劉亞欣 高小妹 黃夢月 裴臘明
文章編號:1671-3559(2024)01-0101-05DOI:10.13349/j.cnki.jdxbn.20230426.001
摘要:為了探討植物角質(zhì)層蠟質(zhì)在植物響應生物脅迫與非生物脅迫中的功能,為改良植物性狀、提高作物品質(zhì)及作物遺傳育種提供新的資源,對植物角質(zhì)層蠟質(zhì)的組成、生物合成途徑及功能進行綜述:植物角質(zhì)層蠟質(zhì)主要由長鏈脂肪酸及其衍生物即烷烴、醛類、酮類、初級醇、次級醇和蠟酯等組成;生物合成途徑可分為3個步驟,即C16、C18脂肪酸的從頭合成、C16、C18脂肪酸延伸形成長鏈脂肪酸和長鏈脂肪酸通過?;€原途徑和脫羰基;植物角質(zhì)層蠟質(zhì)在植物響應干旱、紫外線輻射和抗病蟲害等非生物和生物脅迫中發(fā)揮重要功能。指出利用新的生物技術對蠟質(zhì)功能及作用機制進行深入研究,探討植物的抗逆性,是今后的研究方向。
關鍵詞:植物學;角質(zhì)層蠟質(zhì);生物脅迫;非生物脅迫;合成機制
中圖分類號:Q945.78
文獻標志碼:A
開放科學識別碼(OSID碼):
Research Progresses on Composition, Biosynthesis, and
Functions in Response to Outer Stresses of Plant Cuticular Wax
LIU Yaxin, GAO Xiaomei, HUANG Mengyue, PEI Laming
(School of Biological Science and Technology, University of Jinan, Jinan 250022, Shangdong, China)
Abstract: To explore functions of plant cuticular wax in response to biotic and abiotic stresses, and provide new resources for improving plant traits as well as enhancing crop quality and genetic breeding, composition, biosynthesis pathways, and functions of plant cuticular wax were reviewed, including main composition of plant cuticular wax such as long-chain fatty acids and their derivatives (alkanes, aldehydes, ketones, primary alcohols, secondary alcohols, and wax esters), three steps of biosynthesis pathway such as de novo synthesis of C16 and C18 fatty acids, elongation of C16 and C18 fatty acids to form long-chain fatty acids, and synthesis of wax components through acyl reduction and decarbonylation pathways of long-chain fatty acids, as well as important functions of plant cuticular wax in responses to abiotic and biotic stresses such as drought, ultraviolet radiation and disease and pest resistance. The future research direction was pointed out to be using new biotechnology to research functions and mechanism of wax and discussing stress resistance of plants.
