀,顆粒大部分呈球形,單個顆粒不能清晰分辨出來.圖2b為石墨烯負載納米鐵鎳復合材料的TEM圖.圖中的黑色球形顆粒即為納米鐵鎳金屬顆粒,片狀的透明層狀物質即為石墨烯,呈現(xiàn)為具有皺褶和折疊邊緣的二維薄層.納米鐵鎳顆粒均勻分散在石墨烯表面,無明顯團聚現(xiàn)象,相較于納米Fe/Ni材料,納米Fe/Ni金屬顆粒團聚現(xiàn)象明顯降低.從圖2c可以看出,負載在石墨烯上的納米鐵鎳顆粒呈明顯的核殼構型,外層表面比較疏松,呈非晶態(tài).這種松散的結構可能是Fe3O4,其導電能力較強,有利于內核鐵原子的電子轉移,表面可觀察到一些致密的小顆粒,結合圖3分析可知,這些小顆粒為Ni納米顆粒,沉積在納米鐵表面形成小突起,從而抑制了納米鐵核與空氣中氧氣的直接接觸,從而減少了nZVI的氧化和消耗.圖2d的高分辨TEM照片表明內部顏色較深部分即為Fe核,尺寸約為10nm左右,外部被非晶態(tài)的鐵氧化物覆蓋.可以在納米顆粒上觀察到清晰的晶格條紋,說明Fe/Ni納米顆粒的核結晶性較好.其晶格間距約為0.248nm,這一結果與Fe (JCPDS 06-0696)的(110)晶面十分吻合[24].
圖2 材料的TEM及HRTEM圖像
圖3 石墨烯負載鐵鎳材料的EDS面掃圖
圖4 氧化石墨烯,納米鐵鎳,反應前后石墨烯負載納米鐵鎳的X射線衍射圖
從圖4中可以看出,氧化石墨烯GO的衍射峰在2=11.6°處有一個最強特征峰(002)[25].通過布拉格方程計算其層間距為0.761nm,高于普通石墨粉的層間距0.337nm,這是因為石墨粉經過氧化之后引入了大量的含氧官能團,含氧官能團的插入增加了石墨烯層間距,為金屬納米顆粒的負載提供了空間.在納米Fe/Ni雙金屬 XRD譜圖中,在2=44.7°處出現(xiàn)了一個明顯的寬鈍峰,對應于α-Fe(JCPDS. 06-0696)的(110)衍射面[26].峰型較寬,強度較弱,這是由于納米鐵外殼層的氧化,呈無定形態(tài),所以沒有觀察到氧化鐵峰的存在,說明納米鐵結晶度較低,晶粒尺寸較小,這和納米鐵鎳的TEM圖觀察相符.由于鎳金屬與鐵金屬的衍射峰十分接近[27],而且鎳金屬的含量相對鐵而言很少,所以未檢測到明顯的鎳的衍射峰.石墨烯負載納米鐵鎳復合材料反應前后在2=12.5°處均有很弱的衍射峰,說明氧化石墨烯特征峰消失,氧化石墨烯基本還原,未出現(xiàn)明顯的石墨烯特征峰(2=25.1°和2=43.0°)[28],這可能是由于復合材料中石墨烯的無序堆積和團聚較少所致,這在石墨烯負載納米鐵鎳復合材料的SEM圖中得到了證實.反應前的石墨烯負載納米鐵鎳復合材料XRD譜圖在2=44.7°處出現(xiàn)了一個較弱的寬峰,說明納米鐵已經成功插入石墨烯片層結構上,在63.1°處的較小的峰對應于Fe(200)的特征衍射峰,而納米鐵鎳的XRD譜圖中沒有觀察到此峰,說明納米鐵顆粒負載到石墨烯上后結晶度有所提高[29].由于Fe/Ni@rGO復合材料中Ni的含量較低,沒有觀察到Ni的衍射峰[30].反應前的石墨烯負載納米鐵鎳復合材料在2=30.7°和2=35.0°處可以觀察到磁赤鐵礦Fe3O4/-Fe2O3的較弱的衍射峰,納米鐵的氧化峰強度普遍都很弱,說明了納米鐵外層的氧化層呈無定形狀態(tài)[31].與反應前的Fe/Ni@rGO復合材料相比,反應后的Fe/Ni@rGO復合材料XRD譜圖2=44.7°處寬峰消失,在2=30.7°和2=35.0°處磁赤鐵礦峰強增大,并在2=53.8°和2=62.8°處出現(xiàn)纖鐵礦-羥基氧化鐵特征峰[32],表明零價納米鐵經過反應后得以氧化,生成Fe3O4/-Fe2O3和-羥基氧化鐵.
