徐子怡 羅晨宇 占坤 邱榮輝 黃春輝 徐小彪 賈東峰
摘? ? 要:【目的】揭示OSCA家族基因在獼猴桃響應(yīng)非生物脅迫中的表達(dá)特征,為獼猴桃OSCA基因功能分析與獼猴桃抗逆性遺傳改良提供參考?!痉椒ā坷蒙镄畔W(xué)方法對(duì)全基因組范圍內(nèi)獼猴桃OSCA基因家族成員進(jìn)行鑒定和綜合分析,通過qRT-PCR法分析它們?cè)诓煌巧锩{迫下的表達(dá)特征?!窘Y(jié)果】在中華獼猴桃基因組中共鑒定出16個(gè)OSCA基因,它們不均等地分布于13條染色體上,其啟動(dòng)子區(qū)域存在大量響應(yīng)逆境脅迫的順式作用元件。OSCA3在干旱、鹽、高溫和低溫脅迫下表達(dá)量均較顯著上調(diào),OSCA8在干旱、鹽和低溫脅迫下表達(dá)量顯著上調(diào),OSCA1和OSCA14在低溫脅迫處理下表達(dá)量顯著上調(diào),OSCA7和OSCA15均顯著響應(yīng)干旱脅迫。【結(jié)論】鑒定出6個(gè)受非生物脅迫顯著誘導(dǎo)表達(dá)的獼猴桃OSCA基因,為進(jìn)一步研究OSCA基因在響應(yīng)獼猴桃非生物脅迫中的分子功能提供了重要依據(jù)。
關(guān)鍵詞:獼猴桃;OSCA基因家族;非生物脅迫;基因表達(dá)
中圖分類號(hào):S663.4 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2024)03-0436-12
Genome-wide identification of OSCA gene family members and their expression under different abiotic stresses in kiwifruit
XU Ziyi1, LUO Chenyu1, ZHAN Kun1, QIU Ronghui1, HUANG Chunhui1, 2, XU Xiaobiao1, 2, JIA Dongfeng1, 2*
(1College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China; 2Institute of Kiwifruit, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China)
Abstract: 【Objective】 Hyperosmotic gated non-selective calcium-permeable cation channels (OSCA) play a key role in sensing exogenous and endogenous osmotic changes and regulating plant growth and development. The aim of this study was to identify key candidate OSCA genes involved in responses to different abiotic stresses by analyzing their expressions in kiwifruit. 【Methods】 Bioinformatics methods were used to identify OSCA family genes in the genome of Actinidia chinensis ‘Red 5, and to analyze their sequence property, phylogenetic relationship, chromosomal localization, gene structure, cis-acting elements and synteny relationship. Tissue-cultured plantlets of Actinidia deliciosa ‘Hayward was used as the plant material. A total of four stress treatments were carried out in the experiment: drought stress (15% PEG6000 solution), salt stress (150 mmol L-1 NaCl solution), high temperature stress (42 ℃), and low temperature stress (4 ℃). The leaves were sampled at 0 h (control), 24 h and 48 h, respectively. The relative expressions of those OSCA genes under different abiotic stress conditions were analyzed by using the quantitative real-time PCR method. 【Results】 In this study, 16 OSCA genes were identified in the genome of kiwifruit, they were named AcOSCA1-AcOSCA16 according to their chromosomal localization, and they were distributed on 13 chromosomes. In order to clarify the evolutionary and kinship relationships between members of the OSCA protein family and their homologous proteins in other plants, OSCA protein sequences of rice, Arabidopsis, tomato and kiwifruit were used to construct a phylogenetic tree. Phylogenetic analysis revealed that they could be categorized into four groups, and the syntenic analysis results showed that there were 24 gene pairs with syntenic relationships between 15 AcOSCA genes in kiwifruit and 13 AtOSCA genes in Arabidopsis. Cis-acting element analysis showed that there were many cis-acting elements in the promoter regions of related AcOSCA genes that responded to hormones, adversity stress, and defense and stress responses. Those cis-acting elements included six stress-associated elements, i.e., drought-inducible MYB-binding site (MBS), CAAT-box, anaerobically-induced-associated cis-acting regulator (ARE), defense and stress response elements (TC-rich), low-temperature-induced cis-acting element (LTR), and anaerobically-induced enhancer-like cis-acting element (GC-motif); and four hormone-associated cis-acting elements: abscisic acid-responsive cis-acting element (ABRE), gibberellin-responsive element (GARE-motif), methyl jasmonate-responsive element (TGACG motif/CGTCA-motif), and gibberellin-responsive element (P-box). It was found that most of those AcOSCA genes were responsive to drought, salt, low and high temperature stresses, and different AcOSCA members exhibited various expression patterns under these abiotic stresses. Specifically, under drought stress induced by 15% PEG6000, the expressions of most kiwifruit OSCA genes were up-regulated after they were subjected to drought stress, except for OSCA2 and OSCA9, both of which showed down expressions at 24 h after treatment when compared with the control (0 h). Among those OSCA genes, when compared with the control, OSCA3, OSCA7, OSCA8 and OSCA15 were up-regulated to 3.0, 3.2, 3.8 and 3.1-fold at 24 h, respectively. At 48 h after treatment, the relative expression levels of OSCA8 was the highest, with a value of 2.5-fold higher than the control. Under salt stress induced by 150 mmol L-1 NaCl solution, most OSCA genes, except OSCA1, showed up-regulated expressions at 24 h and 48 h when compared with the control. Among them, the expressions of OSCA3, OSCA8 and OSCA12 increased to 3.2, 5.3 and 2.8 times higher than that of the control (0 h) at 24 h, respectively, and at 48 h, were up-regulated to 3.4, 10.0 and 4.0 times of the control (0 h), respectively. Under high temperature stress condition (42 ℃), expression of OSCA3 was up-regulated at 24 h, with a value of 2.9 times higher when compared with the control at 0 h, however, at 48 h after treatment, its expression level was lower than the control. Under low temperature stress (4 ℃), OSCA3 and OSCA14 were both up-regulated at 24 h, with values of 2.9- and 2.4-fold higher than the control (0 h), respectively. Compared with the control at 0 h, the relative expression level of OSCA8 increased to 2.1 (24 h) and 2.9 times (48 h), respectively. And the highest expression level was found for OSCA1 at 48 h, with a value of 3.4-fold higher than the control. These results showed that expression of OSCA3 was greatly up-regulated under drought, salt, high temperature and low temperature stresses. OSCA8 was significantly induced by drought, salt and low temperature stresses. OSCA1 and OSCA14 were up-regulated under low-temperature stress conditions. OSCA7 and OSCA15 were induced by drought stress treatment. Therefore, these 6 OSCA genes were closely related to relative abiotic stresses and they may play important roles in responses to the abiotic stresses of drought, salt, high or low temperature. 【Conclusion】 The family members of OSCA genes were identified in the genome of kiwifruit. Information of kiwifruit OSCA gene family members was analyzed, and their functions were predicted. Six OSCA genes were identified to be key candidate genes in the responses to the stresses of drought, salt, high temperature or low temperature. This study provided a basis for further research on the molecular functions of related OSCA genes in response to abiotic stresses in kiwifruit.
