李 權(quán),陳宇航,苗延利,胡隆華
坡度條件下不同長(zhǎng)寬比矩形火源燃燒火焰貼地長(zhǎng)度實(shí)驗(yàn)研究
李 權(quán),陳宇航,苗延利,胡隆華
(中國(guó)科學(xué)技術(shù)大學(xué)火災(zāi)科學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,合肥 230026)
利用可變角度實(shí)驗(yàn)臺(tái),改變斜坡角度(10°~50°)、熱釋放速率(12.3~24.6kW)以及燃燒器長(zhǎng)寬比(1~6),開展了一系列燃燒實(shí)驗(yàn),研究了火焰貼地長(zhǎng)度隨這3個(gè)因素的演變規(guī)律.結(jié)果表明,隨著斜坡角度、火源熱釋放速率及燃燒器長(zhǎng)寬比的增加,火焰貼地長(zhǎng)度增加.對(duì)于相同的坡度和火源熱釋放速率,隨長(zhǎng)寬比增大,貼地長(zhǎng)度增幅范圍在65%~105%之間.基于斜坡誘導(dǎo)壓差與火羽流浮力共同作用的物理機(jī)制分析,并考慮到燃燒器長(zhǎng)寬比對(duì)火焰卷吸行為的影響,提出了無量綱火焰貼地長(zhǎng)度預(yù)測(cè)模型.
斜坡火;不同長(zhǎng)寬比矩形火源;火焰貼地長(zhǎng)度;空氣卷吸;熱釋放速率
地表火蔓延時(shí)常發(fā)生在坡地,在坡度條件影響下,火焰附著于地表,更容易向下游蔓延.其中,火焰貼地長(zhǎng)度越大,所能到達(dá)的下游位置越遠(yuǎn),直接決定了可以引燃下游可燃物的范圍,因此,火焰貼地長(zhǎng)度是影響火蔓延速率的一個(gè)重要參數(shù)[1-2].
對(duì)于坡地上的火災(zāi)燃燒行為,前人已經(jīng)進(jìn)行了較多的研究[2-8].Drysdale和Macmillan[3]研究了火焰在傾斜的PMMA平板上的蔓延,包括有側(cè)壁和沒有側(cè)壁的情況.在沒有側(cè)壁的情況下,發(fā)現(xiàn)當(dāng)傾角為15°~20°時(shí),火焰蔓延速率發(fā)生了突然變化,出現(xiàn)急劇增加的現(xiàn)象.Dold等[5]研究了坡度對(duì)野火“爆發(fā)蔓延”的影響,發(fā)現(xiàn)在火焰前方的植被表面和地面處存在著流動(dòng)附著,并發(fā)現(xiàn)這種流動(dòng)附著與爆發(fā)性火災(zāi)增長(zhǎng)的發(fā)生和發(fā)展之間存在明顯的相關(guān)性.與流動(dòng)附著相關(guān)聯(lián)的氣流不需要與環(huán)境風(fēng)的變化有任何聯(lián)系,它們可以完全由火焰本身產(chǎn)生,標(biāo)志著火災(zāi)從具有穩(wěn)定蔓延速度的狀態(tài)向加速蔓延狀態(tài)的轉(zhuǎn)變.Gollner等[7-8]研究了PMMA板在不同傾角下的火焰蔓延和燃燒速率,發(fā)現(xiàn)下游熱流和火焰蔓延速率在約30°時(shí)顯著增加.Morandini等[4]使用粒子圖像測(cè)速技術(shù)觀察火焰向上蔓延的流體動(dòng)力學(xué)效應(yīng).發(fā)現(xiàn)隨著坡度的增加,火焰前鋒的局部氣流會(huì)發(fā)生逆轉(zhuǎn),同時(shí)隨著坡度的增加,火焰附著在下游斜坡上,同斜坡之間存在顯著的對(duì)流傳熱.
