摘要:土壤鹽堿化會(huì)導(dǎo)致農(nóng)作物產(chǎn)量急劇下降,已成為全球農(nóng)業(yè)生態(tài)系統(tǒng)的一大威脅。目前生產(chǎn)中已采用多種修復(fù)鹽堿地和恢復(fù)其生產(chǎn)力的方法。其中,植物促生菌(Plant Growth Promoting Bacteria, PGPB)的利用被認(rèn)為是一種很有前景的鹽漬土壤修復(fù)生物肥料,適用于鹽漬土壤復(fù)墾和提高作物生產(chǎn)力。耐鹽PGPB利用多種機(jī)制影響植物的生理、生化和分子生物學(xué)響應(yīng)以應(yīng)對(duì)鹽脅迫。這些機(jī)制包括通過(guò)離子穩(wěn)態(tài)和滲透液積累的滲透調(diào)節(jié),通過(guò)形成自由基清除酶保護(hù)植物免受自由基的侵害,產(chǎn)生氧化應(yīng)激反應(yīng),通過(guò)合成植物激素及其他代謝物維持植物正常生長(zhǎng)。本文綜述了鹽脅迫下PGPB促進(jìn)植物生長(zhǎng)的各種機(jī)制,并著重介紹了PGPB在改善植物鹽脅迫方面的最新進(jìn)展,并對(duì)其后續(xù)研究熱點(diǎn)進(jìn)行展望。
關(guān)鍵詞:植物促生菌;鹽脅迫;促生機(jī)制
在全球范圍內(nèi),土壤鹽堿化被認(rèn)為是環(huán)境資源的主要威脅之一,影響著近10億hm2的土地面積,而大部分土地的鹽堿化均是人為因素引起的[1],其中,中國(guó)鹽堿地面積高達(dá)9 000萬(wàn)hm2 [2]。土壤中可溶性鹽含量的持續(xù)增長(zhǎng)引起次生鹽漬化,影響植物的生長(zhǎng),最終會(huì)導(dǎo)致耕地退化。氣候變化會(huì)導(dǎo)致更多非灌溉地區(qū)土壤的鹽漬化,同時(shí)農(nóng)業(yè)地區(qū)降雨量減少和氣溫升高也會(huì)引起土壤鹽漬化,導(dǎo)致該地區(qū)氣候變得干燥,進(jìn)一步加深土壤鹽分的積累。在鹽漬土壤中,過(guò)量的水溶性鹽會(huì)對(duì)植物的生理過(guò)程產(chǎn)生負(fù)面影響,包括種子萌發(fā)、光合作用、膜運(yùn)輸、抗氧化劑和乙烯的產(chǎn)生[3]。在糧食需求不斷增長(zhǎng)的大背景下,鹽分和干旱引起的農(nóng)作物損失是目前備受關(guān)注的重要研究領(lǐng)域。許多科學(xué)家嘗試通過(guò)育種的方法培育耐鹽作物,但是由于耐鹽性狀的遺傳和生理學(xué)復(fù)雜性,這些嘗試僅獲得較為有限的成果。
幾種物理化學(xué)方法,如灌水洗鹽和排水(添加石膏等土壤改良劑),以及一些基于植物修復(fù)和傳統(tǒng)栽培的方法,已被用于鹽堿土的復(fù)墾[4]。然而,這些物理化學(xué)方法會(huì)造成環(huán)境污染不利于可持續(xù)發(fā)展,因此,必須開發(fā)更安全和可持續(xù)的農(nóng)業(yè)生產(chǎn)手段。植物-細(xì)菌相互作用提供了一種經(jīng)濟(jì)上有利和生態(tài)上健康可持續(xù)的方法,用以保護(hù)植物免受非生物脅迫條件的影響。
近年來(lái),在提高鹽漬土壤的農(nóng)業(yè)生產(chǎn)力方面,植物促生菌(Plant Growth-Promoting Bacteria,PGPB)的應(yīng)用取得了一定成果[5-7]。PGPB作為一種有效的生物接種劑,能夠促進(jìn)鹽漬土壤中非鹽生植物的生長(zhǎng),是提高作物生長(zhǎng)的一種可行性且可持續(xù)性發(fā)展策略。
但是,目前對(duì)于PGPB緩解植物鹽脅迫的分子互作機(jī)制的了解還不全面。植物根際PGPB通過(guò)各種機(jī)制促進(jìn)植物生長(zhǎng)[8-10],包括植物激素、鐵載體、抗氧化劑、胞外多糖、滲透保護(hù)劑、酶[如,1-氨基環(huán)丙烷-1-羧酸(ACC)脫氨酶]的產(chǎn)生和改善營(yíng)養(yǎng)吸收等。因此,引入耐鹽PGPB有望助力鹽堿地修復(fù)和提高植物對(duì)鹽脅迫的抗性。本文綜述了PGPB在克服鹽分對(duì)植物的負(fù)面影響和提高鹽漬土壤生產(chǎn)力方面的各種機(jī)制,以期為利用植物促生菌在鹽堿地修復(fù)和生產(chǎn)力恢復(fù)中的應(yīng)用提供理論指導(dǎo)。
1 鹽脅迫對(duì)植物生長(zhǎng)的影響
土壤鹽分是限制植物生長(zhǎng)和產(chǎn)量的主要非生物脅迫之一。在鹽脅迫下,植物的生產(chǎn)力會(huì)明顯下降,而這種影響程度受土壤鹽含量、植物類型以及植物的生長(zhǎng)發(fā)育階段等因素影響。許多研究報(bào)道了鹽分抑制作物的種子萌發(fā),導(dǎo)致根和芽的生長(zhǎng)顯著降低,同時(shí)還減少了植物光合作用、氣孔導(dǎo)度、葉綠素含量和礦物質(zhì)吸收[11-12]。目前,對(duì)于鹽脅迫影響植物生長(zhǎng)的機(jī)制主要包括干擾植物激素平衡、蛋白代謝的改變、抑制參與核酸代謝的酶活性、養(yǎng)分吸收失調(diào),而這些改變主要是由滲透效應(yīng)和鹽離子毒性引起的[13-14]。此外,研究還發(fā)現(xiàn)鹽分會(huì)抑制細(xì)胞膜和細(xì)胞壁成熟[15]。
1.1 滲透效應(yīng)