Key words: Kiwifruit; OSCA gene family; Abiotic stress; Gene expression
在自然生長條件下,植物經(jīng)常會(huì)遭受非生物脅迫的影響。由水、鹽、光、溫度和營養(yǎng)等環(huán)境因素引起的非生物脅迫會(huì)抑制植物生長,甚至降低植物存活率,因此,提高植物對(duì)非生物脅迫的抗性對(duì)農(nóng)業(yè)生產(chǎn)至關(guān)重要[1]。在長期進(jìn)化過程中,為了更好地生存,植物進(jìn)化出了一系列生理生化機(jī)制來適應(yīng)和抵御不良環(huán)境[2-4]。非生物脅迫[5]可激活植物鈣離子通路誘導(dǎo)植物產(chǎn)生抗性反應(yīng)。植物遭受環(huán)境刺激后,可通過Ca2+通道等轉(zhuǎn)運(yùn)系統(tǒng)使細(xì)胞胞質(zhì)中游離Ca2+濃度產(chǎn)生變化,引發(fā)相應(yīng)的保護(hù)性生理反應(yīng)[6],這是植物應(yīng)對(duì)不良環(huán)境的一個(gè)重要途徑。
高滲性門控非選擇性鈣滲透陽離子通道[Reduced hyperosmolality-induced (Ca2+) increase channel,OSCA]是一種鈣滲透性陽離子通道,在感受外源和內(nèi)源的滲透變化以及調(diào)節(jié)植物生長發(fā)育中起著關(guān)鍵作用[7]。真核細(xì)胞通過Ca2+傳導(dǎo)通道能夠產(chǎn)生胞質(zhì)Ca2+信號(hào),Ca2+是動(dòng)植物涉及應(yīng)激響應(yīng)和發(fā)育的一種多功能信使[8]。鈣離子(Ca2+)濃度的空間和時(shí)間變化對(duì)真核生物信號(hào)調(diào)節(jié)具有重要作用[9-10]。近年來,對(duì)許多植物進(jìn)行的研究表明,OSCA基因在響應(yīng)滲透相關(guān)的非生物脅迫中發(fā)揮重要作用[11-14]。2014年,OSCA基因家族在擬南芥(Arabidopsis thaliana)中首次被鑒定,其包含15個(gè)家族成員,且均含有與植物響應(yīng)逆境脅迫相關(guān)的DUF221結(jié)構(gòu)域,其中AtOSCA1.1、AtOSCA3.1、AtOSCA4.1和AtOSCA1.2/AtCSC1均編碼OSCA通道蛋白并參與高滲應(yīng)激響應(yīng)[13,15]。番茄(Solanum lycopersicum)中鑒定出11個(gè)OSCA基因家族成員,其中SlOSCA3在低溫、干旱脅迫和脫落酸(ABA)處理下表達(dá)量發(fā)生顯著變化[12]。大豆(Glycine max)中包含20個(gè)OSCA家族成員,其中GmOSCA1.1、GmOSCA1.2、GmOSCA1.3、GmOSCA1.4和GmOSCA1.5可能在滲透脅迫響應(yīng)中發(fā)揮作用,且可能增強(qiáng)大豆耐旱性[16]。水稻(Oryza sativa)中鑒定到11個(gè)OSCA基因,其中10個(gè)OSCA基因受滲透相關(guān)的處理(PEG、NaCl、ABA)誘導(dǎo)并產(chǎn)生差異表達(dá)[11]。梨(Pyrus bretschneideri)中鑒定到16個(gè)OSCA基因,其中PbrOSCA2.6和PbrOSCA3.2是感受滲透脅迫的重要基因,抑制PbrOSCA2.6和PbrOSCA3.2表達(dá)后,花粉管對(duì)滲透脅迫的敏感性下降[17]。此外,在小麥[14]、玉米[18]等植物中也鑒定出OSCA基因家族成員,而有關(guān)獼猴桃OSCA基因家族及其在非生物脅迫下的表達(dá)情況尚未進(jìn)行研究。
獼猴桃是獼猴桃科獼猴桃屬的重要果樹,由于其果實(shí)風(fēng)味獨(dú)特、營養(yǎng)豐富、抗壞血酸含量高而備受關(guān)注[19]。然而,在自然條件下,獼猴桃樹體經(jīng)常遭遇各種非生物脅迫,嚴(yán)重影響果實(shí)產(chǎn)量和品質(zhì)。為此,筆者在本研究中對(duì)獼猴桃OSCA家族成員進(jìn)行了全基因組鑒定,分析了其理化性質(zhì)、序列特征和啟動(dòng)子區(qū)域的順式作用元件。此外,利用實(shí)時(shí)定量PCR(quantitative real-time PCR,qRT-PCR)方法檢測了它們?cè)诟珊怠Ⅺ}、低溫和高溫等非生物脅迫下的表達(dá)特征。為獼猴桃OSCA基因功能驗(yàn)證奠定了重要基礎(chǔ),并為利用關(guān)鍵OSCA基因提高獼猴桃植株對(duì)非生物脅迫的抗性提供了理論依據(jù)。
1 材料和方法
1.1 材料及處理
試驗(yàn)材料為江西農(nóng)業(yè)大學(xué)獼猴桃研究所保存的美味獼猴桃海沃德(Actinidia deliciosa)組培苗(由西北農(nóng)林科技大學(xué)李明軍教授惠贈(zèng))。在相對(duì)濕度75%、溫度25 ℃,光照度4000 lx,光周期14 h(光)/10 h(暗)條件下的組培間,在MS培養(yǎng)基中繼代培養(yǎng)30 d后,選取長勢一致的組培苗,置于溫度25 ℃、相對(duì)濕度為80%、光周期14 h(光)/10 h(暗)、光照度10 000 lx的人工氣候箱中預(yù)培養(yǎng)7 d后,對(duì)試驗(yàn)材料進(jìn)行不同非生物脅迫處理。試驗(yàn)共設(shè)置4個(gè)處理,分別為:干旱脅迫(15% PEG6000溶液)、鹽脅迫(150 mmol·L-1 NaCl溶液)、低溫脅迫(4 ℃)、高溫脅迫(42 ℃)。各處理組分別在0 h(對(duì)照)、24 h、48 h進(jìn)行采樣,采集獼猴桃組培苗形態(tài)學(xué)上端第3、4片完全展開的葉片,每個(gè)采樣時(shí)間點(diǎn)設(shè)置3個(gè)生物學(xué)重復(fù),每個(gè)重復(fù)包括5株植株,葉片采集后立即在液氮中冷凍并將樣品置于-80 ℃冰箱保存。