圖5 氧化石墨烯和石墨烯負載鐵鎳復合材料的紅外譜圖
從圖5中可以看出,在3445cm-1附近氧化石墨烯有一個較寬、較強的吸收峰,這歸屬于-OH的伸縮振動峰, 1650cm-1處的峰對應于C=O基團的伸縮振動,1411cm-1處的峰對應于羧基O=C-O基團的伸縮振動[33],1222和1065cm-1的峰分別對應于環(huán)氧基C-O-C和烷氧基C-O的振動吸收峰[34-35],說明GO至少存在-OH,-COOH, C-O-C,C=O四種類型含氧官能團,說明GO高度親水.對于Fe/Ni@rGO復合材料紅外譜圖, -OH、C=O、O-C=O的峰強相對于GO峰強出現(xiàn)了較大程度的降低,環(huán)氧基C-O-C和烷氧基C-O峰消失,表明材料中含氧親水極性官能團減少,GO被成功還原成石墨烯rGO,這也解釋了Fe/Ni@rGO材料表面高度疏水的原因[36],復合材料的強疏水性能有利于對有機物2,4-DCP分子的吸附.同時可以看到Fe/Ni@rGO材料在1121cm-1出現(xiàn)Ni-O峰[37],在587cm-1出現(xiàn)Fe-O峰[38],表明石墨烯與nZVI的結合主要通過Fe-O鍵來完成,表明nZVI顆粒己成功嵌入石墨烯中.
圖6 不同碳鐵比對去除2,4-DCP的影響
鎳化率5%,反應溫度30 °C,[2,4-DCP]0=20mg/L,初始 pH=5.0
Fe/Ni雙金屬體系已被證明可以有效去除含氯有機物,在加氫脫氯過程中,2,4-DCP吸附在Ni催化劑的活性中心上會生成Ni-Cl鍵,Ni表面的原子氫通過加氫脫氯反應取代氯原子,參與C-Cl鍵的斷裂,從而得到脫氯產物.大量的研究[42-44]也充分證實了過渡金屬鎳的負載量對雙金屬體系中氯代烴脫氯效率的影響.
圖7 鎳負載率對2,4-DCP的去除率和苯酚產率的影響
C:Fe=1:2,反應溫度30°C,[2,4-DCP]0=20mg/L,pH=5.0
從圖7可以看出,不同鎳含量復合材料對2,4- DCP的去除率排序為 5%>14%>9%> 3%,苯酚的產率排序為 9% >5% >14% >3%.2,4-DCP的加氫脫氯作用主要是由雙金屬催化劑上吸附的活性原子氫(H*)脫氯引起的,氫原子和鎳以類氫化物的形式存在于鎳的表面[45].當鎳化率小于9%時,2,4-DCP的脫氯效率隨著鎳化率的上升而增大.這是由于鎳能夠使納米鐵腐蝕所產生的氫氣分解成活性氫原子并附著在鎳的表面,活性氫原子的強還原能力使得2,4-DCP的脫氯效率增大,鎳化率越高,材料的脫氯效率就越高,此時鎳化率是材料脫氯反應的控制因素.當鎳化率大于9%時,雙金屬中鎳的含量過高,較高含量的鎳覆蓋在納米鐵顆粒的表面,不利于納米鐵的電子轉移,最終降低雙金屬催化劑的脫氯效率.從圖中可以明顯看出5%的鎳含量對2,4-DCP的去除效果最優(yōu).
