張紅歡 楊興旺 冀曉昊 王瑩瑩 時(shí)夢(mèng) 王小龍 王志強(qiáng) 張麗霞 王孝娣
摘? ? 要:【目的】研究不同樹形對(duì)促早栽培桃樹冠層光照及果實(shí)品質(zhì)的影響,為篩選出適宜桃促早栽培的高光效省力化樹形提供理論參考?!痉椒ā恳?年生中農(nóng)早珍珠容器栽培苗為試材,研究主干形、水平中心干多直立主枝形、對(duì)向V形、水平中心干多對(duì)向V形4種樹形對(duì)冠層相對(duì)光照度、冠層結(jié)構(gòu)、光合日變化和果實(shí)品質(zhì)的影響。【結(jié)果】各樹形冠層平均相對(duì)光照度由高到低依次是對(duì)向V形、水平中心干多對(duì)向V形、水平中心干多直立主枝形、主干形,對(duì)向V形有效光區(qū)占比最大,為77.73%。對(duì)向V形的光能截獲率和葉片一天光合凈積累量最高,分別為92.70%和1 768.97 mmol·m-2。對(duì)向V形、水平中心干多對(duì)向V形的果香型揮發(fā)物酯類、內(nèi)酯類物質(zhì)及具有花香型香氣特性的芳樟醇含量均高于其他2種樹形?!窘Y(jié)論】對(duì)4種樹形的11個(gè)指標(biāo)進(jìn)行主成分分析,綜合多方面的因素得出,4種樹形的優(yōu)劣順序依次為:對(duì)向V形、水平中心干多對(duì)向V形、主干形、水平中心干多直立主枝形。對(duì)向V形綜合得分最高,果實(shí)品質(zhì)較好,是比較適宜促早栽培模式下中農(nóng)早珍珠桃的優(yōu)良樹形。
關(guān)鍵詞:桃;中農(nóng)早珍珠;樹形;促早栽培;冠層結(jié)構(gòu);果實(shí)品質(zhì)
中圖分類號(hào):S662.1 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2024)03-0470-11
Effects of tree shape on canopy structure, photosynthetic characteristics and fruit quality of early cultivated nectarine
ZHANG Honghuan, YANG Xingwang, JI Xiaohao, WANG Yingying, SHI Meng, WANG Xiaolong, WANG Zhiqiang, ZHANG Lixia, WANG Xiaodi*
(Research Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, Liaoning, China)
Abstract: 【Objective】 Choosing a good tree shape and improve the light distribution in the inner canopy is a common concern of researchers. It is necessary to explore the tree shape with high light efficiency and labor saving. This study examined the effects of different tree shapes on canopy structure and fruit quality of peach cultivated for early production, so as to select suitable tree shapes with high photosynthetic efficiency and labor saving. 【Methods】 Zhongnong Zaozhenzhu is a new early nectarine variety bred from the offspring of Autumn Red Pearl, which is suitable for cultivation in open fields and greenhouses in Huludao and the south area of Liaoning province. The Zhongnong Zaozhenzhu nectarine was taken as the test material, and it was a 4-year container cultivated seeding. The relative light intensity, canopy structure, diurnal variation of photosynthesis and fruit quality were studied in trees with different tree shape including central leader shape (CL), guyot trellis (GT), opposite V shape (OV), and tatura V trellis (TV). 