Keywords: botany; cuticle wax; biotic stress; abiotic stress; synthesis mechanism
大多數(shù)植物的地上部分都覆蓋著一層疏水性角質(zhì)層,這是植物抵御外界脅迫的第一道防線,主要由蠟質(zhì)和角質(zhì)組成。角質(zhì)是一種三維聚合物,主要由中間鏈, ω-羥基, C16、C18環(huán)氧羥基脂肪酸通過酯鍵交聯(lián)形成,呈網(wǎng)狀結(jié)構(gòu),角質(zhì)是角質(zhì)層的支撐結(jié)構(gòu)[1]。蠟質(zhì)主要由超長鏈脂肪酸及其衍生物, 如烷
收稿日期:2022-11-21????????? 網(wǎng)絡首發(fā)時間:2023-04-27T10:20:01
基金項目:國家自然科學基金項目(31801278)
第一作者簡介:劉亞欣(1998—),女,山東棗莊人。碩士研究生,研究方向為植物分子育種。E-mail:liuyx122345@163.com。
通信作者簡介:裴臘明(1983—),女,山東日照人。副教授,博士,研究方向為作物遺傳育種。E-mail:mls_peilm@ujn.edu.cn。
網(wǎng)絡首發(fā)地址:https://kns.cnki.net/kcms/detail/37.1378.N.20230426.1715.002.html
烴、初級醇、次級醇、醛、酮和蠟酯等組成,是角質(zhì)層實現(xiàn)功能的主要承擔者[2],因此,蠟質(zhì)的功能及合成機制備受關注。
1? 植物表皮蠟質(zhì)的組成
大多數(shù)植物表皮蠟質(zhì)主要由超長鏈脂肪酸及其衍生物組成,如烷烴、初級醇、次級醇、醛、酮和蠟酯[2],碳鏈長度大多在18~36個碳原子之間,較少見的有環(huán)狀化合物和甾醇化合物[3]。在不同植物中蠟質(zhì)組分有所不同,如甘蔗的表皮蠟質(zhì)主要由脂肪酸和烷烴組成[4];玉米的表皮蠟質(zhì)主要由醛和初級醇組成[5];烷烴和酮類是韭菜葉中表皮蠟質(zhì)的主要成分[6]。同一植物不同組織的蠟質(zhì)成分也不同,如紫苜蓿葉的表皮蠟質(zhì)以初級醇為主,而在莖中烷烴為主[7]。
2? 植物表皮蠟質(zhì)的生物合成
植物表皮蠟質(zhì)的合成途徑可分為3個步驟:1)C16、C18脂肪酸的從頭合成;2)C16、C18脂肪酸延伸形成蠟質(zhì)合成前提物質(zhì)即超長鏈脂肪酸(VLCFAs);3)VLCFAs通過酰基還原途徑和脫羰基途徑合成烷烴、醛類、酮類、初級醇、次級醇和蠟酯等蠟質(zhì)組分[8]。以上合成過程在植物表皮細胞中完成。
2.1? C16、C18脂肪酸的從頭合成
C16、C18脂肪酸的從頭合成是在質(zhì)體中進行的。在質(zhì)體中,乙酰輔酶A在乙酰輔酶A羧化酶的催化下,形成丙二酰單酰輔酶A;丙二酰單酰輔酶A在脂肪酸合成酶復合體的催化下經(jīng)縮合、還原、脫水和還原4步循環(huán)反應合成相應的?;?ACP,每個循環(huán)反應酰基鏈增加2個碳原子。當碳鏈長度為16或18時,循環(huán)反應停止,C16或C18的?;?ACP被酰基ACP硫酯酶水解成C16或C18脂肪酸。
2.2? 長鏈脂肪酸及其衍生物的合成
脂肪酸的進一步延長是在內(nèi)質(zhì)網(wǎng)中進行的[9]。C16、C18脂肪酸在胞質(zhì)中被長鏈?;o酶A合成酶催化形成相應的酰基輔酶A并轉(zhuǎn)運至內(nèi)質(zhì)網(wǎng)中[10]。在內(nèi)質(zhì)網(wǎng)中?;o酶A被脂肪酸延長酶復合體通過循環(huán)反應催化形成C20、C22、…、C36長鏈脂肪酸[11]。該過程與脂肪酸的從頭合成相似,同樣需要經(jīng)4步反應,即縮合、還原、脫水和還原。