圖8 硼氫化鈉投加量對2,4-二氯酚去除率和苯酚產率的影響曲線圖
C:Fe=1:2,反應溫度30°C,[2,4-DCP]0=20mg/L,pH=5.0
Shin等[46]通過調整NaBH4溶液的投加量制備了不同還原程度的rGO,結果表明硼氫化鈉與亞鐵離子的物質的量比越大,氧化石墨烯的還原就越徹底,高的C/O比意味著rGO具有更多被修復的共扼結構和相對少的含氧官能團,具有相對高的導電性.由此可通過調整NaBH4物質的量來改變生成的氧化石墨烯的還原程度,從而對材料的吸附性能和導電性能產生較大影響[47],并由此影響復合材料對2,4-DCP的吸附及脫氯效果.從圖8a可以看出,當投加的NaBH4物質的量是亞鐵離子2倍時,此時材料對2,4- DCP的去除能力強于其他兩種還原程度的材料,這是因為雖然此時材料的還原程度最小,脫氯還原能力較弱,但負載材料上存在的羧基、羥基、羰基等含氧官能團較多,可與酚類化合物形成氫鍵,吸附能力較強.但此投加量僅僅還原了部分亞鐵離子,且對氧化石墨烯的還原程度較低,且低還原度的氧化石墨烯導電能力很弱,不利于材料的脫氯反應,這從圖8(b)可以得到證實.綜合考慮材料的吸附脫氯性能以及制備成本,選用NaBH4與亞鐵離子物質的量比值為5:1的反應條件制備材料為宜.
從圖9可以看出,石墨烯、Fe@rGO復合材料和Fe/Ni@rGO復合材料對2,4-DCP的去除效果在反應最初的20min遠優(yōu)于Fe/Ni和nZVI,隨著反應的進行,nZVI、石墨烯和Fe@rGO復合材料對2,4-DCP的去除率趨于平緩.Fe/Ni和Fe/Ni@rGO復合材料對2,4-DCP的去除率穩(wěn)步上升,最終在反應進行至 240min時達到95%以上的去除率.在反應初始階段,材料對2,4-DCP的去除以吸附為主.Fe@rGO復合材料和Fe/Ni@rGO復合材料兩者均以石墨烯為載體,具有多孔結構,比表面積大,其特有的大p環(huán)可通過p-p作用力吸引2,4-DCP分子,所以吸附能力遠強于nZVI和Fe/Ni對2,4-DCP分子的吸附能力.石墨烯材料比表面積大,由于其表面沒有納米金屬顆粒的干擾,參與形成大p鍵的碳原子數目更多,其形成的共軛體系比Fe@rGO復合材料要大,所以在吸附達到平衡時其對2,4-DCP的去除率高于Fe@rGO復合材料[48].由于純納米鐵易團聚,外層形成致密的氧化鐵外殼,阻礙內層鐵核的電子轉移,再加上2,4-DCP為芳香性氯代物,和苯環(huán)相連的C-Cl鍵難以斷裂,脫氯反應活化能高達138.91kJ/mol[49],單純的nZVI還原能力一般,很難發(fā)生脫氯反應,所以nZVI和Fe@rGO復合材料主要通過吸附作用去除2,4-DCP.在Fe/Ni和Fe/Ni@rGO體系中,反應20min后2,4-DCP去除率能夠持續(xù)增大,這是因為發(fā)生了脫氯反應.隨著脫氯反應的進行,對Fe/Ni體系來說,固相中2,4-DCP逐漸脫氯生成苯酚,其占據的吸附位點得到釋放,其空出的吸附位點對液相中的2,4-DCP分子產生新的吸引力,所以整個反應過程中2,4-DCP去除速率相對比較穩(wěn)定;而對Fe/ Ni@rGO體系來說,經過最初的20min的吸附,液相中的大部分2,4-DCP分子被吸附至材料表面,并通過孔道擴散至Fe/Ni顆粒活性位點上發(fā)生脫氯反應,生成產物苯酚釋放至溶液中,但后續(xù)2,4-DCP濃度越來越低,故去除速率逐漸趨緩.
圖9 不同材料去除2,4-DCP的濃度變化曲線圖
C:Fe=1:2,反應溫度30°C,[2,4-DCP]0=20mg/L,初始pH=5.0
從圖10a可以看出,在空氣中暴露90d后,Fe/ Ni@rGO復合材料對2,4-DCP的去除率仍達到92.9%,而納米Fe/Ni材料空氣中暴露90d后,其對2,4-DCP的去除率降至52.8%.這說明Fe/Ni@rGO復合材料具有比n-Fe/Ni更高的抗氧化性能和催化活性,Fe/Ni@rGO復合材料不僅能阻止nZVI的聚集,而且有助于復合材料保持較高的反應活性.由此可見,Fe/Ni@rGO復合材料抗氧化性能強,可在開放環(huán)境中存放三個月時間而保持反應活性基本不變.