【Results】 The tree shapes with the average relative light intensity from high to low were OV, TV, GT and CL. The ratio of effective light region in OV was the largest, which was 77.73%. The canopy area with relative light intensity lower than 40% was regarded as low light efficiency area. The proportion of low light efficiency area in OV and GT was significantly lower than that in TV and CL and was 10.75% and 6.10%, respectively, compared with CL. There was a positive correlation between total gap fraction and openness. The total gap fraction and openness of CL and GT were significantly higher than those of OV and TV. Among them, the total gap fraction and openness of the canopy in GT were the largest, 36.21% and 38.09%, respectively. Those in TV were the smallest, being 11.10% and 11.43%, respectively. The trend of leaf area index was opposite to that of total gap fraction and openness. The leaf area index of OV and TV was significantly higher than that of CL and GT. Among the four tree types, OV had the highest light interception rate and daily net photosynthetic accumulation of the leaves, which were 92.70% and 1 768.97 mmol·m-2 respectively. In the upper, middle and lower layers of the canopy, the single fruit weight in OV was significantly higher than that of the other tree shapes. The content of soluble solids in fruit of the upper and middle canopy in OV was significantly higher than that in the other tree shapes. The content of soluble solids content in the lower layer of TV was significantly higher than that in other tree shapes. The titrable acid content in upper and middle canopy fruit in OV was significantly higher than that in the other tree shapes. No lactones were detected in CL and GT. The highest content of lactones was detected in OV (52.42 ng·g-1). The content of esters detected in OV was 8.6 times and 10.1 times of that in CL and GT, respectively. The content of esters detected in TV was 4.7 times and 5.5 times of that in CL and GT, respectively. The contents of esters and lactones were higher in OV and TV. The content of linalool with flower-like aroma was higher in OV and TV. 