植物根系周圍的高鹽濃度增加了滲透脅迫,進(jìn)而產(chǎn)生離子毒性。滲透脅迫主要影響水分吸收、種子萌發(fā)、細(xì)胞伸長(zhǎng)、葉片發(fā)育、側(cè)芽發(fā)育、光合速率、營(yíng)養(yǎng)吸收和從根到莖的轉(zhuǎn)運(yùn)、碳水化合物向分生組織區(qū)域的供應(yīng),并對(duì)植物的整體生長(zhǎng)產(chǎn)生負(fù)面影響[16]。Na+和Cl-的離子毒性會(huì)影響植物對(duì)Ca2+和K+等營(yíng)養(yǎng)物質(zhì)的吸收,導(dǎo)致植物營(yíng)養(yǎng)失衡[17]。土壤中鹽分抑制了植物對(duì)Ca2+的吸收,進(jìn)而影響根、根尖和根毛生長(zhǎng),從而使根瘤菌可侵染的部位減少和結(jié)節(jié)的發(fā)育遲緩[18]。
此外,Na+和Cl-含量升高會(huì)降低植物對(duì)部分元素(N、P、K、Mg)的吸收和利用。礦物質(zhì)的失衡通常會(huì)改變膜的脂質(zhì)雙分子層的結(jié)構(gòu)和化學(xué)成分,而且會(huì)控制膜對(duì)溶質(zhì)的選擇性運(yùn)輸和離子向內(nèi)運(yùn)輸?shù)哪芰?,引起溶質(zhì)的泄露,形成超級(jí)反滲透現(xiàn)象[19]。
1.2 離子毒性
離子毒性還通過(guò)阻斷植物的光系統(tǒng)II反應(yīng)中心、氧化復(fù)合體和電子傳遞鏈來(lái)破壞光合裝置,從而抑制光合作用[20]。高鹽脅迫降低了甜菜植株的氣孔導(dǎo)度和凈光合作用[21]。而鹽度導(dǎo)致的光合作用速率下降也會(huì)對(duì)植物的營(yíng)養(yǎng)和生殖生長(zhǎng)產(chǎn)生負(fù)面影響,這是由于鹽分延遲開花過(guò)程,并降低產(chǎn)量[22]。植物組織中Na+的大量積累,進(jìn)而抑制光合作用,導(dǎo)致活性氧積累,而活性氧對(duì)植物有許多不利影響,如加速毒性反應(yīng)、DNA突變、蛋白降解和膜損傷等[23]。鹽分也對(duì)株高和根長(zhǎng)產(chǎn)生不利影響,引起氣孔關(guān)閉,導(dǎo)致葉片溫度升高[10]。隨著鹽分的增加,水稻株高和根長(zhǎng)呈下降趨勢(shì),這些負(fù)面結(jié)果與滲透勢(shì)的變化以及植物吸收水分和養(yǎng)分的能力降低有關(guān)[24]。
此外,氣孔關(guān)閉會(huì)增加植物的CO2缺乏,導(dǎo)致卡爾文循環(huán)中酶活性降低[25]。除了上述對(duì)植物器官和結(jié)構(gòu)的影響外,根區(qū)鹽漬化還阻礙了植物個(gè)體發(fā)育階段??偟膩?lái)說(shuō),從種子萌發(fā)到種子形成階段,鹽度對(duì)植物的生理生化都有嚴(yán)重影響。
2 植物促生菌提高植物耐鹽性研究
植物促生菌(PGPB)不僅能長(zhǎng)期定殖于植物根圍,還能保持土壤濕度,改善土壤結(jié)構(gòu),促進(jìn)植物生長(zhǎng)并提高植物抗病性,最重要的是對(duì)環(huán)境和人畜無(wú)害。PGPB的使用可以增強(qiáng)植物對(duì)各種脅迫的抵抗力,例如干旱、鹽堿、營(yíng)養(yǎng)缺乏、重金屬污染等[8-9, 26-27]。此外,某些PGPB也是生物防治劑,通過(guò)抑制植物病原體促進(jìn)植物生長(zhǎng)。由于在增強(qiáng)抗逆性和改善植物生長(zhǎng)方面的重要性,許多與植物相關(guān)的PGPB,如農(nóng)桿菌(Agrobacterium)、芽孢桿菌(Bacillus)、慢生根瘤菌(Bradyrhizobium)、伯克霍爾德菌(Burkholderia)、柄桿菌(Caulobacter)、歐文氏菌(Erwinia)、假單胞菌(Pseudomonas)和根瘤菌(Rhizobium)等,已被充分研究和應(yīng)用[28]。
許多研究證實(shí)了微生物接種對(duì)促進(jìn)鹽脅迫下植物生長(zhǎng)發(fā)育的有效性[6, 9, 29]。PGPB因可以在惡劣條件下促進(jìn)多種植物(包括蔬菜、谷物和豆類等)的生長(zhǎng)而被廣泛關(guān)注[30]。PGPB對(duì)于增強(qiáng)鹽脅迫下的植物發(fā)育有顯著的促進(jìn)作用,因?yàn)楦H細(xì)菌可以產(chǎn)生纖維素和海藻酸鹽等胞外多糖,這些胞外多糖有助于增強(qiáng)植物耐鹽性[31]。因此,胞外多糖可能在緩解微生物和植物鹽脅迫中發(fā)揮關(guān)鍵作用。此外,PGPB還通過(guò)產(chǎn)生細(xì)胞分裂素、赤霉素和生長(zhǎng)素等植物生長(zhǎng)激素來(lái)促進(jìn)植物生長(zhǎng),這些激素可以增加固氮并促進(jìn)養(yǎng)分吸收[6]。另一方面,PGPB能積累滲透保護(hù)劑和抗氧化劑,這可能有助于根系在應(yīng)激下發(fā)育[32]。相關(guān)研究表明在鹽脅迫條件下,寡養(yǎng)單胞菌通過(guò)增加酶和非酶抗氧化劑的活性,緩解鹽脅迫對(duì)菠菜和大豆的生長(zhǎng)及產(chǎn)量的影響[33]。因此,以上研究強(qiáng)調(diào)了這些PGPB菌株可作為一種有前景的生物接種劑緩解植株鹽脅迫。