脂肪酸延長酶復合體由β-酮脂酰輔酶A合成酶(KCS)、β-酮脂酰輔酶A還原酶(KCR)、β-羥酯酰輔酶A脫水酶(HCD)和反式烯脂酰輔酶A還原酶(ECR)4種酶組成,每個循環(huán)反應增加2個碳原子[12-13]。長鏈脂肪酸延伸的限速步驟是由KCS催化的,KCS是限速酶[14]。第1個編碼KCS酶的基因是從缺少長鏈脂肪酸的擬南芥突變體中分離出來的,因此將該基因命名為FAE1[15]。在擬南芥中,KCS基因家族有21個成員,其中8個編碼KCS[16]。AtFAE1(KCS18)在種子發(fā)育過程中發(fā)揮作用,并參與C20、C22、C24、C26脂肪酸的合成[15];AtKCS5參與C26、C28、C30脂肪酸的合成[17]。 在玉米中, GL4是擬南芥CER6(KCS6)的同源基因, 參與幼苗葉片角質(zhì)層蠟質(zhì)的積累[18-19];WSL1和ONI1是水稻中的2個KCS基因, 分別是葉片角質(zhì)層蠟質(zhì)的生物合成和新鞘正常發(fā)育所必需的[18];在番茄中CER6是的編碼KCS的基因, 參與果實角質(zhì)蠟質(zhì)的積累[20]。
VLCFAs通過脫羰基途徑和?;€原基途徑合成各種蠟質(zhì)組分。 在脫羰基途徑中, 主要合成醛類、酮類、烷烴和次級醇等。 首先VLCFAs被還原成醛類, 然后通過脫羰基反應形成烷烴, 烷烴可進一步修飾為次級醇和酮類[21]。 有學者對擬南芥中幾個CER基因在脫羰基途徑中的作用進行了研究。 CER3編碼VLCFAs還原酶, 將VLCFAs還原成醛, 在CER3缺失突變體中醛類、烷烴、次級醇和酮的含量顯著減少[21-24];CER1編碼脫羰基酶, 將醛脫羰基為烷烴, 在CER1缺失突變體中烷烴、次級醇和酮類的含量顯著減少, 醛類含量略有增加[21, 25-26]。 研究[26]表明, 在擬南芥中CER1與CER3相互作用共同參與烷烴的合成;酵母雙雜實驗證明細胞色素b5亞型可與CER1和CER3相互作用并作為氧化還原輔助因子參與烷烴的合成。在?;€原途徑中,主要合成初級醇和蠟酯等。在擬南芥CER4突變體中初級醇和蠟酯的含量顯著減少,醛類、烷烴、次級醇和酮的含量略有增加;通過實驗進一步證明CER4編碼與醇合成相關的長鏈脂肪酰輔酶A還原酶,參與植物表皮蠟質(zhì)中初級醇的合成[27]。蠟酯是由脂肪醇和脂肪酸形成的酯類物, 主要存在于角質(zhì)層中。研究[28]表明,AtWSD1基因所編碼的蛋白是蠟酯合酶或二?;视王;D(zhuǎn)移酶家族中的一員,參與蠟酯的合成。
2.3? 植物表皮蠟質(zhì)的轉(zhuǎn)運
在內(nèi)質(zhì)網(wǎng)中合成的各種蠟質(zhì)組分需要轉(zhuǎn)運至植物表皮。首先各種蠟質(zhì)組分從內(nèi)質(zhì)網(wǎng)中轉(zhuǎn)運到質(zhì)膜,然后通過質(zhì)膜運輸?shù)皆|(zhì)體外并通過細胞壁運輸?shù)街参锉砻妫?9-31]。表皮蠟質(zhì)的轉(zhuǎn)運是由多種轉(zhuǎn)運蛋白介導的。在擬南芥acbp1突變體的莖中蠟質(zhì)的含量有所下降,ACBP1所編碼的酰基輔酶A結(jié)合蛋白1定位于內(nèi)質(zhì)網(wǎng)和質(zhì)膜上,表明ACBP1可能介導蠟質(zhì)組分從內(nèi)質(zhì)網(wǎng)轉(zhuǎn)運至質(zhì)膜[32]。其中ABC轉(zhuǎn)運蛋白已被證實參與表皮蠟質(zhì)的轉(zhuǎn)運:在擬南芥中CER5是ABC轉(zhuǎn)運蛋白WBC亞家族的成員,在cer5突變體的莖中表皮蠟質(zhì)的含量僅為野生型的41%[33-34],而表皮細胞中卻積累了較多的內(nèi)含物,表明CER5所編碼的ABC轉(zhuǎn)運蛋白,參與蠟質(zhì)組分從質(zhì)膜向表皮的運輸過程[34]。
3? 植物表皮蠟質(zhì)的響應外界脅迫功能
表皮蠟質(zhì)是覆蓋于植物地上部分的疏水屏障,作為植物抵御外界脅迫的第一道防線,在生物和非生物脅迫中發(fā)揮重要作用。
3.1? 抗旱與保水功能