【Conclusion】 Principal component analysis was carried out on the 11 indicators of 4 tree shapes, and 3 principal components were extracted. The cumulative variance contribution rate reached 87.759%, and the corresponding variance contribution rate was 61.899%, 16.269% and 9.591% respectively, which basically represented the majority of information of all indicators. The 11 indexes were thus selected for principal component analysis. The results showed that the score in the order from high to low was OV>TV>CL>GT. The opposite V shape had the highest comprehensive score and the fruit quality was the best. It is an excellent tree shape for promoting early cultivation of early nectarine varieties.
Key words: Peach; Zhongnong Zaozhenzhu; Tree shapes; Early budding culture in protected cultivation; Canopy structure; Fruit quality
據(jù)FAO統(tǒng)計(jì),2021年全球桃樹種植面積為150.47萬hm2,產(chǎn)量為2 499.44萬t,我國(guó)桃樹種植面積達(dá)82.50萬hm2,產(chǎn)量達(dá)到1 601.65萬t,在全球比重分別為54.83%、64.08%,均位列全球第一,我國(guó)桃產(chǎn)業(yè)總產(chǎn)值近千億元,是助推鄉(xiāng)村產(chǎn)業(yè)興旺、農(nóng)民生活富裕的重要經(jīng)濟(jì)支柱[1]。樹形結(jié)構(gòu)影響桃果實(shí)產(chǎn)量、品質(zhì)及經(jīng)濟(jì)效益,是制定栽培管理措施的重要因素[2-3]。桃樹常見的樹形有自然開心形、主干形、Y字形等,生產(chǎn)中存在修剪操作復(fù)雜、樹體高大、內(nèi)膛光照不良、結(jié)果部位外移等問題,無法滿足生產(chǎn)者的需求。如何選擇合適的樹形,改善和提高樹冠內(nèi)層光分布,是科研工作者普遍關(guān)注的問題,因此有必要對(duì)高光效、省力化、輕簡(jiǎn)宜機(jī)樹形進(jìn)行探索研究[4-5]。
中農(nóng)早珍珠是從秋紅珠的實(shí)生后代中選育出的早熟油桃新品種,平均單果質(zhì)量72.9 g,可溶性固形物含量14.1%,風(fēng)味濃甜,深受消費(fèi)者喜愛[6]。筆者以促早栽培的中農(nóng)早珍珠為研究對(duì)象,通過研究主干形、水平中心干多直立主枝形[7]、對(duì)向V形[8]、水平中心干多對(duì)向V形[9]4種樹形對(duì)樹體冠層結(jié)構(gòu)、光合作用和果實(shí)品質(zhì)等指標(biāo)的影響,篩選設(shè)施促早栽培中農(nóng)早珍珠適宜的高光效省力化樹形,為高效優(yōu)質(zhì)栽培提供理論依據(jù)。
1 材料和方法
1.1 材料
試驗(yàn)于2023年1—6月在中國(guó)農(nóng)業(yè)科學(xué)院果樹研究所砬山試驗(yàn)基地進(jìn)行。供試品種為4年生容器栽培桃中農(nóng)早珍珠,容器栽培選用圓形塑料種植盆,高28 cm,直徑43 cm,試材擺放深度為23 cm,于2021年上半年完成樹形培養(yǎng),樹形采用主干形(A)、水平中心干多直立主枝形(B)、對(duì)向V形(C)、水平中心干多對(duì)向V形(D),樹形示意圖見圖1。
1.2 試驗(yàn)設(shè)計(jì)
試驗(yàn)設(shè)置4種樹形行株距均為2 m×1 m,南北行向,單株小區(qū),3次重復(fù)。A樹高2 m,定干高度(第一結(jié)果枝距種植盆內(nèi)地上部分與地下部分交界處)40 cm,東西冠幅175 cm,南北冠幅100 cm。B樹高2.5 m,定干高度65 cm,東西冠幅140 cm,直立主枝間距50 cm,行向留結(jié)果枝。C樹高1.5 m,定干高度90 cm,東西冠幅200 cm,南北冠幅140 cm,兩主干枝夾角為90°~100°。D樹高1.5 m,定干高度80 cm,東西冠幅190 cm,南北冠幅130 cm,兩主干枝夾角為90°~100°。