從圖10b可以看出,2,4-DCP在5個循環(huán)試驗中的去除率分別為100%,98.5%,96.8%,85.1%,80.7%,從第4次循環(huán)試驗開始,2,4-DCP去除率明顯下降,這可能是由于隨著2,4-DCP降解反應的進行,nZVI在還原降解反應過程中不斷發(fā)生腐蝕,生成的Fe3O4和Fe2O3等氧化物沉淀覆蓋了材料表面的活性位點,導致降解速率降低.與Fe/Ni@rGO復合材料相對應,納米Fe/Ni雙金屬作為還原劑在2,4-DCP第一輪循環(huán)試驗中性能很好,但到第五輪降解試驗中只能去除40.2%的2,4-DCP,其持久活性較差,說明其隨著反應的進行,容易被氧化失活.綜上所述,Fe/Ni@rGO復合材料反應活性持久,可循環(huán)性強.
圖10 材料儲存穩(wěn)定性及重復利用性能試驗分析
[2,4-DCP]=20mg/L,投加量,1.0g/L,溫度30°C,pH=5.0,反應時間300min
Fe/Ni@rGO復合材料去除2,4-DCP是一個吸附及脫氯協(xié)同作用的結果.在反應前,Fe/Ni@rGO 復合材料表面有大量空置的吸附位點,因而具有較大的表面吉布斯自由能.當投加入2,4-DCP溶液中,復合材料的大π鍵與2,4-DCP分子的苯環(huán)形成p-p堆積作用,石墨烯表面也含有部分含氧官能團,其和2,4-DCP分子之間也存在氫鍵作用,從而對2,4-DCP分子產生較強的吸附作用,如圖11所示.同時溶液不斷震蕩下形成的紊流擴散加劇了2,4-DCP分子從溶液本體向復合材料表面的擴散.2,4-DCP分子被吸附至材料表面后,通過材料介孔擴散至Fe/Ni@rGO復合材料的吸附活性位點及反應活性位點Fe/Ni顆粒附近,與Fe/Ni顆粒發(fā)生加氫還原脫氯反應.
圖11 石墨烯和2,4-DCP分子之間π-π作用力與氫鍵示意
2,4-DCP分子在 Fe/Ni雙金屬納米顆粒表面發(fā)生加氫脫氯反應,具體反應路徑如下:
Fe/Ni雙金屬納米顆粒表面脫氯反應示意圖如圖12 所示.在反應過程中,石墨烯作為載體,有效分散了納米Fe/Ni雙金屬顆粒,降低了納米顆粒的團聚,同時由于其強吸附作用和強導電能力,通過吸附和脫氯協(xié)同效應增強對2,4-DCP的反應活性.Fe作為還原劑釋放出電子,生成氫氣,同時提供電子給石墨烯,由于單層石墨烯π電子的自由移動特性,電子迅速傳導給石墨烯表面吸附的2,4-DCP分子,參與到2,4-DCP的加氫脫氯還原反應中.在Fe/Ni雙金屬體系中,Ni與Fe可形成原電池效應,加速Fe的腐蝕,導致析氫速度加快,抑制nZVI顆粒氧化層的形成.Ni作為過渡金屬,具有空軌道,可與2,4-DCP中的氯原子提供的孤對電子成鍵,形成過渡絡合物Ni…Cl…R(式2),削弱C-Cl鍵,降低脫氯反應活化能[50].同時鎳作為儲氫金屬,可吸附H2,并在嵌入的晶格中形成強還原性物質 Ni×2H*(式3),并釋放出活性氫原子 H*(式4),與吸附在Ni上的2,4-DCP發(fā)生加氫脫氯反應(式5).金屬鎳的加入改變了 2,4-DCP的反應途徑,2,4-DCP不再直接通過接受零價鐵與Fe2+釋放的電子來實現(xiàn)脫氯還原,而是和活性氫原子發(fā)生催化加氫脫氯還原反應,從而大大提高了脫氯效率[51].
圖12 Fe/Ni雙金屬納米顆粒表面脫氯反應示意
3.1 成功研制了石墨烯負載納米鐵鎳復合材料.綜合考慮材料制備成本及對2,4-DCP的吸附脫氯性能,Fe/Ni@rGO復合材料的最優(yōu)制備條件為:石墨烯與Fe質量比1:2,鎳負載率5%,硼氫化鈉與鐵鹽的物質的量比為5:1.