以上的研究多集中在斜坡上固體燃料的燃燒,然而利用固體燃料進(jìn)行實(shí)驗(yàn)時(shí),火焰在傳播過程中一直處于不穩(wěn)定的燃燒狀態(tài),導(dǎo)致火焰內(nèi)部結(jié)構(gòu)復(fù)雜,無法獲得一些較為穩(wěn)定的數(shù)據(jù)以及對(duì)火焰的燃燒行為進(jìn)行定量研究.為了簡(jiǎn)化這個(gè)問題,許多研究人員使用氣體燃燒器模擬火源,獲得處于穩(wěn)定燃燒狀態(tài)的火焰,對(duì)穩(wěn)定的火焰圖像進(jìn)行拍攝處理得到火焰形態(tài)的相關(guān)數(shù)據(jù),并對(duì)火焰下游的中心線表面溫度、熱流分布等參數(shù)進(jìn)行測(cè)量,以進(jìn)一步了解氣相火焰和斜坡之間的相互作用[9-18].Wu等[11]使用氣體燃燒器進(jìn)行實(shí)驗(yàn),利用絕熱和等溫材料分別作為斜坡表面,實(shí)驗(yàn)中發(fā)現(xiàn)隨著斜坡角度的增加,羽流形狀從垂直狀態(tài)變?yōu)閮A斜狀態(tài)且火焰附著于斜坡表面,并且火焰貼地長(zhǎng)度在斜坡角度大于24°之后出現(xiàn)快速增長(zhǎng)的現(xiàn)象,并將這個(gè)角度定義為臨界角度.Zhang等[10]利用丙烷作為燃料研究了斜坡上的火焰形態(tài)及下游熱流分布,借助粒子圖像測(cè)速系統(tǒng)(PIV)和紅外攝像機(jī)對(duì)實(shí)驗(yàn)過程中火焰周圍流場(chǎng)以及火焰溫度分布進(jìn)行了研究,同樣發(fā)現(xiàn)當(dāng)斜坡角度從15°增加到20°的時(shí)候火焰貼地長(zhǎng)度急劇增加,并且結(jié)合火焰周圍流場(chǎng)分布發(fā)現(xiàn),當(dāng)斜坡角度從15°增加到20°的時(shí)候,火焰上游的速度遠(yuǎn)大于火焰下游的速度,由兩側(cè)速度差引起的渦流沿著火焰邊緣周期性向上運(yùn)動(dòng),推動(dòng)火焰附著于斜坡下游表面.Ju等[9]對(duì)斜坡火焰貼地長(zhǎng)度及熱流分布進(jìn)行了研究,首先利用熱釋放速率對(duì)火焰的貼地長(zhǎng)度進(jìn)行分析量化,然后再利用火焰貼地長(zhǎng)度對(duì)下游距離進(jìn)行無量綱化,最終得到無量綱的熱流與下游距離之間的關(guān)系.Ren等[17]則利用傾斜實(shí)驗(yàn)臺(tái)開展了熱釋放速率為81kW至2.25MW的大規(guī)?;馂?zāi)實(shí)驗(yàn),并對(duì)火焰貼地長(zhǎng)度、中心線溫度分布及下游氣流速度進(jìn)行了測(cè)量.Bi等[18]則研究了環(huán)境風(fēng)對(duì)斜坡燃燒行為的影響,研究發(fā)現(xiàn)火焰傾角隨著環(huán)境風(fēng)速的增大而增大,火焰長(zhǎng)度隨著環(huán)境風(fēng)速的增大先增大后減??;隨著環(huán)境風(fēng)速和斜坡角度的增大,火焰高度減小,火焰貼地長(zhǎng)度增加.
綜上所述,前人對(duì)于斜坡上火災(zāi)燃燒行為的研究多使用單一形狀的火源,現(xiàn)階段仍然缺乏關(guān)于不同燃燒器形狀的坡面火焰貼地行為研究.考慮到實(shí)際火災(zāi)場(chǎng)景中,火源通常呈現(xiàn)不同的長(zhǎng)寬比.因此,本文選用了不同長(zhǎng)寬比的矩形氣體燃燒器,改變斜坡傾斜角度及熱釋放速率,研究了火焰貼地長(zhǎng)度的變化規(guī)律,并提出適用不同長(zhǎng)寬比火源的火焰貼地長(zhǎng)度預(yù)測(cè)模型.