1.2 獼猴桃OSCA基因家族成員鑒定、染色體定位及理化性質(zhì)分析
在擬南芥基因組數(shù)據(jù)庫(TAIR,https://www.arabidopsis.org/)下載所有擬南芥OSCA蛋白序列,從獼猴桃基因組數(shù)據(jù)庫(https://kiwifruitgenome.org/)下載中華獼猴桃(A. chnensis)Red 5基因組全蛋白序列和基因注釋信息文件,利用TBtools軟件鑒定出所有獼猴桃OSCA候選蛋白。利用Pfam(https://pfam.xfam.org/search/)平臺(tái)對(duì)候選序列進(jìn)行保守結(jié)構(gòu)域檢索并篩選出包含DUF221,也稱RSN1_7TM(PF:02714)結(jié)構(gòu)域的獼猴桃OSCA蛋白序列。使用Tbtools對(duì)獼猴桃OSCA基因家族成員進(jìn)行染色體定位。利用在線網(wǎng)站(https://wolfpsort.Hgc.jp/)對(duì)獼猴桃OSCA蛋白進(jìn)行亞細(xì)胞定位預(yù)測。在ExPASy網(wǎng)站(https://web.Expasy.org/protparam/)分析獼猴桃OSCA蛋白的氨基酸數(shù)目、等電點(diǎn)(pI)、分子質(zhì)量(MW)、不穩(wěn)定指數(shù)等理化信息。
1.3 獼猴桃OSCA蛋白家族成員系統(tǒng)進(jìn)化分析
從TAIR數(shù)據(jù)庫獲取擬南芥全基因組和OSCA家族成員的蛋白質(zhì)序列,從Ensembl Plants數(shù)據(jù)庫(https://plants.ensembl.org/index.html)獲取水稻和番茄的全基因組序列。利用TBtools按1.2所述方法獲取水稻和番茄OSCA基因家族成員及其蛋白質(zhì)序列。使用MEGA 11軟件中的Neighbor-Joining法對(duì)擬南芥、水稻、番茄和獼猴桃OSCA蛋白家族成員序列進(jìn)行比對(duì)并構(gòu)建系統(tǒng)進(jìn)化樹,設(shè)置bootstrap重復(fù)次數(shù)為1000次。
1.4 獼猴桃OSCA基因家族成員共線性分析
為了分析獼猴桃與擬南芥OSCA基因的同源關(guān)系,利用MCScanX(多重共線掃描工具包),期望值設(shè)置為1e-10,分析其共線塊。利用TBtools分析共線性文件,并繪制共線性圖像。使用相同方法對(duì)獼猴桃基因組內(nèi)的OSCA基因共線性關(guān)系進(jìn)行分析。
1.5 獼猴桃OSCA家族基因結(jié)構(gòu)、蛋白基序與保守結(jié)構(gòu)域分析
利用TBtools的MEME模塊分析獼猴桃OSCA基因家族的蛋白質(zhì)序列,將生成的文件利用TBtools可視化模塊對(duì)蛋白家族進(jìn)行motif分析并保存最終結(jié)果。利用NCBI的Batch-CD-Search功能(https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi),導(dǎo)出獼猴桃OSCA蛋白家族成員數(shù)據(jù),并使用TBtools進(jìn)行可視化分析。使用TBtools生成獼猴桃OSCA基因家族成員的基因結(jié)構(gòu)分析圖。
1.6 獼猴桃OSCA基因家族成員啟動(dòng)子區(qū)域順式作用元件分析
利用TBtools篩選出獼猴桃OSCA基因家族成員基因上游2000 bp的啟動(dòng)子序列,使用PlantCare系統(tǒng)(https://bioinformatics.psb.ugent.be/webtools/plantcare/html/)檢測啟動(dòng)子區(qū)域順式作用元件。利用TBtools對(duì)獲得的順式作用元件進(jìn)行可視化繪圖。
1.7 獼猴桃OSCA基因家族成員在非生物脅迫下的表達(dá)分析
利用與中華獼猴桃親緣關(guān)系相近的美味獼猴桃品種海沃德組培苗,使用qRT-PCR方法對(duì)獼猴桃OSCA家族所有基因在非生物脅迫下的相對(duì)表達(dá)量進(jìn)行分析。用北京擎科生物科技有限公司的RNAprep Pure多糖多酚植物RNA提取試劑盒提取組培苗葉片RNA。用北京聚合美生物科技有限公司M5 Super plus qPCR RT kit with gDNA remover試劑盒進(jìn)行cDNA第一鏈合成。使用Primer Premier 5軟件設(shè)計(jì)實(shí)時(shí)熒光定量引物(表1)并進(jìn)行引物合成。以獼猴桃Actin基因[20]作為內(nèi)參基因。設(shè)置3次生物學(xué)重復(fù)。PCR儀型號(hào)為CFX96TM Real-Time System。qRT-PCR反應(yīng)程序?yàn)椋?5 ℃ 1 min,95 ℃ 10 s,57 ℃ 5 s,72 ℃ 12 s,40個(gè)循環(huán)。使用2-??CT方法計(jì)算基因的相對(duì)表達(dá)量[21]。使用SPSS軟件的獨(dú)立樣本T檢測方法,對(duì)3次重復(fù)結(jié)果數(shù)據(jù)進(jìn)行差異顯著性分析。