干旱是造成土地荒漠化和農(nóng)業(yè)減產(chǎn)的最重要自然災害之一[35],因此,植物在進化過程中形成了多種抗旱機制,如發(fā)達的根系[36]、高效的氣孔結(jié)構(gòu)與調(diào)節(jié)系統(tǒng)[37]、葉片形態(tài)[38]、表皮蠟質(zhì)增厚[39]等。在這些抗旱機制中,表皮蠟質(zhì)是植物抵御干旱的重要屏障[18]。
表皮蠟質(zhì)是在植物表皮形成的一層防止非氣孔水分流失的疏水層,具有維持植物體內(nèi)水分平衡、防止水分流失的功能,在干旱脅迫中發(fā)揮一定作用。小麥在干旱條件下表皮蠟質(zhì)中的烷烴的質(zhì)量分數(shù)增加50%[40];在干旱條件下煙草表皮蠟質(zhì)通過減小氣孔導度來增強植株的抗旱性[41],并通過調(diào)節(jié)氣孔發(fā)育來增強擬南芥的抗旱性[42]。在擬南芥中,在干旱條件下轉(zhuǎn)錄因子AtMYB94可以直接激活參與蠟質(zhì)合成相關基因的轉(zhuǎn)錄,從而增強植株的抗旱性[43];同時還有研究[44]報道了玉米中類似的轉(zhuǎn)錄因子ZmMYB94,通過參與幼苗中表皮蠟質(zhì)的合成來增強植株對干旱的耐受性。
3.2? 抗紫外線輻射功能
太陽的紫外線輻射通過破壞脫氧核糖核酸(DNA)、膜系統(tǒng)和光合作用系統(tǒng)等對地球表面的植物造成傷害[45]。在漫長的進化過程中,陸地植物進化了多種抵御紫外輻射的機制,例如合成黃酮類或酚類化合物積累在表皮細胞的液泡、細胞壁、蠟質(zhì)層或與角質(zhì)單體結(jié)合,提高植物對紫外線輻射的吸收能力[46]。此外,植物葉表皮毛的結(jié)構(gòu)與密度、蠟質(zhì)層及表皮細胞層的厚度都會影響紫外線是否能穿透葉肉細胞[47];蠟質(zhì)含量高的植物葉片比含量低的葉片能吸收更多的紫外線[48]。隨著紫外線輻射的增加,黃瓜和大麥葉片的角質(zhì)蠟的質(zhì)量分數(shù)增加了約25%[49]。在玉米蠟質(zhì)缺失突變體中,玉米植株葉片的葉片形態(tài)與遺傳物質(zhì)均受到紫外線輻射的傷害[48]。研究[50]表明,植物葉表皮蠟對紫外線輻射有阻隔作用,只有不到1%的紫外線能通過蠟質(zhì)進入葉肉細胞。
3.3? 抗病蟲害功能
在自然環(huán)境中, 植物會遇到細菌、真菌、病毒等各種病原體的侵襲, 嚴重威脅植物的生長和作物的產(chǎn)量[51]。 植物表皮蠟質(zhì)的特殊化學成分和形態(tài)結(jié)構(gòu)可使植物抵御病原體的侵染[52]。 真菌病原體可以合成或分泌角質(zhì)酶和脂肪酶等水解酶來降解表皮蠟質(zhì)[53]。 例如, 稻瘟病菌可以合成角質(zhì)酶2(CUT2)并黏附于植物體表面, 通過激活CUT2使植株表面的角質(zhì)層滲透性增加,從而降低植株對稻瘟病菌的抗性[54]。研究[54]表明,角質(zhì)層滲透性的改變可以影響植物的抗病性。MdMYB30過表達的蘋果愈傷組織對蘋果潰瘍病表現(xiàn)出較強的抗性,表明MdMYB30正向調(diào)節(jié)蘋果果實蠟質(zhì)的生物合成,增強蘋果對某些真菌病原菌的抗性[55]。
4? 展望
表皮蠟質(zhì)是在植物表皮形成的一層防止非氣孔水分流失的疏水層, 可以保護植物免受強光、干旱、病原體入侵和昆蟲食草動物的侵襲。 植物表皮蠟質(zhì)是植物從水生環(huán)境向干旱陸地環(huán)境進化而形成的結(jié)構(gòu), 因此研究植物表皮蠟質(zhì)與響應各種逆境的調(diào)節(jié)機制以及角質(zhì)層組分作為信號分子提高植物對病原體的敏感性是十分重要的。 隨著分子生物學的快速發(fā)展, 許多植物表皮蠟質(zhì)合成相關基因被挖掘, 將為改良植物性狀、提高作物品質(zhì)以及作物遺傳育種提供新的資源。
參考文獻:
[1]NAWRATH C. Unraveling the complex network of cuticular structure and function[J]. Current Opinion in Plant Biology, 2006, 9(3): 281.