圖1為實(shí)驗(yàn)裝置示意,本實(shí)驗(yàn)所使用的可變角度實(shí)驗(yàn)臺(tái)通過電機(jī)控制伸縮桿長(zhǎng)度來改變斜坡傾斜角度,所選取的角度為0°、10°、20°、30°、40°及50°這6個(gè)角度.本文共使用了4個(gè)不同長(zhǎng)寬比的矩形擴(kuò)散燃燒器,尺寸分別為8cm×8cm、11.2cm×5.6cm、16cm×4cm、19.8cm×3.3cm,對(duì)應(yīng)的長(zhǎng)寬比為1、2、4、6,燃燒器與斜坡固定在一起,并且保證出口與斜坡表面在同一平面上.選取丙烷氣體作為燃料,利用質(zhì)量流量計(jì)來控制燃料流量,假設(shè)燃燒充分[19],火源的熱釋放速率取為12.3kW、18.5kW和24.6kW,具體工況設(shè)置如表1所示,每個(gè)工況重復(fù)實(shí)驗(yàn)3次以確保數(shù)據(jù)準(zhǔn)確,并取3次實(shí)驗(yàn)的平均值用以后續(xù)的數(shù)據(jù)處理和分析.
圖1 實(shí)驗(yàn)裝置
在實(shí)驗(yàn)臺(tái)的側(cè)面放置一臺(tái)數(shù)碼相機(jī)(DV)對(duì)實(shí)驗(yàn)過程中的火焰圖像進(jìn)行拍攝,拍攝的速度設(shè)置為25幀/s,分辨率為1920×1080.實(shí)驗(yàn)過程中針對(duì)每一個(gè)工況穩(wěn)定燃燒階段的火焰進(jìn)行時(shí)長(zhǎng)為60s的拍攝.在調(diào)整斜坡角度時(shí),會(huì)對(duì)相機(jī)也進(jìn)行相應(yīng)的調(diào)整,確保能夠拍攝到完整的火焰圖像.在對(duì)火焰圖像的分析中,每一個(gè)工況取40s視頻(即1000幀的火焰圖像)進(jìn)行平均化分析處理.原始的火焰圖像首先經(jīng)過MATLAB程序被轉(zhuǎn)換為灰度圖,然后利用Otsu[20]的方法得到二值圖,然后將對(duì)應(yīng)工況下的所有圖像統(tǒng)計(jì)每個(gè)像素點(diǎn)火焰出現(xiàn)的概率便得到了火焰的出現(xiàn)概率分布圖,最后用Tecplot軟件讀取火焰出現(xiàn)概率分布云圖,如圖2所示,本文取火焰概率云圖中分布概率為0.5對(duì)應(yīng)的火焰所對(duì)應(yīng)的形態(tài)數(shù)據(jù)進(jìn)行后續(xù)的分析處理[19,21],火焰貼地長(zhǎng)度a定義為燃燒器下游邊緣到火焰抬升的位置.
表1 實(shí)驗(yàn)工況
Tab.1 Experimental conditions
圖2 火焰附著長(zhǎng)度定義
利用瑞利數(shù)確定本文所涉及工況的流動(dòng)狀態(tài),根據(jù)前人的研究[22],瑞利數(shù)定義為
圖3為燃燒器長(zhǎng)寬比為4、熱釋放速率為12.3kW時(shí)不同斜坡角度下的火焰圖像.從圖中可以看出,隨著斜坡角度的增加,火焰由原來豎直向上的狀態(tài)轉(zhuǎn)變?yōu)橥覂A斜的狀態(tài)并逐漸附著于斜坡表面,并且在斜坡角度增加到40~50°的時(shí)候完全附著.這是由于隨著斜坡角度增加,火焰下游位置空間變小,導(dǎo)致空氣卷吸受限.因此左側(cè)的空氣卷吸強(qiáng)于右側(cè),由于兩側(cè)空氣卷吸不對(duì)稱而產(chǎn)生的壓力差會(huì)推動(dòng)火焰向右傾斜并附著于斜坡表面.