然而,許多研究都只關(guān)注一種PGPB在非生物脅迫條件下的作用,而這種作用效果有一定的局限性,因此,越來(lái)越多的研究者開始關(guān)注不同PGPB的聯(lián)合作用。根瘤菌和PGPB之間存在協(xié)同作用,通過(guò)共同接種能增強(qiáng)茄屬植物的病原性疾病抗性,同時(shí)也增強(qiáng)了茄屬植物的系統(tǒng)抗性[34]。在蠶豆種子中接種芽孢桿菌(Bacillus subtilis AR5和Bacillus thuringiensis BR1),結(jié)果發(fā)現(xiàn)聯(lián)合處理可減輕鹽脅迫對(duì)植物的影響[35]。固氮桿菌(Azotobacter chroococcum SARS 10)和假單胞菌(Pseudomonas koreensis MG209738)的應(yīng)用能夠緩解鹽分對(duì)玉米生長(zhǎng)、生理和生產(chǎn)力以及土壤性質(zhì)和養(yǎng)分吸收的不利影響[36]。PGPB+生物炭比生物炭或PGPB單獨(dú)施用更能減輕鹽分對(duì)鹽堿地玉米植株的危害[37-38]。PGPB聯(lián)合生物炭顯著改善了土壤的物理、化學(xué)和生物特性,這是微生物產(chǎn)生的胞外多糖增強(qiáng)土壤團(tuán)聚體的結(jié)果。此外,生物炭具有較高的持水能力,可以稀釋土壤溶液,降低滲透脅迫,從而提高養(yǎng)分和水分的吸收。
3 植物促生菌提高植物耐鹽性的機(jī)制研究
植物促生菌不僅能夠有效促進(jìn)作物生長(zhǎng),提高作物產(chǎn)量,而且還具有綠色環(huán)保的優(yōu)點(diǎn),故而受到學(xué)術(shù)界和農(nóng)業(yè)工作者的廣泛重視,而其作用機(jī)理一直是學(xué)術(shù)界研究的熱點(diǎn)。近年來(lái),耐鹽PGPB促進(jìn)植物生長(zhǎng)的機(jī)制已被預(yù)測(cè)或證明,主要包括以下幾個(gè)方面:通過(guò)固氮、溶解磷或鉀,產(chǎn)生ACC脫氨酶、揮發(fā)性化合物,積累滲透物質(zhì),產(chǎn)生植物激素促進(jìn)植物生長(zhǎng);提高植株對(duì)離子的選擇性吸收效率,保持較高的Na+/K+比值;通過(guò)分泌胞外多糖(EPS)結(jié)合根中Na+,防止其向葉片轉(zhuǎn)運(yùn),從而減少Na+的積累;通過(guò)上調(diào)抗氧化酶活性激活植物的抗氧化防御機(jī)制;保持植物較高的氣孔導(dǎo)度和光合活性,誘導(dǎo)應(yīng)激反應(yīng)基因的表達(dá)等(圖1)。
3.1 植物激素的產(chǎn)生和調(diào)節(jié)
植物激素作為一類調(diào)節(jié)植物生理狀態(tài)和生長(zhǎng)的物質(zhì),具有高效性,較小濃度便可以發(fā)揮明顯的效果。研究發(fā)現(xiàn)某些植物促生菌能夠分泌植物激素,對(duì)植物的生長(zhǎng)具有調(diào)控和促進(jìn)作用[40]。鹽脅迫會(huì)抑制植物根部和葉中生長(zhǎng)素、赤霉素等植物激素的產(chǎn)生。鹽脅迫降低了從根到芽的細(xì)胞分裂素的供應(yīng),也降低了玉米胚芽鞘中生長(zhǎng)素的產(chǎn)生。但是鹽分不會(huì)抑制耐鹽性PGPB產(chǎn)生生長(zhǎng)素,因此在鹽脅迫條件下,能分泌生長(zhǎng)素的PGPB可為植物根系提供額外的生長(zhǎng)素,這有助于保持植物根和葉的正常生長(zhǎng)。
植物根際促生菌中的Rhizobium leguminosarum、Bacillus、Pseudomonas等屬的部分菌株能產(chǎn)生細(xì)胞分裂素,促進(jìn)植物細(xì)胞的分裂和生長(zhǎng),增強(qiáng)植物對(duì)養(yǎng)分的吸收效率,從而提高植物產(chǎn)量。一些PGPB通過(guò)產(chǎn)生IAA等植物激素促進(jìn)根系發(fā)育,改變根系結(jié)構(gòu),導(dǎo)致根系表面積和根尖數(shù)量增加,這種對(duì)根的刺激可以幫助植物抵御病原體,也與誘導(dǎo)性系統(tǒng)耐受性有關(guān)[41]。一些不含ACC脫氨酶的PGPB仍然能夠保護(hù)植物免受非生物脅迫的影響,PGPB可能通過(guò)向植物提供直接刺激植物生長(zhǎng)的IAA來(lái)幫助植物克服非生物脅迫[42]。研究表明,能夠有效地保護(hù)植物免受不同脅迫的PGPB會(huì)同時(shí)產(chǎn)生IAA和ACC脫氨酶[43]。
PGPB合成的IAA可能在不同水平上參與植物的生理過(guò)程,特別是植物生長(zhǎng)和根瘤形成都受到IAA的影響。野生型P. putida GR12-2接種的油菜根系比IAA缺失突變體處理和未接種的根系長(zhǎng)35%~50%[44]。除此之外,細(xì)胞分裂素也是植物促生菌分泌的常見植物激素。產(chǎn)生的細(xì)胞分裂素在非生物脅迫期間,可以使植物免受非生物脅迫的影響[45]。
3.2 滲透物調(diào)節(jié)
由于環(huán)境條件的不利影響,植物的滲透壓濃度發(fā)生變化,阻礙了植物的生長(zhǎng)。在鹽脅迫條件下,植物細(xì)胞通過(guò)積累相容性溶質(zhì)(如糖類、多元醇、甜菜堿、氨基酸等)以維持細(xì)胞內(nèi)滲透壓,完成細(xì)胞正常的代謝活動(dòng)[46-47]。在許多植物中,脯氨酸在氧化應(yīng)激過(guò)程中的積累與耐鹽性有關(guān)。一些PGPB,例如Burkholderia、Arthrobacter和Bacillus,能提高逆境條件下植物脯氨酸合成,有助于維持細(xì)胞滲透壓,提高植物的耐鹽性[8]。脯氨酸可以提高各種酶的活性,穩(wěn)定細(xì)胞內(nèi)的pH和通過(guò)清除活性氧以維持抗氧化活性,此外,脯氨酸可作為分子伴侶,降低脂質(zhì)過(guò)氧化反應(yīng),改變細(xì)胞質(zhì)pH,并保護(hù)亞細(xì)胞結(jié)構(gòu)[48]。