3.2 研究表明4種材料對2,4-DCP的去除效率遵循如下順序:Fe/Ni@rGO復合材料>Fe/Ni>Fe @rGO復合材料>nZVI.儲存穩(wěn)定性試驗和循環(huán)試驗表明,與Fe/Ni雙金屬相比,Fe/Ni@rGO復合材料對2,4-DCP的去除效率均有顯著提高,這表明Fe/Ni@rGO材料具有穩(wěn)定的反應活性和較高的重復利用價值.
3.3 揭示了Fe/Ni@rGO復合材料去除2,4-DCP的反應機理.Fe/Ni@rGO復合材料對2,4-DCP的去除為吸附和脫氯協(xié)同作用的結果,反應初期主要為物理吸附作用,復合材料通過p-p作用力將2,4-DCP分子從溶液主體吸附至材料表面,隨后吸附在材料上的2,4-DCP分子通過孔道擴散到達反應活性位點,與Ni催化劑形成過渡態(tài)絡合物Ni…Cl…R,同時Ni吸附氫氣并分解成活性氫原子,發(fā)生加氫脫氯反應,產生最終脫氯產物苯酚,并逐漸釋放至溶液中.
[1] Garba Z N, Zhou W, Lawan I, et al. An overview of chlorophenols as contaminants and their removal from wastewater by adsorption: A review [J]. Journal of Environmental Management, 2019,241:59-75.
[2] Wu C, Zhou L, Zhou C, et al. A kinetic model for 2,4-dichlorophenol adsorption and hydrodechlorination over a palladized biofilm [J]. Water Research, 2022,214:118201.
[3] 朱菲菲,秦普豐,張 娟,等.我國地下水環(huán)境優(yōu)先控制有機污染物的篩選[J]. 環(huán)境工程技術學報, 2013,3(5):443-50.
Zhu F F, Qin P F, Zhang J. et al. Screening of priority organic pollutants in groundwater of China [J]. Journal of Environmental Engineering Technology, 2013,3(5):443-50.
[4] Shah J, Jan M R, Iqbal M, et al. Mixed hemimicelles silica-coated magnetic nanoparticles for solid-phase extraction of chlorophenols from different water samples [J]. Desalination and water treatment, 2018,112:310-318.
[5] Pang H, Liu L, Bai Z, et al. Fabrication of sulfide nanoscale zero- valent iron and heterogeneous Fenton-like degradation of 2, 4-Dichlorophenol [J]. Separation and Purification Technology, 2022, 285:120408.
[6] 郭汶俊,張永祥,井 琦,等.CMS包覆納米零價鐵去除2,4-二氯酚的條件優(yōu)化 [J]. 環(huán)境工程學報, 2018,12(12):3289-3296.
Guo W J, Zhang Y X, Jing Q, et al. Conditions optimization for 2, 4-dichlorophenol removal by CMS-coating nano zero-valent iron [J]. Chinese Journal of Environmental Engineering, 2018,12(12):3289- 3296.
[7] Eker S, Kargi F. Biological treatment of 2,4-dichlorophenol containing synthetic wastewater using a rotating brush biofilm reactor [J]. Bioresource Technology, 2008,99(7):2319-2325.
[8] Wei D, Zhao C, Khan A, et al. Sorption mechanism and dynamic behavior of graphene oxide as an effective adsorbent for the removal of chlorophenol based environmental-hormones: A DFT and MD simulation study [J]. Chemical Engineering Journal, 2019,375:121964.
[9] Ma J W, Wang H, Wang F Y, et al. Adsorption of 2,4-dichlorophenol from Aqueous Solution by a New Low-Cost Adsorbent-Activated Bamboo Charcoal [J]. Separation Science & Technology, 2010,45(16): 2329-2336.
[10] Zhou P, Zhang J, Zhang Y L, et al. Degradation of 2,4-dichlorophenol by activating persulfate and peroxomonosulfate using micron or nanoscale zero-valent copper [J]. Journal of Hazardous Materials, 2018,344:1209-1219.
[11] Gillham R W. Enhanced degradation of halogenated aliphatics by zero-valent iron [J]. Groundwater, 1994,32(6):958-967.
[12] Wang C B, Zhang W X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs [J]. Environmental Science & Technology, 1997,31(7):9602-9607.