圖4為斜坡角度為40°、熱釋放速率為12.3kW時(shí)不同長(zhǎng)寬比下的典型火焰圖像.從圖中可以觀察到隨著長(zhǎng)寬比從1增加到6,火焰的附著現(xiàn)象越來越明顯,這是因?yàn)殚L(zhǎng)寬比較小時(shí),如方形燃燒器,此時(shí)火焰可以從四周卷吸空氣,當(dāng)火焰下游區(qū)域卷吸受限時(shí),火焰可以從燃燒器另外3邊的方向卷吸空氣,火焰燃燒相對(duì)充分,此時(shí)上下游因?yàn)榭諝饩砦煌a(chǎn)生的壓力差便相對(duì)較小;而燃燒器長(zhǎng)寬比較大時(shí),火源基部寬度小,火焰主要從兩個(gè)長(zhǎng)邊(即燃燒器上下游)對(duì)應(yīng)的區(qū)域卷吸空氣,此時(shí)因?yàn)榛鹧嫦掠我粋?cè)離坡面更近,卷吸受限作用相較于方形燃燒器火焰更強(qiáng),此時(shí)因?yàn)榭諝饩砦粚?duì)稱導(dǎo)致的壓力差更大,因此長(zhǎng)寬比較大的燃燒器對(duì)應(yīng)工況的火焰更容易附著于斜坡,貼地長(zhǎng)度也更大.
圖4 斜坡角度為40°、熱釋放速率為12.3kW時(shí)不同燃燒器長(zhǎng)寬比下的火焰圖像
圖5為不同斜坡角度、熱釋放速率以及燃燒器長(zhǎng)寬比下的火焰貼地長(zhǎng)度數(shù)據(jù),從圖中可以觀察到貼地長(zhǎng)度隨著斜坡角度、燃燒器長(zhǎng)寬比以及熱釋放速率的增加而增大.并且通過計(jì)算發(fā)現(xiàn),對(duì)于相同的角度和火源熱釋放速率,當(dāng)長(zhǎng)寬比從1增加到6時(shí),火焰貼地長(zhǎng)度增幅范圍在65%~105%.
(a)熱釋放速率為12.3kW
(b)熱釋放速率為18.5kW
(c)熱釋放速率為24.6kW
圖5 不同斜坡角度、燃燒器長(zhǎng)寬比及熱釋放速率下的火焰貼地長(zhǎng)度
Fig.5 Flame attachment length at different slope angles,burner aspect ratios and heat release rates
首先將每一個(gè)燃燒器對(duì)應(yīng)的貼地長(zhǎng)度利用公式(1)進(jìn)行擬合,結(jié)果如圖6所示,可見對(duì)于4個(gè)燃燒器對(duì)應(yīng)的貼地長(zhǎng)度,擬合效果都較好,每個(gè)燃燒器對(duì)應(yīng)的擬合公式如下:
從以上的擬合結(jié)果可以觀察到燃燒器長(zhǎng)寬比對(duì)火焰貼地長(zhǎng)度的影響,即隨著長(zhǎng)寬比從1增加到6,擬合曲線的斜率由1.44增加到2.32.這意味著隨著長(zhǎng)寬比增大,火焰貼地長(zhǎng)度增加速率變快.可見長(zhǎng)寬比越大,對(duì)火焰貼地長(zhǎng)度影響越明顯,這是因?yàn)榫€性比較大時(shí),火焰?zhèn)让婢砦鼜?qiáng)度弱,火焰主要從上、下游兩側(cè)卷吸空氣,導(dǎo)致上、下游不對(duì)稱誘導(dǎo)的壓力差增加,火焰更加容易附著于斜坡表面.
(a)=1
(b)=2
(c)=4
(d)=6
圖6 不同燃燒器的火焰貼地長(zhǎng)度擬合結(jié)果
Fig.6 Fitting results of flame attachment length for dif-ferent burners
對(duì)于普通浮力矩形池火,隨著線性比增大,火焰卷吸行為逐漸由三維轉(zhuǎn)變?yōu)槎S[27],即沿火焰短邊的卷吸幾乎可以忽略不計(jì).Rangwala等[29]發(fā)現(xiàn)對(duì)于小尺度(火焰高度在0.15~0.25m)的三維層流火焰,燃料的側(cè)面擴(kuò)散會(huì)影響火焰長(zhǎng)度;而對(duì)于中大尺度的三維湍流火焰,相較于燃料擴(kuò)散效應(yīng),火焰?zhèn)让娴目諝饩砦贾鲗?dǎo)作用.Ren等[17]在其研究中指出,對(duì)于傾斜角度較小的斜坡擴(kuò)散火焰,火焰更加三維化,火焰?zhèn)让婵諝饩砦?yīng)顯著,這可能會(huì)減弱火焰上下游的空氣卷吸,導(dǎo)致上下游空氣卷吸差產(chǎn)生的壓力差減小,進(jìn)而減弱火焰附著行為.