選取長(zhǎng)勢(shì)基本一致的樹體作為試材,應(yīng)用冠層分格方法[10-11],結(jié)合不同樹形具體的樹體結(jié)構(gòu)參數(shù),將A樹冠垂直方向上劃分為下層(距地面小于0.8 m)、中層(距地面0.8~1.3 m)、上層(距地面大于1.3 m),在水平方向上東西距主干距離劃分為0.3 m、0.6 m、0.9 m,南北距主干距離劃分為0.2 m、0.4 m、0.6 m。將B樹冠垂直方向上劃分為下層(距地面小于1.3 m)、中層(距地面1.3~1.9 m)、上層(距地面大于1.9 m),在水平方向上東西距主干距離劃分為0.3 m、0.6 m、0.9 m,南北距主干距離劃分為0.25 m、0.50 m、0.75 m。將C樹冠垂直方向上劃分為下層(距地面小于1.1 m)、中層(距地面1.1~1.3 m)、上層(距地面大于1.3 m),在水平方向上東西距主干距離劃分為0.3 m、0.6 m、0.9 m,南北距主干距離劃分為0.2 m、0.4 m、0.6 m。將D樹冠垂直方向上劃分為下層(距地面小于1.0 m)、中層(距地面1.0~1.2 m)、上層(距地面大于1.2 m),在水平方向上東西距主干距離劃分為0.3 m、0.6 m、0.9 m,南北距主干距離劃分為0.2 m、0.4 m、0.6 m。
1.3 測(cè)定項(xiàng)目及方法
1.3.1 冠層指標(biāo)測(cè)定 應(yīng)用冠層分格法,于葉幕形成期,選擇典型的晴天,用TSE-1332型數(shù)字式照度計(jì),測(cè)定樹冠內(nèi)不同層次、不同方位的相對(duì)光照度值,在距地面2.5 m、距墻體3 m、行間無遮擋的地方測(cè)量空白值,連續(xù)測(cè)定3 d,每次的測(cè)量時(shí)間為10:00、14:00,以測(cè)量數(shù)據(jù)平均值作為不同層次不同部位的相對(duì)光照度值[12]。統(tǒng)計(jì)樹冠不同層次方格空間的相對(duì)光照度。
在葉幕穩(wěn)定期,選擇陰天或者傍晚,利用冠層/半球影像分析系統(tǒng)(scanopy analysis with fish-eye imaging)測(cè)定各樹形冠層的總孔隙度、開度、葉面積指數(shù)和葉幕光能截獲率[冠層總輻射(total over per day,PPFD,mol·m-2·d-1)和葉幕下總輻射(total under per day,PPFD,mol·m-2·d-1)的差值與冠層總輻射的比值][13]。
1.3.2 光合性能測(cè)定 2023年5月中旬,選擇典型的晴天,06:30至18:30每隔3 h進(jìn)行1次田間測(cè)定,選取試材東南方向、外圍枝條的成熟葉片,使用CIRAS-2光合儀測(cè)定葉片的凈光合速率(Pn)。不同樹形葉片一天光合的凈積累量計(jì)算方法:用origin求曲線積分面積。
1.3.3 果實(shí)品質(zhì)指標(biāo)測(cè)定 在果實(shí)成熟期從各個(gè)處理每株樹的3層各隨機(jī)均勻摘選果形端正、無病蟲害的10個(gè)果實(shí),帶回實(shí)驗(yàn)室測(cè)定果實(shí)品質(zhì)。采用BL-500S型電子天平稱量單果質(zhì)量;采用CR-400手持色差計(jì)測(cè)定陰陽(yáng)果面色差;采用折光儀(PAL-1,日本)測(cè)定可溶性固形物含量;采用全自動(dòng)電位滴定儀(905,瑞士萬通公司)測(cè)定可滴定酸含量;采用物性分析儀(TA. HD. Plus,英國(guó))測(cè)定果肉硬度;采用鉬藍(lán)比色法測(cè)定果實(shí)維生素C含量。3次重復(fù),計(jì)算平均值。
采用固相微萃取結(jié)合氣相質(zhì)譜聯(lián)用儀測(cè)定香氣組分和含量,具體方法參照J(rèn)i等[14]的報(bào)道。稱取200 g樣品進(jìn)行勻漿,稱取5 g勻漿于20 mL氣相頂空瓶中,加入1 g氯化鈉和5 μL 2-辛醇(0.812 g·L-1),壓蓋器密封,-80 ℃保存待測(cè)。樣品瓶40 ℃水浴恒溫平衡10 min,將 Supelco 50/30 μm PDMS/CAR/DVB固相微萃取頭插入樣品瓶頂空部分,40 ℃水浴30 min萃取香氣組分;Agilent 7890A-5975C氣相色譜-質(zhì)譜聯(lián)用儀測(cè)定香氣組分。數(shù)據(jù)分析使用系統(tǒng)自帶的色譜工作站,積分參數(shù)為初始面積截除10 000,初始峰寬0.1,肩峰檢測(cè)OFF,初始閾值5.0;譜庫(kù)選擇NIST11標(biāo)準(zhǔn)譜庫(kù);采用2-辛醇內(nèi)標(biāo)法對(duì)香氣成分進(jìn)行定量分析。
1.4 數(shù)據(jù)處理
采用Excel 2021軟件整理試驗(yàn)數(shù)據(jù),采用SPSS 26.0軟件對(duì)數(shù)據(jù)進(jìn)行單因素方差分析及主成分分析,采用Excel 2021軟件及Matlab軟件繪圖。
2 結(jié)果與分析
2.1 不同樹形對(duì)中農(nóng)早珍珠油桃樹體冠層及光照的影響
2.1.1 相對(duì)光照度立體分布 不同樹形處理下,中農(nóng)早珍珠油桃樹體冠層光照分布存在較大差異。從圖2可以看出,A、B冠層內(nèi)相對(duì)光照度分布總趨勢(shì)是由外到內(nèi)、由上到下遞減,C、D樹體上、下層相對(duì)光照度分布較均勻,中層的相對(duì)光照度分布由外到內(nèi)遞增。