海藻糖是一種重要的滲透保護(hù)劑,當(dāng)細(xì)胞脫水時(shí),海藻糖可以形成凝膠相,取代水,從而減少鹽脅迫的損傷[49]。海藻糖還可以防止高溫和低溫脅迫下一些蛋白質(zhì)的降解和聚集,有助于保持細(xì)胞信號(hào)和亞細(xì)胞結(jié)構(gòu)[50]。甘藍(lán)型油菜在接種Azospirillum brasilense、Arthrobacter globiformis、Burkholderia ambifaria、Herbaspirillum seropedicae、Pseudomonas后,其膜損傷程度降低,脯氨酸的合成增強(qiáng)[51]。盡管在轉(zhuǎn)基因植物中也可以過(guò)度表達(dá)海藻糖基因,但通過(guò)與PGPB的聯(lián)合接種,實(shí)現(xiàn)相同目標(biāo)要簡(jiǎn)單得多。此外,由于大多數(shù)菌株沒(méi)有特定的寄主,因此同一工程菌株可以有效地保護(hù)許多不同的植物種類。
此外,轉(zhuǎn)錄組學(xué)和蛋白質(zhì)組學(xué)分析可以揭示PGPB在鹽脅迫下參與滲透保護(hù)調(diào)節(jié)的過(guò)程。在Priya等[52]的研究中,Pantoea dispersa PSB1在鹽脅迫下表現(xiàn)出更好的防御機(jī)制,如產(chǎn)生滲透耐受性、氧化還原酶和群體猝滅劑。Bacillus fortis SSB21可以增加脯氨酸的生物合成,并上調(diào)辣椒植物中與脅迫相關(guān)基因的表達(dá),包括CAPIP2、CaKR1、CaOSM1和CAChi2;此外,該P(yáng)GPB還增強(qiáng)了辣椒的生長(zhǎng)屬性,提高了葉綠素、蛋白質(zhì)含量和水分利用效率[53]。除了轉(zhuǎn)錄控制和細(xì)胞分化外,必需的代謝產(chǎn)物包括多胺(腐胺、尸胺和亞精胺)和氨基酸的合成增強(qiáng)了植物對(duì)鹽脅迫的耐受性。
3.3 ACC脫氨酶
乙烯廣泛存在于植物體中,對(duì)植物的生長(zhǎng)發(fā)育,特別是成熟和衰老起著重要的調(diào)節(jié)作用。然而,乙烯在植物根伸長(zhǎng)過(guò)程中起抑制作用。植物體中乙烯的合成取決于ACC(1-氨基環(huán)丙烷-1-羧化物)含量。ACC脫氨酶存在于許多根際細(xì)菌中,這些細(xì)菌能夠從植物根中吸收ACC并轉(zhuǎn)換成α-酮丁酸和氨,使得植物中ACC含量減少,從而減少乙烯的合成和乙烯對(duì)植物的脅迫。
Saravanakumar等[54]發(fā)現(xiàn)分泌ACC脫氨酶的根際細(xì)菌增加了植物側(cè)根的數(shù)量和長(zhǎng)度以及根干重,并發(fā)現(xiàn)ACC脫氨酶和根系生長(zhǎng)存在直接關(guān)系。相比于不產(chǎn)生ACC脫氨酶的假單胞菌屬,產(chǎn)生ACC脫氨酶的P. fluorescens strain TDK1能促進(jìn)植物生長(zhǎng)并提高其對(duì)鹽脅迫的抗性。產(chǎn)ACC脫氨酶的細(xì)菌利用III型分泌系統(tǒng)吸收含ACC的分泌液并將其轉(zhuǎn)移到細(xì)菌ACC脫氨酶所在的細(xì)胞質(zhì)進(jìn)行水解反應(yīng),被水解的ACC產(chǎn)物能為根定殖細(xì)菌所利用[55]。
植物對(duì)植物病原體的典型反應(yīng)是合成過(guò)量的乙烯,進(jìn)一步加重了應(yīng)激響應(yīng)對(duì)植物的影響。因此,降低植物病原體對(duì)植物傷害的方法之一是降低植物乙烯的合成量。目前,最簡(jiǎn)單的方法是使用含有ACC脫氨酶的PGPB處理植物。到目前為止,在溫室和室內(nèi)實(shí)驗(yàn)中,這種策略已經(jīng)被證明可以降低病原菌對(duì)黃瓜、土豆、蓖麻、西紅柿、胡蘿卜和大豆等植物的傷害[56-57]。此外,表達(dá)細(xì)菌ACC脫氨酶的轉(zhuǎn)基因植物能免受各種植物病原的損害[57]。但產(chǎn)ACC脫氨酶的PGPB在田間減輕病原菌對(duì)植物傷害的能力尚未得到驗(yàn)證。
3.4 PGPB在植物根表面定殖
PGPB在植物根表面的有效定殖是其在土壤中生存并與土著微生物群落更好地競(jìng)爭(zhēng)的必要條件。有益細(xì)菌在根際周圍成功地定殖是需要這些細(xì)菌首先能適應(yīng)根際環(huán)境,并且比潛在定殖于根際中的土著微生物更有選擇優(yōu)勢(shì)。細(xì)菌成功定殖于植物根系是PGPB與寄主植物相互作用的基礎(chǔ)。然而,細(xì)菌定殖是一種復(fù)雜的現(xiàn)象,這與細(xì)菌運(yùn)動(dòng)性、趨化性、鞭毛或菌毛的產(chǎn)生、特定細(xì)胞表面成分的代謝、蛋白分泌系統(tǒng)、生物膜形成和群體感應(yīng)等有關(guān)。Thai等[58]發(fā)現(xiàn)Paraburkholderia unamae不同鞭毛調(diào)控基因flhDC的缺失導(dǎo)致細(xì)菌運(yùn)動(dòng)性和生物膜形成受到嚴(yán)重抑制。Sun等[59]證明固氮根瘤菌(Azorhizobium caulinodans)的chp1突變體使菌株的趨化性減弱,且在競(jìng)爭(zhēng)根定殖和結(jié)瘤方面的競(jìng)爭(zhēng)力低于野生型。Zhang等[60]觀察到玉米根系分泌物中有機(jī)酸增強(qiáng)了菌株Hansschlegelia zhihuaiae生物膜的形成,這是編碼細(xì)菌運(yùn)動(dòng)性/趨化性的基因上調(diào)的結(jié)果,從而提高微生物的生存能力和保護(hù)根系的能力。