圖7 火焰貼地長(zhǎng)度模型
(1)實(shí)驗(yàn)結(jié)果表明,隨著斜坡角度、熱釋放速率、燃燒器長(zhǎng)寬比的增加,火焰貼地長(zhǎng)度呈現(xiàn)遞增的趨勢(shì).對(duì)于相同的角度和火源熱釋放速率,當(dāng)長(zhǎng)寬比從1增加到6時(shí),火焰貼地長(zhǎng)度增幅范圍在65%~105%之間.
[1] Viegas D X,Simeoni A. Eruptive behaviour of forest fires[J].,2011,47(2):303-320.
[2] Viegas D X. A mathematical model for forest fires blowup[J].,2005,177(1):27-51.
[3] Drysdale D D,Macmillan A J R. Flame spread on inclined surfaces[J].,1992,18(3):245-254.
[4] Morandini F,Silvani X,Honoré D,et al. Slope effects on the fluid dynamics of a fire spreading across a fuel bed:PIV measurements and OH*chemiluminescence imaging[J].,2014,55(8):1-12.
[5] Dold J W,Zinoviev A. Fire eruption through intensity and spread rate interaction mediated by flow attachment[J].,2009,13(5):763-793.
[6] Sharples J J,Gill A M,Dold J W. The trench effect and eruptive wildfires:Lessons from the King’s cross underground disaster[C]//. Darwin,2010.
[7] Gollner M J,Huang X,Cobian J,et al. Experimental study of upward flame spread of an inclined fuel surface[J].,2013,34(2):2531-2538.
[8] Gollner M J.[M]. San Diego:University of California,2012.
[9] Ju X,Ren X,Sluder E,et al. Flame attachment and downstream heating effect of inclined line fires[J].,2022,240:112004.
[10] Zhang Y,Zhang W,Lin Y,et al. Flame attachment effect on the distributions of flow,temperature and heat flux of inclined fire plume[J].,2021,174:121313.
[11] Wu Y,Xing H J,Atkinson G. Interaction of fire plume with inclined surface[J].,2000,35(4):391-403.
[12] 呂云歡. 坡度條件下火焰附壁的實(shí)驗(yàn)?zāi)M研究[D]. 合肥:中國(guó)科學(xué)技術(shù)大學(xué)火災(zāi)科學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,2019.
Lü Yunhuan. Experimental Simulation Study on Flame Attachment under Slope Condition [D]. Hefei:State Key Laboratory of Fire Science,University of Science and Technology of China,2019(in Chinese).
[13] Yang Z,Chen H. Experimental study on flame geometry along the inclined surface with and without sidewalls by using a gas burner[J].,2018,211:925-933.
[14] 吳 荻,劉乃安,謝小冬,等. 坡度條件下湍流擴(kuò)散火焰形態(tài)的實(shí)驗(yàn)研究[J]. 工程熱物理學(xué)報(bào),2021,42(8):2150-2154.
Wu Di,Liu Naian,Xie Xiaodong,et al. Experimental study on the turbulent diffusion flame under slope conditions [J].,2021,42(8):2150-2154(in Chinese).
[15] Grumstrup T P,McAllister S S,F(xiàn)inney M A. Qualitative flow visualization of flame attachment on slopes[C]// 10th. Maryland,USA,2017.
[16] Bi Y,Yang Z,Cong H,et al. Experimental and theoretical investigation on the effect of inclined surface on pool fire behavior[J].,2022,162:328-336.
[17] Ren X,Sluder E T,Heck M V,et al. Scaling analysis of downstream heating and flow dynamics of fires over an inclined surface[J].,2022,242:112203.