[2]KUNST L, JETTER R, SAMUELS A L. Biosynthesis and transport of plant cuticular waxes[M]//Annual Plant Reviews Online, Annual Plant Reviews Book Series, Vol 23: Biology of the Plant Cuticle, 2018:182.
[3]董林潔, 包曙光, 曹高燚, 等. 植物表皮蠟質(zhì)與抗旱響應[J]. 分子植物育種, 2023, 21(1): 294.
[4]MAGRI N T C, SARTORI J A D S, JARA J L P, et al. Precipitation of nonsugars as a model of color reduction in sugarcane juice (Saccharum spp.) submitted to the hydrogen peroxide clarification of the crystal sugar process[J]. Journal of Food Processing and Preservation, 2019, 43(10): 1.
[5]JAVELLE M, VERNOUD V, DEPGE-FARGEIX N, et al. Overexpression of the epidermis-specific homeodomain-leucine zipper Ⅳ transcription factor outer cell layer 1 in maize identifies target genes involved in lipid metabolism and cuticle biosynthesis[J]. Plant Physiology, 2010, 154(1): 278.
[6]DUSTY P. Biochemistry and molecular biology of wax production in plants[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1996, 47: 407.
[7]ZHANG J Y, BROECKLING C D, BLANCAFLOR E B, et al. Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa)[J]. The Plant Journal, 2005, 42(5): 694.
[8]PASCAL S, BERNARD A, DESLOUS P, et al. Arabidopsis CER1-LIKE1 functions in a cuticular very-long-chain alkane-forming complex[J]. Plant Physiology, 2019, 179(2): 416.
[9]張左悅. 植物脂肪酸合成及其在基礎抗性和生物固氮中的價值探究[J]. 現(xiàn)代園藝, 2020, 43(24): 211.
[10]BATSALE M, BAHAMMOU D, FOUILLEN L, et al. Biosynthesis and functions of very-long-chain fatty acids in the responses of plants to abiotic and biotic stresses[J]. Cells, 2021, 10(6):1286.
[11]KUNST L, SAMUELS L. Plant cuticles shine: advances in wax biosynthesis and export[J]. Current Opinion in Plant Biology, 2009, 12(6): 721.
[12]LI-BEISSON Y, SHORROSH B, BEISSON F, et al. Acyl-lipid metabolism[J]. The Arabidopsis Book, 2013,11: 1.
[13]LESSIRE R, BESSOULE J J, CASSAGNE C. Involvement of a β-ketoacyl-CoA intermediate in acyl-CoA elongation by an acyl-CoA elongase purified from leek epidermal cells[J]. Biochimicaet Biophysica Acta: Lipids and Lipids Metabolism, 1989, 1006(1): 39-40.
[14]MILLAR A A, KUNST L. Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme[J]. The Plant Journal, 1997, 12(1): 121.
[15]JAMES D W, Jr, LIM E, KELLER J, et al. Directed tagging of the Arabidopsis FATTY ACID ELONGATION1 (FAE1) gene with the maize transposon activator[J]. The Plant Cell, 1995, 7(3): 313-314.
[16]JOUBS J, RAFFAELE S, BOURDENX B, et al. The VLCFA elongase gene family in Arabidopsis thaliana: phylogenetic analysis, 3D modelling and expression profiling[J]. Plant Molecular Biology, 2008, 67(5): 547.
[17]TRENKAMP S, MARTIN W, TIETJEN K, et al. Specific and differential inhibition of very-long-chain fatty acid elongases from Arabidopsis thaliana by different herbicides[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(32): 11905.