[13] Ahmad S, Liu X, Tang J, et al. Biochar-supported nanosized zero- valent iron (nZVI/BC) composites for removal of nitro and chlorinated contaminants [J]. Chemical Engineering Journal, 2022,431:133187.
[14] Tan W, Ruan Y, Diao Z, et al. Removal of levofloxacin through adsorption and peroxymonosulfate activation using carbothermal reduction synthesized nZVI/carbon fiber [J]. Chemosphere, 2021,280: 130626.
[15] Liang L, Li X, Guo Y, et al. The removal of heavy metal cations by sulfidated nanoscale zero-valent iron (S-nZVI): The reaction mechanisms and the role of sulfur [J]. Journal of Hazardous Materials, 2021,404:124057.
[16] Gu M, Farooq U, Lu S, et al. Degradation of trichloroethylene in aqueous solution by rGO supported nZVI catalyst under several oxic environments [J]. Journal of Hazardous Materials, 2018,349:35-44.
[17] Wu C, Liu W, Jing Z, et al. Mechanisms of synergistic removal of low concentration As(V) by nZVI@Mg(OH)2nanocomposite [J]. The Journal of Physical Chemistry C, 2017,121(39):21411-21419.
[18] Tang L , Yang G D , Zeng G M , et al. Synergistic effect of iron doped ordered mesoporous carbon on adsorption-coupled reduction of hexavalent chromium and the relative mechanism study [J]. Chemical Engineering Journal, 2014,239:114-122.
[19] Xu J, Sheng T, Hu Y, et al. Adsorption–dechlorination of 2,4- dichlorophenol using two specified MWCNTs-stabilized Pd/Fe nanocomposites [J]. Chemical Engineering Journal, 2013,219:162- 173.
[20] 孫鳴璐,董 軍,張夢玥,等.乳化納米鐵(EZVI)強化地下水氯代烴還原脫氯[J]. 中國環(huán)境科學, 2022,42(6):2690-2696.
Sun M L, Dong J, Zhang M Y, et al. Enhanced reductive dechlorination of chlorinated hydrocarbons in groundwater by emulsified zero-valentiron [J]. China Environmental Science, 2022, 42(6):2690-2696.
[21] 朱穎一,王城晨,王明新,等.硫化納米鐵反應帶修復硝基苯污染地下水[J]. 中國環(huán)境科學, 2020,40(2):670-680.
Zhu Y Y, Wang C C, Wang M X, et al. Remediation of nitrobenzene contaminated groundwater by S-NZVI reaction zone [J]. China Environmental Science, 2020,40(2):670-680.
[22] Cheng Y, Dong H, Hao T. CaCO3coated nanoscale zero-valent iron (nZVI) for the removal of chromium (VI) in aqueous solution [J]. Separation and Purification Technology, 2021,257:117967.
[23] Sun Y P, Li X Q, Cao J, et al. Characterization of zero-valent iron nanoparticles [J].Advances in Colloid and Interface Science, 2006, 120(1-3):47-56.
[24] Chen H, Cao Y, Wei E, et al. Facile synthesis of graphene nano zero- valent iron composites and their efficient removal of trichloronitromethane from drinking water [J]. Chemosphere, 2016, 146:32-39.
[25] Sahu R S, Bindumadhavan K, Doong R. Boron-doped reduced graphene oxide-based bimetallic Ni/Fe nanohybrids for the rapid dechlorination of trichloroethylene [J]. Environmental Science: Nano, 2017,4(3):565-576.
[26] Sun Y P, Li X, Cao J, et al. Characterization of zero-valent iron nanoparticles [J]. Advances in Colloid and Interface Science, 2006,120 (1-3):47-56.
[27] Huang K, Bian H, Zhang M, et al. Characterization of bimetallic Fe/Ni nanoparticles supported by amphiphilic block copolymer and its application in removal of 1,1,1-trichloroethane in water [J]. Environmental Science and Pollution Research, 2020,27(27):34503- 34512.
[28] Masud A, Soria N G C, Aga D S, et al. Adsorption and advanced oxidation of diverse pharmaceuticals and personal care products (PPCPs) from water using highly efficient rGO–nZVI nanohybrids [J]. Environmental Science: Water Research & Technology, 2020,6(8): 2223-2238.