生防菌P. alcaligenes PsA15、P. chlororaphis TSAU13、P. extremorientalis TSAU20和B. amyloliquefaciens BcA12的利福平抗性突變體,能定殖在作物的根系中,并提高作物在鹽堿土中的抗性[61]。細(xì)菌運(yùn)動(dòng)性可能有助于其在土壤中生存并在最初的根定殖階段發(fā)揮作用,對(duì)其在根表面的附著和運(yùn)動(dòng)是非常重要的。Reinhold-Hurek等[62]發(fā)現(xiàn)定殖于植物側(cè)根和根尖的固氮內(nèi)生菌Azocarus sp. BH72能產(chǎn)生內(nèi)切葡聚糖酶。而轉(zhuǎn)座子突變體菌株由于缺乏內(nèi)切葡聚糖酶,因此在植株中定殖程度較低。同時(shí),Azocarus sp.由于pilT和pilA基因的缺失,導(dǎo)致其運(yùn)動(dòng)性以及在植物根部的定殖能力降低。參與胞外多糖生物合成的固氮內(nèi)生葡萄球菌重氮營(yíng)養(yǎng)菌(Gluconacetobacter Diazotrophicus)的gumD基因?qū)τ谏锬さ男纬珊椭参锒ㄖ呈潜匦璧腫63]。同時(shí)固氮菌株G. diazotrophicus的胞外多糖在植物中定殖的重要性也被證實(shí)[64]。一些菌株主要定殖于植物的根部,而另一些菌株則在根、莖或葉上定殖。利用內(nèi)生菌可以在植物的多種不同組織中定殖,有研究者將一種特定定殖于植物花朵的內(nèi)生菌通過(guò)噴灑的方式接種于花朵,使其最終可能存在于種子中[65]。
3.5 六型分泌系統(tǒng)
細(xì)菌六型分泌系統(tǒng)(Type VI Secretion System,T6SS)是一種分子納米武器,能向真核細(xì)胞和原核細(xì)胞注射毒性效應(yīng)因子,存在于近25%的革蘭氏陰性菌中,其中包括大量的植物共生菌[66]。然而,當(dāng)前對(duì)T6SS的一般機(jī)理和生理作用的了解非常有限。關(guān)于T6SS與植物促生特性相關(guān)的研究不多,主要包括生物防治劑、拮抗作用、生物膜形成和環(huán)境適應(yīng)性等[67]。生物膜是一種結(jié)構(gòu)復(fù)雜的微生物群落,附著在生物或非生物表面,被復(fù)雜的胞外聚合物包圍。Gallique等[68]發(fā)現(xiàn)Pseudomonas fluorescens MFE01的Hcp蛋白對(duì)于成熟生物膜結(jié)構(gòu)的形成是必不可少的。Salinero-Lanzarote等[66]發(fā)現(xiàn)接種Rhoizobium etli Mim1 T6SS缺失突變體的植株比接種野生型的植株干重更低、結(jié)瘤更小,表明T6SS在根瘤菌-豆科植物共生中發(fā)揮了積極作用。Mosquito等[69]發(fā)現(xiàn)水稻內(nèi)生菌Kosakonia的T6SS基因敲除突變體在根表面和內(nèi)層定殖能力顯著下降,推測(cè)T6SS參與植物-細(xì)菌互作的定殖過(guò)程。
4 展望
預(yù)計(jì)未來(lái)幾年土壤鹽堿化程度將顯著增加,這將嚴(yán)重阻礙農(nóng)業(yè)生產(chǎn)。人們發(fā)現(xiàn),各種常規(guī)的鹽堿地復(fù)墾方法是不可持續(xù)的,在經(jīng)濟(jì)上也難以實(shí)現(xiàn)。PGPB具有多種提高植物在鹽漬條件下存活的機(jī)制。PGPB因促進(jìn)植物生長(zhǎng)和可用于植物病原體的生物防治而聞名。使用PGPB接種植物已成為緩解土壤鹽脅迫和提高作物產(chǎn)量的重要方法[70]。然而,耐鹽PGPB在不同農(nóng)業(yè)生態(tài)系統(tǒng)中的廣泛應(yīng)用仍存在許多限制因素。一些研究表明,只有在實(shí)驗(yàn)室或溫室條件下使用PGPB,才能獲得理想效果。因此,如何在鹽堿化農(nóng)業(yè)生態(tài)系統(tǒng)中有效利用PGPB是未來(lái)的研究重點(diǎn)。需要不斷篩選優(yōu)質(zhì)PGPB菌株,提高其耐鹽能力,并進(jìn)行合理設(shè)計(jì),以確保其在田間環(huán)境下的效果,從而提高植物的耐鹽性。此外,當(dāng)發(fā)生鹽脅迫時(shí),PGPB不僅影響植物,還會(huì)影響土壤質(zhì)量。因此,未來(lái)需要加大對(duì)植物-微生物互作的分子生物學(xué)研究力度,以深入了解鹽脅迫下根際微生物在誘導(dǎo)植物系統(tǒng)耐受和根際工程中的作用途徑。通過(guò)研究耐鹽和嗜鹽PGPB的代謝和遺傳行為,了解它們?cè)诟啕}環(huán)境下的工作和適應(yīng)機(jī)制具有重要意義,這將為開發(fā)可靠的鹽漬土壤生物接種劑提供參考。
參考文獻(xiàn):
[1]WICKE B,SMEETS E,DORNBURG V,et al.The global technical and economic potential of bioenergy from salt-affected soils[J].Energy amp; Environmental Science,2011,4(8):2669-2681.