2 結(jié)果與分析
2.1 獼猴桃OSCA基因家族成員及其理化性質(zhì)
從中華獼猴桃Red5全基因組中鑒定到16個(gè)OSCA基因家族成員(表2),它們的編碼序列(CDS)長度差異較小,范圍為2100~2532 bp,其中AcOSCA11最短,編碼699個(gè)氨基酸殘基;最長的AcOSCA1編碼843個(gè)氨基酸殘基。基因CDS平均值為2266 bp。等電點(diǎn)最小的是AcOSCA1的編碼產(chǎn)物,為7.19,最大的是AcOSCA6編碼產(chǎn)物,為9.39。等電點(diǎn)平均值為8.81。獼猴桃OSCA蛋白均為堿性蛋白,分子質(zhì)量范圍為79 597.43~94 786.42 ku,分子質(zhì)量平均值為85 978.57 ku。AcOSCA5、AcOSCA9、AcOSCA13的不穩(wěn)定指數(shù)小于40,編碼產(chǎn)物穩(wěn)定性較高,其余13個(gè)AcOSCA基因編碼產(chǎn)物穩(wěn)定性較低。亞細(xì)胞定位預(yù)測結(jié)果表明,AcOSCA4和AcOSCA14定位于細(xì)胞膜、細(xì)胞壁、葉綠體、線粒體和細(xì)胞核中,而其他14個(gè)成員定位于細(xì)胞膜和(或)葉綠體中。
2.2 獼猴桃OSCA基因家族成員染色體定位
獼猴桃16個(gè)OSCA基因分別定位于29條染色體中的13條,分別為第1、2、4、12、13、17、18、20、21、22、25、28、29號(hào)染色體。依據(jù)染色體定位信息,將它們分別命名為AcOSCA1至AcOSCA16,其中,13、18、22號(hào)染色體上各有2個(gè)OSCA基因,1、2、4、12、17、20、21、25、28和29號(hào)染色體上各包含1個(gè)OSCA基因(圖1)。
2.3 獼猴桃OSCA蛋白家族成員聚類
為明確OSCA蛋白家族成員與其他植物中同源蛋白的進(jìn)化及親緣關(guān)系,利用11個(gè)水稻、15個(gè)擬南芥、12個(gè)番茄和16個(gè)獼猴桃OSCA蛋白序列構(gòu)建系統(tǒng)進(jìn)化樹。結(jié)果表明,OSCA進(jìn)化樹可分為4個(gè)亞族,即GroupⅠ、Group Ⅱ、Group Ⅲ、Group Ⅳ。獼猴桃與番茄OSCA蛋白家族成員在4個(gè)亞族中均有分布(圖2)。AcOSCA成員在Group Ⅲ和Group Ⅳ中分布較多,分別有5個(gè)和8個(gè)成員。
2.4 獼猴桃與擬南芥OSCA基因成員間的共線性關(guān)系
共線性分析結(jié)果表明,15個(gè)獼猴桃OSCA基因與13個(gè)擬南芥OSCA基因之間存在24對(duì)共線性關(guān)系(圖3)。其中,AcOSCA4在擬南芥中存在4個(gè)共線性基因,分別是AT1G11960.3、AT1G62320.5、AT3G21620.1和AT4G22120.3;AcOSCA8在擬南芥中存在4個(gè)共線性基因,分別是AT1G11960.3、AT1G62320.5、AT4G04340.3和AT4G22120.3;AcOSCA2、AcOSCA6、AcOSCA12在擬南芥中均存在2個(gè)共線性基因,分別是AT1G69450.3和AT3G01100.4,AT4G02900.1和AT4G15430.1,AT4G04340.3和AT4G22120.3。其他10個(gè)獼猴桃OSCA基因成員分別與擬南芥中的1個(gè)OSCA基因存在共線性關(guān)系,這些基因?qū)Ψ謩e是AcOSCA1與AT4G35870.1、AcOSCA3與AT1G10090.1、AcOSCA5與AT1G69450.3、AcOSCA7與AT4G02900.1、AcOSCA9與AT1G30360.1、AcOSCA10與AT1G32090.1、AcOSCA11與AT1G10090.1、AcOSCA13與AT1G30360.1、AcOSCA15與AT4G02900.1、AcOSCA16與AT1G69450.3。
2.5 獼猴桃基因組內(nèi)OSCA基因間的共線性關(guān)系
獼猴桃OSCA基因間存在8對(duì)共線性基因?qū)Γ▓D4)。分別為AcOSCA3與AcOSCA11、AcOSCA4與AcOSCA12、AcOSCA5與AcOSCA16、AcOSCA6與AcOSCA7及AcOSCA15、AcOSCA7與AcOSCA15、AcOSCA8與AcOSCA12、AcOSCA9與AcOSCA13。其中,AcOSCA6、AcOSCA7和AcOSCA15分別存在于13、17、28號(hào)染色體上,且三者間均為共線性關(guān)系。
2.6 獼猴桃OSCA家族成員基因結(jié)構(gòu)、蛋白基序與保守結(jié)構(gòu)域
通過可視化AcOSCA基因CDS和相應(yīng)的基因組DNA序列可知,其CDS序列內(nèi)含子分布較保守,在系統(tǒng)進(jìn)化樹同一發(fā)育枝中,大多數(shù)成員具有相同數(shù)量的內(nèi)含子,例如,Group Ⅱ、Group Ⅲ、Group Ⅳ中基因內(nèi)含子數(shù)目分別為5、10~11以及9~11個(gè),Group Ⅰ中的基因成員無內(nèi)含子。通過MEME軟件對(duì)AcOSCA家族成員編碼的蛋白序列進(jìn)保守基序分析,結(jié)果發(fā)現(xiàn),該家族蛋白序列非常保守,每個(gè)成員均包含3個(gè)相同的Motif基序,且它們的排列順序相同(圖5)。