[18]LEE S B, SUH M C. Advances in the understanding of cuticular waxes in Arabidopsis thaliana and crop species[J]. Plant Cell Reports, 2015, 34(4): 567.
[19]LIU S Z, DIETRICH C R, SCHNABLE P S. DLA-based strategies for cloning insertion mutants: cloning the gl4 locus of maize using Mu transposon tagged alleles[J]. Genetics, 2009, 183(4): 1221-1222.
[20]SMIRNOVA A, LEIDE J, RIEDERER M. Deficiency in a very-long-chain fatty acid β-ketoacyl-coenzyme a synthase of tomato impairs microgametogenesis and causes floral organ fusion[J]. Plant Physiology, 2013, 161(1): 196.
[21]JENKS M A, TUTTLE H A, EIGENBRO DE? S D, et al. Leaf epicuticular waxes of the eceriferum mutants in Arabidopsis[J]. Plant Physiology, 1995, 108(1): 369.
[22]CHEN X B, GOODWIN S M, BOROFF V L, et al. Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and wax production[J]. The Plant Cell, 2003, 15(5): 1178-1179.
[23]KURATA T, KAWABATA-AWAI C, SAKURADANI E, et al. The YORE-YORE gene regulates multiple aspects of epidermal cell differentiation in Arabidopsis[J]. The Plant Journal, 2003, 36(1): 55.
[24]ROWLAND O, LEE R, FRANKE R, et al. The CER3 wax biosynthetic gene from Arabidopsis thaliana is allelic to WAX2/YRE/FLP1[J]. FEBS Letters, 2007, 581(18): 3541.
[25]AARTS M G, KEIJZER C J, STIEKEMA W J, et al. Molecular characterization of the CER1 gene of Arabidopsis involved in epicuticular wax biosynthesis and pollen fertility[J]. The Plant Cell, 1995, 7(12): 2117.
[26]BOURDENX B, BERNARD A, DOMERGUE F, et al. Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses[J]. Plant Physiology, 2011,156(1): 29.
[27]ROWLAND O, ZHENG H Q, HEPWORTH S R, et al. CER4 encodes an alcohol-forming fatty acyl-coenzyme A reductase involved in cuticular wax production in Arabidopsis[J]. Plant Physiology, 2006, 142(3): 866.
[28]LI F L, WU X M, LAM P, et al. Identification of the wax ester synthase/acyl-coenzyme A: diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in Arabidopsis[J]. Plant Physiology, 2008, 148(1): 97.
[29]SAMUELS L, KUNST L, JETTER R. Sealing plant surfaces: cuticular wax formation by epidermal cells[J]. Annual Review of Plant Biology, 2008, 59: 693.
[30]YEATS T H, ROSE J K C. The formation and function of plant cuticles[J]. Plant Physiology, 2013, 163(1): 11.
[31]XU X J, FENG J C, LYU S Y, et al. Leaf cuticular lipids on the Shandong and Yukon ecotypes of saltwater cress, Eutrema salsugineum, and their response to water deficiency and impact on cuticle permeability[J]. Physiologia Plantarum, 2014, 151(4): 446.
[32]XUE Y, XIAO S , KIM J, et al. Arabidopsis membrane-associated acyl-CoA-binding protein ACBP1 is involved in stem cuticle formation[J]. Journal of Experimental Botany,2014,65(18): 5473.
[33]BIRD D, BEISSON F, BRIGHAM A, et al. Characterization of Arabidopsis ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion[J]. The Plant Journal, 2007, 52(3): 490-491.
[34]PIGHIN J A, ZHENG H Q, BALAKSHIN L J, et al. Plant cuticular lipid export requires an ABC transporter[J]. Science, 2004, 306(5696): 702.
[35]ZHANG J H. Chinas success in increasing per capita food production[J]. Journal of Experimental Botany, 2011, 62(11): 3710.
[36]BARRIOS-MASIAS F H, KNIPFER T, MCELRONE A J. Differential responses of grapevine rootstocks to water stress are associated with adjustments in fine root hydraulic physiology and suberization[J]. Journal of Experimental Botany, 2015, 66(19): 6069.