[2]MUNNS R,TESTER M.Mechanisms of salinity tolerance[J].Annual Review of Plant Biology,2008,59:651-681.
[3]CHANG P,GERHARDT K E,HUANG X-D,et al.Plant growth-promoting bacteria facilitate the growth of barley and oats in salt-impacted soil:implications for phytoremediation of saline soils[J].International Journal of Phytoremediation,2014,16(7/8/9/10/11/12):1133-1147.
[4]IMADI S R,SHAH S W,KAZI A G,et al.Phytoremediation of saline soils for sustainable agricultural productivity[M]//Plant Metal Interaction.Amsterdam:Elsevier,2016:455-468.
[5]LI Q,HUANG Z H,DENG C S,et al.Endophytic Klebsiella sp.San01 promotes growth performance and induces salinity and drought tolerance in sweet potato (Ipomoea batatas L.)[J].Journal of Plant Interactions,2022,17(1):608-619.
[6]SAPRE S,GONTIA-MISHRA I,TIWARI S.Plant growth-promoting rhizobacteria ameliorates salinity stress in pea (Pisum sativum)[J].Journal of Plant Growth Regulation,2022,41(2):647-656.
[7]SHARMA K,SHARMA S,VAISHNAV A,et al.Salt-tolerant PGPR strain Priestia endophytica SK1 promotes fenugreek growth under salt stress by inducing nitrogen assimilation and secondary metabolites[J].Journal of Applied Microbiology,2022,133(5):2802-2813.
[8]MISHRA P,MISHRA J,ARORA N K.Plant growth promoting bacteria for combating salinity stress in plants-recent developments and prospects:a review[J].Microbiological Research,2021,252:126861.
[9]ZILAIE M N,ARANI A M,ETESAMI H,et al.Halotolerant plant growth-promoting rhizobacteria-mediated alleviation of salinity and dust stress and improvement of forage yield in the desert halophyte Seidlitzia rosmarinus[J].Environmental and Experimental Botany,2022,201:104952.
[10]YAVAHUSSAIN S.Recent progress on melatonin-induced salinity tolerance in plants:an overview[J].Turkish Journal of Agriculture-Food Science and Technology,2022,10(8):1447-1454.
[11]SNCHEZ-GARCA E A,RODRGUEZ-MEDINA K,MORENO-CASASOLA P.Effects of soil saturation and salinity on seed germination in seven freshwater marsh species from the tropical coast of the Gulf of Mexico[J].Aquatic Botany,2017,140:4-12.
[12]LAGHMOUCHI Y,BELMEHDI O,BOUYAHYA A,et al.Effect of temperature,salt stress and pH on seed germination of medicinal plant Origanum compactum[J].Biocatalysis and Agricultural Biotechnology,2017,10:156-160.
[13]ZHU J K.Plant salt tolerance[J].Trends in Plant Science,2001,6(2):66-71.
[14]AMIRJANI M R.Effect of salinity stress on growth,sugar content,pigments and enzyme activity of rice[J].International Journal of Botany,2010,7(1):73-81.
[15]ISMAIL A M,HORIE T.Genomics,physiology,and molecular breeding approaches for improving salt tolerance[J].Annual Review of Plant Biology,2017,68(1):405-434.
[16]van ZELM E,ZHANG Y X,TESTERINK C.Salt tolerance mechanisms of plants[J].Annual Review of Plant Biology,2020,71:403-433.
[17]ACOSTA-MOTOS J R,ORTUO M F,BERNAL-VICENTE A,et al.Plant responses to salt stress:adaptive mechanisms[J].Agronomy,2017,7(1):18.
[18]BOUHMOUCH I,SOUAD-MOUHSINE B,BRHADA F,et al.Influence of host cultivars and Rhizobium species on the growth and symbiotic performance of Phaseolus vulgaris under salt stress[J].Journal of Plant Physiology,2005,162(10):1103-1113.
[19]LODHI A,SAJJAD M H,MAHMOOD A,Et al.Photosynthate partitioning in wheat (Triticum aestivum L.) as affected by root zone salinity and form of N[J].Pakistan Journal of Botany,2009,41(3):1363-1372.
[20]KAN X,REN J J,CHEN T T,et al.Effects of salinity on photosynthesis in maize probed by prompt fluorescence,delayed fluorescence and P700 signals[J].Environmental and Experimental Botany,2017,140:56-64.
[21]DADKHAH A,RASSAM G.Effect of short-term salinity on photosynthesis and ion relations in two sugar beet cultivars [J].Iranian Journal of Plant Physiology,2018,7(2):1983-1989.
[22]EGAMBERDIEVA D,WIRTH S,BELLINGRATH-KIMURA S D,et al.Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils[J].Frontiers in Microbiology,2019,10:2791.
[23]ISLAM F,YASMEEN T,ALI S,et al.Priming-induced antioxidative responses in two wheat cultivars under saline stress[J].Acta Physiologiae Plantarum,2015,37(8):153.
[24]GAIN P,MANNAN M A,PAL P S,et al.Effect of salinity on some yield attributes of rice[J].Pakistan Journal of Biological Sciences,2004,7(5):760-762.
[25]ASHRAF M Y,TARIQ S,SALEEM M,et al.Calcium and zinc mediated growth and physio-biochemical changes in mungbean grown under saline conditions[J].Journal of Plant Nutrition,2020,43(4):512-525.
[26]KHATOON Z,HUANG S L,F(xiàn)AROOQ M A,et al.Role of plant growth-promoting bacteria (PGPB) in abiotic stress management[M]//Mitigation of Plant Abiotic Stress by Microorganisms.Amsterdam:Elsevier,2022:257-272.