[18] Bi Y,Yang Z,Cong H,et al. An experimental study and mathematical quantification of buoyant turbulent flame morphology under the coupling effects of inclined surfaces and crossflows[J].,2023,332:126079.
[19] 張曉磊. 矩形火源火羽流與頂棚射流行為及特征參數(shù)模型研究[D]. 合肥:中國(guó)科學(xué)技術(shù)大學(xué)火災(zāi)科學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,2018.
Zhang Xiaolei. Studies on Behaviors and Characteristic Parameter Models of Fire Plumes and Ceiling Jets Driven by Rectangular Fire Sources[D]. Hefei:State Key Laboratory of Fire Science,University of Science and Technology of China,2018(in Chinese).
[20] Otsu N. A threshold selection method from gray-level histograms[J].,1979,9(1):62-66.
[21] 陳志斌,胡隆華,霍然,等. 基于圖像亮度統(tǒng)計(jì)分析火焰高度特征[J]. 燃燒科學(xué)與技術(shù),2008,14(6):557-561.
Chen Zhibin,Hu Longhua,Huo Ran,et al. Flame height characteristics based on image luminance[J].,2008,14(6):557-561(in Chinese).
[22] Incropera F P,DeWitt D P,Bergman T L,et al.[M]. New York:Wiley,1996.
[23] Miao Y,Chen Y,Tang F,et al. An experimental study on flame geometry and radiation flux of line-source fire over inclined surface[J].,2023,39(3):3795-3803.
[24] Huang X,Zhuo X,Huang T,et al. Simple flame height correlation for buoyancy-controlled diffusion plumes generated by rectangular sources fire with different aspect ratios[J].,2019,254:115655.
[25] Tang F,He Q,Wen J. Effects of crosswind and burner aspect ratio on flame characteristics and flame base drag length of diffusion flames[J].,2019,200:265-275.
[26] Tang F,Deng L,Chen L,et al. Effects of burner aspect ratio on heat flux distributions beneath unconfined ceilings with different inclination angles[J].,2021,228:99-106.
[27] Sun Y,Liu N,Gao W,et al. Experimental study on the combustion characteristics of rectangular fire plumes[J].,2021,126:103477.
[28] Ji J,Tan T,Gao Z,et al. Influence of sidewall and aspect ratio on burning behaviors of rectangular ethanol and heptane pool fires[J].,2019,238:166-172.
[29] Rangwala A S,Buckley S G,Torero J L. Upward flame spread on a vertically oriented fuel surface:The effect of finite width[J].,2007,31(2):2607-2615.
Flame Attachment Length of Rectangular Fire Sources with Different Aspect Ratios Under Slope Conditions
Li Quan,Chen Yuhang,Miao Yanli,Hu Longhua
(State Key Laboratory of Fire Science,University of Science and Technology of China,Hefei 230026,China)
In this paper,a series of combustion experiments were carried out by changing the slope angle (10°—50°),heat release rate(12.3—24.6kW) and burner aspect ratio (1—6) using a variable angle test bench,and the evolution law of flame attachment length with these three factors was studied. The results showed that the flame attachment length increases with the increase of slope angle,fire heat release rate and burner aspect ratio. With the increased aspect ratio,the increment range of flame attachment length was about 65%—105% at a given slope angle and heat release rate. Based on the analysis of the physical mechanism of slope-induced pressure difference and fire plume buoyancy,and considering the effect of burner aspect ratio on flame entrainment behavior,a dimensionless flame attachment length prediction model was proposed.
slope fire;rectangular fire source with different aspect ratios;flame attachment length;air entrainment;heat release rate
X913.4
A
1006-8740(2024)01-0075-07
2022-09-16.
國(guó)家自然科學(xué)基金重點(diǎn)國(guó)際合作研究資助項(xiàng)目(52020105008);國(guó)家自然科學(xué)基金青年科學(xué)基金資助項(xiàng)目(52306171).
李 權(quán)(1997— ),男,碩士研究生,lq1997@mail.ustc.edu.cn.
胡隆華,男,博士,研究員,hlh@ustc.edu.cn.
(責(zé)任編輯:隋韶穎)