2.7 獼猴桃OSCA基因家族成員啟動(dòng)子區(qū)域順式作用元件
對(duì)AcOSCA家族基因起始密碼子上游2000 bp啟動(dòng)子區(qū)域序列進(jìn)行順式作用元件進(jìn)行分析,結(jié)果發(fā)現(xiàn),AcOSCA基因啟動(dòng)子區(qū)包含多種與逆境和激素應(yīng)答相關(guān)的作用元件(表3)。主要包括6種脅迫相關(guān)順式作用元件,即:干旱誘導(dǎo)性的MYB結(jié)合位點(diǎn)(MBS)、CAAT-box、厭氧誘導(dǎo)相關(guān)的順式作用調(diào)節(jié)元件(ARE)、防御和應(yīng)激反應(yīng)相關(guān)的順式作用元件(TC-rich)、低溫誘導(dǎo)的順式元件(LTR)、厭氧誘導(dǎo)的增強(qiáng)子類順式作用元件(GC-motif);以及4種激素相關(guān)順式作用元件:脫落酸響應(yīng)順式作用元件(ABRE)、赤霉素反應(yīng)元件(GARE-motif)、茉莉酸甲酯響應(yīng)元件(TGACG motif/CGTCA-motif)、赤霉素應(yīng)答元件(P-box)。11個(gè)AcOSCA基因啟動(dòng)子區(qū)域含有涉及干旱誘導(dǎo)性的MBS元件和厭氧誘導(dǎo)相關(guān)ARE元件,推測這些基因與干旱誘導(dǎo)應(yīng)答有關(guān)。14個(gè)AcOSCA基因含有脫落酸響應(yīng)順式作用元件ABRE,5個(gè)AcOSCA基因含有低溫誘導(dǎo)LTR元件和涉及防御與應(yīng)激反應(yīng)的TC-rich repeats元件,推測這些基因與脅迫應(yīng)答和應(yīng)激反應(yīng)有關(guān)。此外,每個(gè)AcOSCA都含有豐富的CAAT-box和茉莉酸甲酯響應(yīng)元件TGACG-motif或CGTCA-motif。
2.8 獼猴桃OSCA家族基因成員在不同非生物脅迫下的表達(dá)特征
為了解獼猴桃OSCA家族基因在不同非生物脅迫下的表達(dá)情況,對(duì)它們?cè)诟珊?、鹽、低溫和高溫等非生物脅迫下的相對(duì)表達(dá)量進(jìn)行了分析。結(jié)果發(fā)現(xiàn),大多數(shù)OSCA基因均能響應(yīng)干旱、鹽、高溫和低溫脅迫,不同AdOSCA成員在這些非生物脅迫下具有不同的表達(dá)模式(圖6)。在15% PEG6000處理的干旱脅迫下,與對(duì)照(0 h)相比,AdOSCA9和AdOSCA13在處理48 h時(shí)表達(dá)量顯著下調(diào),其他AdOSCA基因在遭受干旱脅迫后表達(dá)量均有不同程度上調(diào)。其中AdOSCA3、AdOSCA4、AdOSCA7、AdOSCA8和AdOSCA15在24 h時(shí)相對(duì)表達(dá)量分別顯著上調(diào)至對(duì)照的3.0、2.8、3.2、3.8和3.1倍,AdOSCA8相對(duì)表達(dá)量最高且在48 h時(shí)表達(dá)量是對(duì)照的2.5倍。在150 mmol·L-1 NaCl溶液處理的鹽脅迫下,除AdOSCA4表達(dá)下調(diào)外,其他AdOSCA基因在24 h和48 h表達(dá)量均上調(diào),其中AdOSCA3、AdOSCA8和AdOSCA12在24 h時(shí)表達(dá)量分別顯著上調(diào)至對(duì)照的3.2、5.3和2.8倍,且在48 h時(shí)顯著上調(diào)至對(duì)照的3.4、10.0和4.0倍。在42 ℃處理的高溫脅迫條件下,AdOSCA3在24 h時(shí)上調(diào)至對(duì)照的2.9倍,在48 h時(shí)表達(dá)量為對(duì)照的2.6倍。在4 ℃處理的低溫脅迫下,AdOSCA3與AdOSCA14在24 h時(shí)分別上調(diào)至對(duì)照的2.9和2.4倍;AdOSCA8在24 h時(shí)表達(dá)量上調(diào)至對(duì)照的2.1倍且在48 h時(shí)表達(dá)量為對(duì)照的2.9倍;AdOSCA1在48 h時(shí)相對(duì)表達(dá)量最高,為對(duì)照3.4倍(圖6)。
在所有獼猴桃OSCA基因中,與對(duì)照相比,AdOSCA3在干旱、鹽、高溫和低溫脅迫處理下表達(dá)上調(diào)均非常明顯;AdOSCA8在干旱、鹽和低溫脅迫下表達(dá)上調(diào)較明顯;AdOSCA1和AdOSCA14在低溫脅迫處理下表達(dá)上調(diào)較明顯;AdOSCA7和AdOSCA15在干旱脅迫處理下表達(dá)上調(diào)較明顯(圖6)。因此,這些基因的表達(dá)與相關(guān)非生物脅迫密切相關(guān),可能在獼猴桃對(duì)干旱、鹽、高溫或低溫脅迫的應(yīng)答過程中發(fā)揮重要作用。
3 討 論
3.1 AcOSCA基因家族結(jié)構(gòu)與系統(tǒng)進(jìn)化