[29] Xing R, He J, Hao P, et al. Graphene oxide-supported nanoscale zero-valent iron composites for the removal of atrazine from aqueous solution [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020,589:124466.
[30] Gu M B, Farooq U, LU S G, et al. Degradation of trichloroethylene in aqueous solution by rGO supported nZVI catalyst under several oxic environments [J]. Journal of Hazardous Materials, 2018,349:35-44.
[31] Ai Z, Gao Z, Zhang L, et al. Core-shell structure dependent reactivity of Fe@Fe2O3nanowires on aerobic degradation of 4-chlorophenol [J]. Environ Sci Technol, 2013,47(10):5344-5352.
[32] Sun Y, Ding C, Cheng W, et al. Simultaneous adsorption and reduction of U(VI) on reduced graphene oxide-supported nanoscale zerovalent iron [J]. Journal of Hazardous Materials, 2014,280:399-408.
[33] Chandra V, Park J, Chun Y, et al. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal [J]. ACS Nano, 2010, 4(7):3979-3986.
[34] Gu M, FAROOQ U, LU S, et al. Degradation of trichloroethylene in aqueous solution by rGO supported nZVI catalyst under several oxic environments [J]. Journal of Hazardous Materials, 2018,349(5):35-44.
[35] Deosarkar M P, Pawar S M, Bhanvase B A. In situ sonochemical synthesis of Fe3O4–graphene nanocomposite for lithium rechargeable batteries [J]. Chemical Engineering and Processing: Process Intensification, 2014,83:49-55.
[36] Wu S, He H, Li X, et al. Insights into atrazine degradation by persulfate activation using composite of nanoscale zero-valent iron and graphene: Performances and mechanisms [J]. Chemical Engineering Journal, 2018,341:126-136.
[37] Zhang Q , Zhao D , Ding Y , et al. Synthesis of Fe-Ni/graphene oxide composite and its highly efficient removal of uranium(VI) from aqueous solution [J]. Journal of Cleaner Production, 2019,230:1305- 1315.
[38] He Y, Hai L, Dong Y, et al. Zeolite supported Fe/Ni bimetallic nanoparticles for simultaneous removal of nitrate and phosphate: Synergistic effect and mechanism [J]. Chemical Engineering Journal, 2018,347:669-681.
[39] Xu J, Tan L, Baig S A, et al. Dechlorination of 2,4-dichlorophenol by nanoscale magnetic Pd/Fe particles: Effects of pH, temperature, common dissolved ions and humic acid [J]. Chemical Engineering Journal, 2013,231:26-35.
[40] Zhang Z, Shen Q, Cissoko N, et al. Catalytic dechlorination of 2, 4-dichlorophenol by Pd/Fe bimetallic nanoparticles in the presence of humic acid [J]. Journal of Hazardous Materials, 2010,182(1-3):252- 258.
[41] Han J , Deming R L , Tao F M . Theoretical study of molecular structures and properties of the complete series of chlorophenols [J]. Journal of Physical Chemistry A, 2004,108(38):7736-7743.
[42] Feng J, Lim T T. Pathways and kinetics of carbon tetrachloride and chloroform reductions by nano-scale Fe and Fe/Ni particles: comparison with commercial micro-scale Fe and Zn [J]. Chemosphere, 2005,59(9):1267-1277.
[43] Wei J, Qian Y, Liu W, et al. Effects of particle composition and environmental parameters on catalytic hydrodechlorination of trichloroethylene by nanoscale bimetallic Ni-Fe [J]. Journal of Environmental Sciences, 2014,26(5):1162-1170.
[44] Zhou Z, Ruan W, Huang H, et al. Fabrication and characterization of Fe/Ni nanoparticles supported by polystyrene resin for trichloroethylene degradation [J]. Chemical Engineering Journal, 2016,283:730-739.
[45] Ruan X , Liu H , Wang J , et al. A new insight into the main mechanism of 2,4-dichlorophenol dechlorination by Fe/Ni nanoparticles [J]. The Science of the Total Environment, 2019,697(12): 133996.
[46] Shin H J, Kim K K, Benayad A, et al. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance [J]. Advanced Functional Materials, 2009,19(12):1987-1992.
[47] Wang X, Huang S, Zhu L, et al. Correlation between the adsorption ability and reduction degree of graphene oxide and tuning of adsorption of phenolic compounds [J]. Carbon, 2014,69:101-112.