[37]PORNSIRIWONG W, ESTAVILLO G M, CHAN K X, et al. A chloroplast retrograde signal, 3′-phosphoadenosine 5′-phosphate, acts as a secondary messenger in abscisic acid signaling in stomatal closure and germination[J]. eLife, 2017, 6: 1.
[38]FAROOQ M, WAHID A, KOBAYASHI N, et al. Plant drought stress: effects, mechanisms and management[J]. Agronomy for Sustainable Development, 2009, 29(1): 185.
[39]SHEPHERD T, GRIFFITHS D W. The effects of stress on plant cuticular waxes[J]. The New Phytologist, 2006, 171(3): 470.
[40]LIU X W, FEAKINS S J, DONG X J, et al. Experimental study of leaf wax n-alkane response in winter wheat cultivars to drought conditions[J]. Organic Geochemistry, 2017, 113: 210.
[41]CAMERON K D, TEECE M A, SMART L B, et al. Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco[J]. Plant Physiology, 2006, 140(1): 178.
[42]YANG J, ORDIZ M I, JAWORSKI J G, et al. Induced accumulation of cuticular waxes enhances drought tolerance in Arabidopsis by changes in development of stomata[J]. Plant Physiology and Biochemistry, 2011, 49(12): 1451-1452.
[43]LEE S B, SUH M C. Cuticular wax biosynthesis is up-regulated by the MYB94 transcription factor in Arabidopsis[J]. Plant & Cell Physiology,2015,56(1): 51.
[44]ROCCA N L, MANZOTTI P S, CAVAIUOLO M, et al. The maize fused leaves1 (fdl1) gene controls organ separation in the embryo and seedling shoot and promotes coleoptile opening[J]. Journal of Experimental Botany, 2015, 66(19): 5759.
[45]ROZEMA J, VAN DE STAAIJ J, BJRN L O, et al. UV-B as an environmental factor in plant life: stress and regulation[J]. Trends in Ecology & Evolution, 1997, 12(1): 22.
[46]PFNDEL E E, AGATI G, CEROVIC Z G. Optical properties of plant surfaces[M]//Annual Plant Reviews Online, Annual Plant Reviews Book Series, Vol 23: Biology of the Plant Cuticle, 2007, 23: 216.
[47]KARABOURNIOTIS G, PAPADOPOULOS K, PAPAMARKOU M, et al. Ultraviolet-B radiation absorbing capacity of leaf hairs[J]. Physiologia Plantarum, 1992, 86(3): 414.
[48]LONG L M, PATEL H P, CORY W C, et al. The maize epicuticular wax layer provides UV protection[J]. Functional Plant Biology, 2003, 30(1): 75.
[49]STEINMLLER D, TEVINI M. Action of ultraviolet radiation (UV-B) upon cuticular waxes in some crop plants[J]. Planta, 1985, 164(4): 559.
[50]ROBBERECHT R, CALDWELL M M, BILLINGS W D. Leaf ultraviolet optical properties along a latitudinal gradient in the Arctic-Alpine Life Zone[J]. Ecology, 1980, 61(3) : 616-617.
[51]ZHOU J M, ZHANG Y L. Plant immunity: danger perception and signaling[J]. Cell, 2020, 181(5): 978.
[52]李婧婧, 黃俊華, 謝樹成. 植物蠟質(zhì)及其與環(huán)境的關系[J]. 生態(tài)學報, 2011, 31(2): 570.
[53]KOLATTUKUDY P E, ROGERS L M, LI D, et al. Surface signaling in pathogenesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(10): 4080.
[54]SKAMNIOTI P, GURR S J. Magnaporthe grisea cutinase 2 mediates appressorium differentiation and host penetration and is required for full virulence[J]. The Plant Cell, 2007, 19(8): 2674.
[55]ZHANG Y L, ZHANG C L, WANG G L, et al. The R2R3-MYB transcription factor MdMYB30 modulates plant resistance against pathogens by regulating cuticular wax biosynthesis[J]. BMC Plant Biology, 2019, 19(1): 362.
(責任編輯:于海琴)