OSCA基因家族在不同植物中廣泛存在,系統(tǒng)發(fā)育分析表明,植物OSCA家族蛋白在進(jìn)化中分為4個(gè)主要分支[7],目前已在擬南芥、番茄、大豆、水稻、小麥、黃瓜和辣椒等植物中分別鑒定到多個(gè)OSCA基因成員[11-13,16,22-25]。筆者在本研究中首次在獼猴桃基因組中鑒定出16個(gè)OSCA家族成員,其與擬南芥OSCA基因家族成員數(shù)量相近,均含有DUF221結(jié)構(gòu)域,其蛋白成員同樣可分為4個(gè)分支。對(duì)16個(gè)AcOSCA基因進(jìn)行編碼蛋白亞細(xì)胞定位、基因結(jié)構(gòu)分析、啟動(dòng)子區(qū)域順式作用元件和系統(tǒng)進(jìn)化關(guān)系進(jìn)行的分析表明,AcOSCA家族蛋白主要定位于細(xì)胞膜和(或)葉綠體,說明該家族主要在細(xì)胞膜或葉綠體中發(fā)揮作用。順式作用元件分析發(fā)現(xiàn),多數(shù)AcOSCA基因啟動(dòng)子區(qū)域含有干旱、激素、防御和應(yīng)激反應(yīng)等相關(guān)元件,這與番茄中的研究結(jié)果相似[26]。與單子葉植物水稻相比,獼猴桃OSCA蛋白家族成員與雙子葉植物番茄和擬南芥進(jìn)化關(guān)系更近,對(duì)雙子葉植物辣椒的研究也發(fā)現(xiàn)類似的結(jié)果[25]。四個(gè)分支中,Group Ⅲ與Group Ⅳ的基因成員內(nèi)含子數(shù)量相近,Group Ⅱ中的成員內(nèi)含子數(shù)量較少,Group Ⅰ中的成員無內(nèi)含子。獼猴桃Group Ⅰ中僅含有一個(gè)成員,即AcOSCA1,結(jié)合順式作用元件分析發(fā)現(xiàn),啟動(dòng)子區(qū)含有較多MBS、ABRE、LTR元件,它們與干旱、脫落酸和低溫誘導(dǎo)相關(guān)。因此,推測該基因在獼猴桃逆境脅迫響應(yīng)中發(fā)揮重要作用。獼猴桃OSCA蛋白家族每個(gè)分支的成員都包含共有的保守基序,且不同分支間保守基序分布的位置相似,表明其蛋白質(zhì)結(jié)構(gòu)相對(duì)保守。
3.2 OSCA基因家族成員與非生物脅迫的表達(dá)關(guān)系
近年來,OSCA基因家族除在梨[17]中有報(bào)道外,在獼猴桃等其他果樹中尚未進(jìn)行研究。筆者在本研究中利用qRT-PCR技術(shù)檢測OSCA家族基因在不同非生物脅迫(干旱、鹽、低溫、高溫)處理下的相對(duì)表達(dá)量,結(jié)果發(fā)現(xiàn),與對(duì)照相比,AdOSCA1、AdOSCA3、AdOSCA4、AdOSCA5、AdOSCA7、AdOSCA8、AdOSCA9、AdOSCA11、AdOSCA12、AdOSCA13、AdOSCA14、AdOSCA15和AdOSCA16在相應(yīng)一種或多種非生物脅迫處理下表達(dá)量均上調(diào)。其中,AdOSCA3和AdOSCA11在4種非生物脅迫下均顯著上調(diào)?;蜣D(zhuǎn)錄水平受其上游啟動(dòng)子序列中順式作用元件與相關(guān)轉(zhuǎn)錄因子相互作用調(diào)控[27],結(jié)合啟動(dòng)子順式作用元件分析有助于預(yù)測相關(guān)基因的功能。本研究發(fā)現(xiàn),MBS、TGACG-motif/ CGTCA-motif、ABRE、LTR和ARE這些與干旱、茉莉酸甲酯、脫落酸、低溫及厭氧誘導(dǎo)相關(guān)的順式作用元件在OSCA3基因上游啟動(dòng)子區(qū)域均有分布。其中,與其他基因相比,AdOSCA8基因?qū)Ω珊岛望}兩種脅迫處理的響應(yīng)最強(qiáng)烈,因此,AdOSCA8在響應(yīng)干旱和鹽脅迫過程中可能發(fā)揮十分重要的作用,推測AdOSCA8對(duì)干旱和鹽脅迫的響應(yīng)通路可能存在一定的交互性。擬南芥OSCA1.1(At4g04340)被鑒定為植株滲透感知通路的重要基因,它編碼的蛋白定位于葉和根部細(xì)胞的細(xì)胞膜上,扮演離子通道角色,可使Ca2+在干旱條件下大量涌入細(xì)胞[1]。與OSCA1.1高度同源的OSCA1.2(At4g22120),是調(diào)控Ca2+滲透的陽離子通道,該蛋白可在高滲脅迫下增加細(xì)胞內(nèi)Ca2+濃度,且對(duì)K+和Na+具有一定的滲透性[15]。筆者在本研究中發(fā)現(xiàn),獼猴桃OSCA8與擬南芥OSCA1.1和OSCA1.2序列相似度較高,進(jìn)化上均屬于Group Ⅳ分支,且均能響應(yīng)干旱脅迫,因此,OSCA8與擬南芥OSCA1.1和OSCA1.2可能具有相似的功能。前人研究發(fā)現(xiàn),OSCA1.1和OSCA1.2在擬南芥中對(duì)滲透壓有響應(yīng),可被通過膜傳遞的機(jī)械力激活并可作為一種固有的機(jī)械敏感性成孔離子通道[15,28-29]。推測獼猴桃OSCA8基因可能對(duì)滲透壓較敏感。
筆者在本研究中發(fā)現(xiàn),部分OSCA基因僅響應(yīng)一種脅迫,例如,OSCA1與OSCA14、OSCA7與OSCA15僅在低溫或干旱脅迫處理下表達(dá)量發(fā)生顯著變化,而在其他脅迫處理下表達(dá)量未有明顯變化。在PEG模擬的干旱脅迫處理下,番茄SlOSCA7(Solyc06g084330)在4 h上調(diào)至對(duì)照的80倍[26],與之相似,獼猴桃OSCA7和OSCA15與SlOSCA7在系統(tǒng)進(jìn)化樹中屬于同一分支中進(jìn)化關(guān)系相近的基因,且均在干旱脅迫處理下表達(dá)量顯著上調(diào),說明具有相似結(jié)構(gòu)的OSCA7、OSCA15和SlOSCA7,可能具有相似的功能,在干旱脅迫的應(yīng)激響應(yīng)中發(fā)揮重要作用。SlOSCA9(Solyc08g023440)在鹽、干旱脅迫下表達(dá)差異明顯[26],相似地,與SlOSCA9屬于同一分支的同源獼猴桃基因OSCA3,在鹽、干旱脅迫處理下表達(dá)受到顯著誘導(dǎo),推測OSCA3在獼猴桃應(yīng)對(duì)鹽、干旱脅迫響應(yīng)中發(fā)揮重要作用。