[48] Xiao J, Lv W, Xie Z, et al. Environmentally friendly reduced graphene oxide as a broad-spectrum adsorbent for anionic and cationic dyes via π–π interactions [J]. Journal of Materials Chemistry A, 2016,4(31): 12126-12135.
[49] 衛(wèi)建軍.納米級Pd/Fe雙金屬對水中氯酚的催化脫氯研究 [D]. 杭州:浙江大學, 2004.
[50] Cheng R, Zhou W, Wang J L, et al. Dechlorination of pentachlorophenol using nanoscale Fe/Ni particles: role of nano-Ni and its size effect [J]. Journal of Hazardous materials, 2010,180(1-3): 79-85.
[51] Zhang Z, Hu Y B, Ruan W, et al. Highly improved dechlorination of 2, 4-dichlorophenol in aqueous solution by Fe/Ni nanoparticles supported by polystyrene resin [J]. Chemosphere, 2021,266:128976.
Reduced graphene oxide supported Fe/Ni nanocomposites for 2,4-dichlorophenol removal.
HUANG Xue-zheng1,2,3*, ZHANG Yong-xiang2, ZHANG Da-sheng4, ZHU Xin-feng1, LI Hou-yun1
(1.Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan 467000, China;2.Department of Urban Construction, Beijing University of Technology, Beijing 100124, China;3.School of Civil Engineering, Nanyang Institute of Technology, Nanyang 473000, China;4.Hebei Institute of Water Science, Shijiazhuang 050051, China)., 2023,43(12):6352~6362
Reduced graphene oxide supported Fe/Ni nanocomposites were prepared for the rapid and effective adsorption and dechlorination of 2,4-dichlorophenol (2,4-DCP) by using liquid phase reduction method. The morphological characterization showed that the spherical Fe/Ni bimetallic nanoparticles with the size of 80~150nm were successfully inserted into the graphene sheets and mainly distributed at the edges and folds of the graphene sheets. The agglomeration of Fe/Ni nanoparticles decreased significantly. XRD patterns and FTIR analysis showed nZVI nanoparticles were successfully embedded into graphene through Fe-O bond, Fe/Ni bimetallic nanoparticles had poor crystallinity and amorphous iron oxide which covered the outer layer of nanoparticles. The effects of different preparation conditions such as carbon iron ratio, nickel loading and reduction degree of graphene oxide on the removal of 2,4-DCP were discussed. The optimum preparation conditions of the Fe/Ni@rGO composites are as follows: the mass ratio of graphene to Fe is 1:2, the Ni loading is 5%, and the molar ratio of NaBH4to Fe2+is 5:1. The adsorption and dechlorination perfermance of 2,4-DCP by nZVI, Fe/Ni, Fe@rGO composites and Fe/Ni@rGO composites were compared and analyzed. The results showed that the removal efficiency of 2,4-DCP by five materials followed the sequence: Fe/Ni@rGOcomposites>Fe/Ni>rGO>Fe@rGOcomposites>nZVI. However, the cycle test and storage stability test showed: compared with Fe/Ni bimetallic, Fe/Ni@rGO composites had stable reactivity activity and high reruse value. The results demonstrated the removal mechanism of 2,4-DCP by Fe/Ni@rGO composites was the synergistic effect of adsorption and dechlorination.
graphene;2,4-dichlorophenol;nanoscale zerovalent iron;dechlorination;adsorption
X52
A
1000-6923(2023)12-6352-11
黃雪征,張永祥,張大勝,等.石墨烯負載鐵鎳復合材料去除水中的2,4-二氯酚 [J]. 中國環(huán)境科學, 2023,43(12):6352-6362.
Huang X Z, Zhang Y X, Zhang D S, et al. Reduced graphene oxide supported Fe/Ni nanocomposites for 2,4-dichlorophenol removal [J]. China Environmental Science, 2023,43(12):6352-6362.
2023-04-28
河南省科技攻關項目(202102310609);國家重點研發(fā)計劃子課題(2016YFC040140402);河南省高等學校重點科研項目(21A610009)
* 責任作者, 副教授, 58626472@qq.com
黃雪征(1978-),男,河南南陽人,副教授,博士,主要從事環(huán)境功能材料研究,場地污染治理修復.發(fā)表論文30余篇.58626472@qq.com.