[27]HOQUE M N,HANNAN A,IMRAN S,et al.Plant growth-promoting rhizobacteria-mediated adaptive responses of plants under salinity stress[J].Journal of Plant Growth Regulation,2023,42(3):1307-1326.
[28]de SOUZA VANDENBERGHE L P,GARCIA L M B,RODRIGUES C,et al.Potential applications of plant probiotic microorganisms in agriculture and forestry[J].AIMS microbiology,2017,3(3):629-648.
[29]NAJAFI ZILAIE M,MOSLEH ARANI A,ETESAMI H,et al.Halotolerant rhizobacteria enhance the tolerance of the desert halophyte Nitraria schoberi to salinity and dust pollution by improving its physiological and nutritional status[J].Applied Soil Ecology,2022,179:104578.
[30]FADIJI A E,BABALOLA O O,SANTOYO G,et al.The potential role of microbial biostimulants in the amelioration of climate change-associated abiotic stresses on crops[J].Frontiers in Microbiology,2022,12:829099.
[31]del CARMEN OROZCO-MOSQUEDA M,KUMAR A,GLICK B R,et al.The role of bacterial ACC deaminase and trehalose in increasing salt and drought tolerance in plants[M]//Mitigation of Plant Abiotic Stress by Microorganisms.Amsterdam:Elsevier,2022:41-52.
[32]SHARMA A,SHAHZAD B,KUMAR V,et al.Phytohormones regulate accumulation of osmolytes under abiotic stress[J].Biomolecules,2019,9(7):285.
[33]NIGAM B,DUBEY R S,RATHORE D.Protective role of exogenously supplied salicylic acid and PGPB (Stenotrophomonas sp.) on spinach and soybean cultivars grown under salt stress[J].Scientia Horticulturae,2022,293:110654.
[34]RANGSEEKAEW P,BARROS-RODRGUEZ A,PATHOM-AREE W,et al.Plant beneficial deep-sea Actinobacterium,Dermacoccus abyssi MT1.1T promote growth of tomato (Solanum lycopersicum) under salinity stress[J].Biology,2022,11(2):191.
[35]MAHGOUB H A M,F(xiàn)OUDA A,EID A M,et al.Biotechnological application of plant growth-promoting endophytic bacteria isolated from halophytic plants to ameliorate salinity tolerance of Vicia faba L.[J].Plant Biotechnology Reports,2021,15(6):819-843.
[36]NEHELA Y,MAZROU Y S A,ALSHAAL T,et al.The integrated amendment of sodic-saline soils using biochar and plant growth-promoting rhizobacteria enhances maize (Zea mays L.) resilience to water salinity[J].Plants,2021,10(9):1960.
[37]潘晶,黃翠華,彭飛,等.植物根際促生菌誘導(dǎo)植物耐鹽促生作用機(jī)制[J].生物技術(shù)通報(bào),2020,36(9):75-87.
[38]紀(jì)超,王曉輝,劉訓(xùn)理.鹽脅迫環(huán)境下植物促生菌的作用機(jī)制研究進(jìn)展[J].生物技術(shù)通報(bào),2020,36(4):131-143.
[39]PENG M,JIANG Z H,ZHOU F Z,et al.From salty to thriving:plant growth promoting bacteria as nature’s allies in overcoming salinity stress in plants[J].Frontiers in Microbiology,2023,14:1169809.
[40]STEGELMEIER A A,ROSE D M,JORIS B R,et al.The use of PGPB to promote plant hydroponic growth[J].Plants,2022,11(20):2783.
[41]MANTELIN S,TOURAINE B.Plant growth-promoting bacteria and nitrate availability:impacts on root development and nitrate uptake[J].Journal of Experimental Botany,2004,55(394):27-34.
[42]BIANCO C,DEFEZ R.Improvement of phosphate solubilization and Medicago plant yield by an indole-3-acetic acid-overproducing strain of Sinorhizobium meliloti [J].Applied and Environmental Microbiology,2010,76(14):4626-4632.
[43]GLICK B R,CHENG Z Y,CZARNY J,et al.Promotion of plant growth by ACC deaminase-producing soil bacteria[J].European Journal of Plant Pathology,2007,119(3):329-339.
[44]PATTEN C L,GLICK B R.Role of Pseudomonas putida indoleacetic acid in development of the host plant root system[J].Applied and Environmental Microbiology,2002,68(8):3795-3801.
[45]RIVERO R M,KOJIMA M,GEPSTEIN A,et al.Delayed leaf senescence induces extreme drought tolerance in a flowering plant[J].Proceedings of the National Academy of Sciences of the United States of America,2007,104(49):19631-19636.
[46]FADIJI A E,SANTOYO G,YADAV A N,et al.Efforts towards overcoming drought stress in crops:Revisiting the mechanisms employed by plant growth-promoting bacteria[J].Frontiers in Microbiology,2022,13:962427.
[47]RABIE G,ALMADINI A M.Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress[J].African Journal of Biotechnology,2005,4:210-222.
[48]ZOUARI M,BEN HASSENA A,TRABELSI L,et al.Exogenous proline-mediated abiotic stress tolerance in plants:possible mechanisms[M]//HOSSAIN M,KUMAR V,BURRITT D,et al.Osmoprotectant-Mediated Abiotic Stress Tolerance in Plants. Cham: Springer,2019:99-121.
[49]de BRITTO S,JOSHI S M,JOGAIAH S.Trehalose:a mycogenic cell wall elicitor elicit resistance against leaf spot disease of broccoli and acts as a plant growth regulator[J].Biotechnology Reports,2021,32:e00690.
[50]AHMAD BHAT B,TARIQ L,NISSAR S,Et al.The role of plant-associated rhizobacteria in plant growth,biocontrol and abiotic stress management[J].Journal of Applied Microbiology,2022,133(5):2717-2741.
[51]ROSSI M,BORROMEO I,CAPO C,et al.PGPB improve photosynthetic activity and tolerance to oxidative stress in Brassica napus grown on salinized soils[J].Applied Sciences,2021,11(23):11442.
[52]PRIYA P,ANEESH B,SIVAKUMAR K C,et al.Comparative proteomic analysis of saline tolerant,phosphate solubilizing endophytic Pantoea sp.,and Pseudomonas sp.isolated from Eichhornia rhizosphere[J].Microbiological Research,2022,265:127217.