4 結(jié) 論
筆者在本研究中首次鑒定并分析了獼猴桃OSCA基因家族成員,對(duì)OSCA家族基因在不同非生物脅迫處理下的表達(dá)特征進(jìn)行了分析。研究結(jié)果表明,獼猴桃AdOSCA1、AdOSCA3、AdOSCA4、AdOSCA5、AdOSCA7、AdOSCA8、AdOSCA9、AdOSCA11、AdOSCA12、AdOSCA13、AdOSCA14、AdOSCA15和AdOSCA16在相應(yīng)的一種或多種非生物脅迫處理下表達(dá)量顯著上調(diào),其中OSCA3和OSCA11在4種不同的非生物脅迫下表達(dá)量均顯著上調(diào)。后期可對(duì)相關(guān)關(guān)鍵候選基因進(jìn)行克隆和功能鑒定,深入解析這些OSCA基因在獼猴桃應(yīng)對(duì)非生物脅迫過程中的功能。
參考文獻(xiàn)References:
[1] ZHANG H,ZHAO Y,ZHU J K. Thriving under stress:How plants balance growth and the stress response[J]. Developmental Cell,2020,55(5):529-543.
[2] VERMA V,RAVINDRAN P,KUMAR P P. Plant hormone-mediated regulation of stress responses[J]. BMC Plant Biology,2016,16:86.
[3] ISAH T. Stress and defense responses in plant secondary metabolites production[J]. Biological Research,2019,52(1):39.
[4] WANI S H,ANAND S,SINGH B,BOHRA A,JOSHI R. WRKY transcription factors and plant defense responses:Latest discoveries and future prospects[J]. Plant Cell Reports,2021,40(7):1071-1085.
[5] ZHU J K. Salt and drought stress signal transduction in plants[J]. Annual Review of Plant Biology,2002,53:247-273.
[6] BATISTI? O,KUDLA J. Analysis of calcium signaling pathways in plants[J]. Biochimica et Biophysica Acta-General Subjects,2012,1820(8):1283-1293.
[7] 柴利芳. 植物OSCA家族的起源與進(jìn)化[D]. 臨汾:山西師范大學(xué),2019.
CHAI Lifang. Origin and evolution of OSCA family in plants[D]. Linfen:Shanxi Normal University,2019.
[8] PERMYAKOV E A,KRETSINGER R H. Cell signaling,beyond cytosolic calcium in eukaryotes[J]. Journal of Inorganic Biochemistry,2009,103(1):77-86.
[9] KUDLA J,BATISTI? O,HASHIMOTO K. Calcium signals:the lead currency of plant information processing[J]. The Plant Cell,2010,22(3):541-563.
[10] BERRIDGE M J,LIPP P,BOOTMAN M D. The versatility and universality of calcium signalling[J]. Nature Reviews Molecular Cell Biology,2000,1:11-21.
[11] LI Y S,YUAN F,WEN Z H,LI Y H,WANG F,ZHU T,ZHUO W Q,JIN X,WANG Y D,ZHAO H P,PEI Z M,HAN S C. Genome-wide survey and expression analysis of the OSCA gene family in rice[J]. BMC Plant Biology,2015,15:261.
[12] MIAO S,LI F S,HAN Y,YAO Z T,XU Z Q,CHEN X L,LIU J Y,ZHANG Y,WANG A X. Identification of OSCA gene family in Solanum habrochaites and its function analysis under stress[J]. BMC Genomics,2022,23(1):547.