[53]AHMAD YASIN N,AKRAM W,KHAN W U,et al.Halotolerant plant-growth promoting rhizobacteria modulate gene expression and osmolyte production to improve salinity tolerance and growth in Capsicum annum L.[J].Environmental Science and Pollution Research,2018,25(23):23236-23250.
[54]SARAVANAKUMAR D,SAMIYAPPAN R.ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants[J].Journal of Applied Microbiology,2007,102(5):1283-1292.
[55]GONTIA-MISHRA I,SAPRE S,KACHARE S,et al.Molecular diversity of 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing PGPR from wheat (Triticum aestivum L.) rhizosphere[J].Plant and Soil,2017,414(1):213-227.
[56]HAO Y,CHARLES T,GLICK B.An ACC deaminase containing A.tumefaciens strain D3 shows biocontrol activityto crown gall disease[J].Canada Journal of Microbiology,2011,57:278-286.
[57]HUSEN.Growth enhancement and disease reduction of soybean by 1-aminocyclopropane-1-carboxylate deaminase-producing Pseudomonas[J].American Journal of Applied Sciences,2011,8(11):1073-1080.
[58]THAI S N-M,LUM M R,NAEGLE J,et al.Multiple copies of flhDC in Paraburkholderia unamae regulate flagellar gene expression,motility,and biofilm formation[J].Journal of Bacteriology,2021,203(23):e0029321.
[59]SUN Y,XIE Z H,SUI F,et al.Identification of Cbp1,a c-di-GMP binding chemoreceptor in Azorhizobium caulinodans ORS571 Involved in chemotaxis and nodulation of the host plant[J].Frontiers in Microbiology,2019,10:638.
[60]ZHANG H,QIAN Y Y,F(xiàn)AN D D,et al.Biofilm formed by Hansschlegelia zhihuaiae S113 on root surface mitigates the toxicity of bensulfuron-methyl residues to maize[J].Environmental Pollution,2022,292:118366.
[61]PRASANNA KUMAR M K,AMRUTA N,MANJULA C P,et al.Characterisation,screening and selection of Bacillus subtilisisolates for its biocontrol efficiency against major rice diseases [J].Biocontrol Science and Technology,2017,27(4):581-599.
[62]REINHOLD-HUREK B,MAES T,GEMMER S,et al.An endoglucanase is involved in infection of rice roots by the not-cellulose-metabolizing endophyte Azoarcus sp.strain BH72[J].Molecular Plant-Microbe Interactions:MPMI,2006,19(2):181-188.
[63]RANGEL de SOUZA A L S,de SOUZA S A,de OLIVEIRA M V V,et al.Endophytic colonization of Arabidopsis thaliana by Gluconacetobacter diazotrophicus and its effect on plant growth promotion,plant physiology,and activation of plant defense[J].Plant and Soil,2016,399(1-2):257-270.
[64]MENESES C,GONALVES T,ALQURES S,et al.Gluconacetobacter diazotrophicus exopolysaccharide protects bacterial cells against oxidative stress in vitro and during rice plant colonization[J].Plant and Soil,2017,416(1-2):133-147.
[65]MITTER B,SESSITSCH A,NAVEED M.Method for producing plant seed containing endophytic micro-organisms:US11186527[P].2021-11-30.
[66]SALINERO-LANZAROTE A,PACHECO-MORENO A,DOMINGO-SERRANO L,et al.The type VI secretion system of Rhizobium etli Mim1 has a positive effect in symbiosis[J].FEMS Microbiology Ecology,2019,95(5):fiz054.
[67]BERNAL P,LLAMAS M A,F(xiàn)ILLOUX A.Type VI secretion systems in plant-associated bacteria[J].Environmental Microbiology,2018,20(1):1-15.
[68]GALLIQUE M,DECOIN V,BARBEY C,et al.Contribution of the Pseudomonas fluorescens MFE01 type VI" secretion system to biofilm formation[J].PLoS One,2017,12(1):e0170770.
[69]MOSQUITO S,BERTANI I,LICASTRO D,et al.In planta colonization and role of T6SS in two rice Kosakonia endophytes [J].Molecular Plant-Microbe Interactions:MPMI,2020,33(2):349-363.
[70]ARORA N K,EGAMBERDIEVA D,MEHNAZ S,et al.Editorial:Salt tolerant Rhizobacteria:for better productivity and remediation of saline soils[J].Frontiers in Microbiology,2021,12:660075.
Research Progress of Plant Growth-Promoting Bacteria in Salt Tolerance of Plants
MA Jie 1,LIN Weiyuan 1,XIANG Zhiwen 1,ZHANG Dandan 1,LIAO Xu 2,WANG Chao 3,PENG Mu1
Abstract:Soil salinity leads to a sharp loss in crop yield has become a major threat to global agroecosystems. Many strategies have been implemented in current production to remediate saline-alkali land and restore its productivity. Among them, the utilization of Plant growth promoting bacteria (PGPB) is considered as a promising bio-fertilizing method for soil reclamation, suitable for reclaiming saline-alkali soil and enhancing crop productivity. Salt-tolerant PGPB utilizes a variety of mechanisms that affect physiological, biochemical and molecular responses in plants to cope with salt stress. These mechanisms include osmotic adjustment by ion homeostasis and osmolyte accumulation, protection plants from free radicals by the formation of free radicals scavenging enzymes, induction of oxidative stress and maintenance of plant growth by the synthesis of phytohormones and other metabolites. In this review, various mechanisms used by PGPB to promote plant growth under salt stress were discussed, and the recent progress and prospects of PGPB in improving plant salt
stress were emphasized.
Keywords:plant growth promoting bacteria; salt stress; growth-promotion mechanisms
收稿日期:2023-05-28
基金項(xiàng)目:國(guó)家自然科學(xué)基金項(xiàng)目(32200094);湖北民族大學(xué)大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃項(xiàng)目(X202210517206)。
第一作者:馬潔(2000-),女,本科生,專業(yè)方向?yàn)榄h(huán)境微生物。E-mail:1342835690@qq.com。
通信作者:彭木(1988-),男,博士,講師,從事環(huán)境微生物研究。E-mail:pengmu1025@hotmail.com。