[13] YUAN F,YANG H M,XUE Y,KONG D D,YE R,LI C J,ZHANG J Y,THEPRUNGSIRIKUL L,SHRIFT T,KRICHILSKY B,JOHNSON D M,SWIFT G B,HE Y K,SIEDOW J N,PEI Z M. OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis[J]. Nature,2014,514:367-371.
[14] 張紅娟,朱德鶴,杜琳穎,毛虎德. 小麥OSCA基因家族全基因組鑒定及表達(dá)分析[J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2022,50(12):25-33.
ZHANG Hongjuan,ZHU Dehe,DU Linying,MAO Hude. Genome-wide identification and expression analysis of the OSCA gene family in wheat[J]. Journal of Northwest A & F University (Natural Science Edition),2022,50(12):25-33.
[15] HOU C C,TIAN W,KLEIST T,HE K,GARCIA V,BAI F L,HAO Y L,LUAN S,LI L G. DUF221 proteins are a family of osmosensitive calcium-permeable cation channels conserved across eukaryotes[J]. Cell Research,2014,24(5):632-635.
[16] LIU C G,WANG H,ZHANG Y,CHENG H J,HU Z L,PEI Z M,LI Q. Systematic characterization of the OSCA family members in soybean and validation of their functions in osmotic stress[J]. International Journal of Molecular Sciences,2022,23(18):10570.
[17] 顧小雨. 梨OSCA基因家族分析及PbrOSCA2.6和PbrOSCA3.2的功能驗(yàn)證[D]. 南京:南京農(nóng)業(yè)大學(xué),2017.
GU Xiaoyu. OSCA family analysis and functional validation of PbrOSCA2.6 and PbrOSCA3.2 in Pyrus[D]. Nanjing:Nanjing Agricultural University,2017.
[18] LI Y Y,ZHANG Y B,LI B,HOU L Y,YU J N,JIA C G,WANG Z,CHEN S Q,ZHANG M Z,QIN J C,CAO N,CUI J H,SHI W L. Preliminary expression analysis of the OSCA gene family in maize and their involvement in temperature stress[J]. International Journal of Molecular Sciences,2022,23(21):13658.
[19] 徐小彪,張秋明. 中國獼猴桃種質(zhì)資源的研究與利用[J]. 植物學(xué)通報(bào),2003,20(6):648-655.
XU Xiaobiao,ZHANG Qiuming. Researches and utilizations of germplasm resource of kiwifruit in China[J]. Chinese Bulletin of Botany,2003,20(6):648-655.
[20] JIA D F,YI S Y,HUANG Q Q,LIU Q,HE Y Q,LIAO G L,HUANG C H,XU X B. Comprehensive analysis of a red-peel kiwi berry mutant reveals key genes are responsible for anthocyanin biosynthesis in fruit[J]. Scientia Horticulturae,2023,309:111682.
[21] VANDESOMPELE J,DE PRETER K,PATTYN F,POPPE B,VAN ROY N,DE PAEPE A,SPELEMAN F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes[J]. Genome Biology,2002,3(7):RESEARCH0034.
[22] LI M,WU Z Y,GU H,CHENG D W,GUO X Z,LI L,SHI C Y,XU G Y,GU S C,ABID M,ZHONG Y P,QI X J,CHEN J Y. AvNAC030,a NAC domain transcription factor,enhances salt stress tolerance in kiwifruit[J]. International Journal of Molecular Sciences,2021,22(21):11897.
[23] TONG K,WU X Y,HE L,QIU S Y,LIU S,CAI L N,RAO S F,CHEN J P. Genome-wide identification and expression profile of OSCA gene family members in Triticum aestivum L.[J]. International Journal of Molecular Sciences,2021,23(1):469.
[24] YANG S T,ZHU C X,CHEN J J,ZHAO J D,HU Z Y,LIU S Q,ZHOU Y. Identification and expression profile analysis of the OSCA gene family related to abiotic and biotic stress response in cucumber[J]. Biology,2022,11(8):1134.
[25] 李嘉琪,羅石磊,張帥磊,張文淵,張國斌. 辣椒OSCA基因家族的全基因組鑒定及不同脅迫條件下表達(dá)分析[J]. 植物科學(xué)學(xué)報(bào),2022,40(2):187-196.
LI Jiaqi,LUO Shilei,ZHANG Shuailei,ZHANG Wenyuan,ZHANG Guobin. Genome-wide identification of pepper OSCA gene family and expression analysis under different stress conditions[J]. Plant Science Journal,2022,40(2):187-196.
[26] 王傲雪,張可為,張瑤,陳秀玲,劉佳音. 番茄OSCA基因家族鑒定及不同脅迫條件下表達(dá)分析[J]. 東北農(nóng)業(yè)大學(xué)學(xué)報(bào),2019,50(1):19-28.
WANG Aoxue,ZHANG Kewei,ZHANG Yao,CHEN Xiuling,LIU Jiayin. Identification of tomato OSCA gene family and expression analysis under different stress conditions[J]. Journal of Northeast Agricultural University,2019,50(1):19-28.
[27] QIU J F,NI L,XIA X,CHEN S H,ZHANG Y,LANG M,LI M Y,LIU B M,PAN Y,LI J H,ZHANG X G. Genome-wide analysis of the protein phosphatase 2C genes in tomato[J]. Genes,2022,13(4):604.
[28] JOJOA-CRUZ S,SAOTOME K,MURTHY S E,TSUI C C A,SANSOM M S,PATAPOUTIAN A,WARD A B. Cryo-EM structure of the mechanically activated ion channel OSCA1.2[J]. ELife,2018,7:e41845.
[29] ZHANG M F,WANG D L,KANG Y L,WU J X,YAO F Q,PAN C F,YAN Z Q,SONG C,CHEN L. Structure of the mechanosensitive OSCA channels[J]. Nature Structural & Molecular Biology,2018,25(9):850-858.