統(tǒng)計(jì)各樹體冠層不同區(qū)域相對(duì)光照度,由表1可知,平均相對(duì)光照度由高到低的樹形依次是C(62.70%)、D(61.67%)、B(60.78%)、A(56.54%)。相對(duì)光照度低于40%的冠層區(qū)域?qū)儆诘凸庑^(qū)域[12]。C、D的低光效區(qū)比例顯著低于A、B的低光效區(qū)比例,且與A相比分別降低了10.75、6.10個(gè)百分點(diǎn)。在所有處理中,C相對(duì)光照度大于40%的區(qū)域占比最大,為77.73%,顯著高于其他3個(gè)樹形。
2.1.2 冠層特征參數(shù) 從表2可以看出,總孔隙度與開度呈正相關(guān),A、B的總孔隙度與開度顯著高于C、D,其中,B的總孔隙度、開度均為最大,分別是36.21%、38.09%;D最小,分別是11.10%、11.43%。葉面積指數(shù)與總孔隙度和開度趨勢(shì)相反,C、D的葉面積指數(shù)顯著高于A、B。數(shù)據(jù)表明,樹體葉面積指數(shù)越大,結(jié)構(gòu)越緊湊,光能截獲率越高,C、D的光能截獲率高于其他兩種樹形,分別為92.70%、90.83%。
2.2 不同樹形中農(nóng)早珍珠光合性能比較
由圖3、圖4、圖5可知,4種樹形的凈光合速率日變化均呈單峰曲線。在樹體上、中層,C、D的凈光合速率在一天中的大部分時(shí)間段均高于A、B。在樹體下層,4種樹形的凈光合速率在12:30時(shí)達(dá)到峰值,此時(shí)凈光合速率由高到低依次為C>D>B>A,分別為20.65、18.38、15.95、15.60 μmol·m-2·s-1。由表3可知,整體上看,C樹形葉片一天光合的凈積累量顯著高于其他3種樹形,為1 768.97 mmol·m-2。
2.3 不同樹形中農(nóng)早珍珠果實(shí)產(chǎn)量與品質(zhì)比較
4種樹形的果實(shí)產(chǎn)量比較接近,其中B、D樹形的果實(shí)產(chǎn)量略高于A樹形的果實(shí)產(chǎn)量(表4)。由圖6可知,在樹體上層、中層、下層,C的單果質(zhì)量均顯著高于其他樹形(D樹形下層除外),B、C兩種樹形不同部位果實(shí)的單果質(zhì)量自上而下呈現(xiàn)略微下降的趨勢(shì),A、D兩種樹形均以中層的單果質(zhì)量最小。A、B兩種樹形果實(shí)的果肉硬度顯著高于C、D。由圖7可知,C在上、中層的可溶性固形物含量顯著高于其他樹形,D在下層的可溶性固形物含量顯著高于其他樹形。C在上、中層的可滴定酸含量顯著高于其他樹形(A樹形上層除外),在下層,A、D、B的可滴定酸含量較接近,均顯著高于C樹形。由圖8可知,4種樹形的上層果實(shí)維生素C含量差異顯著,A最高,D最低;在樹體總體中,B、C、A、D的維生素C含量依次降低。
由表5可以看出,不同樹形處理之間的果面亮度L*無顯著差異。在樹體上層、下層中,各處理之間的紅綠色差a*無顯著差異,在中層,B、C、D、A的紅綠色差a*逐漸下降。在樹體上層、下層中,各處理之間的黃藍(lán)色差b*無顯著差異,在中層,C、D、B、A的黃藍(lán)色差b*逐漸上升。在不同樹形處理中,C的果實(shí)色彩飽和度C*最低。在樹體上層、下層中,各處理之間的果實(shí)色調(diào)角H°無顯著差異,在中層,A的果實(shí)色調(diào)角H°顯著高于其他樹形。從樹整體來看,4種樹形的果面亮度L*、黃藍(lán)色差b*、果實(shí)色調(diào)角H°無顯著差異,B和C樹形的紅綠色差a*、果實(shí)色彩飽和度C*呈顯著差異。
由表6可以看出,中農(nóng)早珍珠桃香氣物質(zhì)主要是一些醇類、萜類、醛類、酯類、內(nèi)酯類、酮類物質(zhì)。A樹形果實(shí)的醛類物質(zhì)含量分別是C、D的8.4倍、4.3倍,B樹形果實(shí)的醛類物質(zhì)含量分別是C、D的11.5倍、5.8倍。數(shù)據(jù)表明,A、B未檢測(cè)到內(nèi)酯類物質(zhì),C樹形果實(shí)的內(nèi)酯類物質(zhì)含量(w,后同)最高,為52.42 ng·g-1。C樹形果實(shí)的酯類物質(zhì)含量分別是A、B的8.6倍、10.1倍,D樹形果實(shí)的酯類物質(zhì)含量分別是A、B的4.7倍、5.5倍。芳樟醇為桃果實(shí)的主要呈味物質(zhì)之一,它具有花香型香氣特性。A、B未檢測(cè)到芳樟醇,C、D樹形果實(shí)的芳樟醇含量分別為60.89、74.86 ng·g-1。苯甲醛具有苦味,C、D樹形果實(shí)的苯甲醛含量比主干形分別減少了48%、69%。γ-癸內(nèi)酯和δ-癸內(nèi)酯是桃果實(shí)中最重要的內(nèi)酯,它們能賦予桃果實(shí)強(qiáng)烈的果香氣息,A、B未檢測(cè)到這2種內(nèi)酯類物質(zhì)。乙酸己酯是桃果實(shí)香氣的主要貢獻(xiàn)成分,C樹形果實(shí)的乙酸己酯含量最高,為928.77 ng·g-1。
2.4 主成分分析及綜合評(píng)價(jià)
主成分分析是通過降維的方式,將多個(gè)變量簡(jiǎn)化為少數(shù)的幾個(gè)綜合變量,使現(xiàn)有的幾個(gè)少數(shù)綜合變量可以直接反映原來變量的信息[15]。對(duì)4種樹形的11個(gè)指標(biāo)進(jìn)行主成分分析(表7),提取了3個(gè)主成分,累積方差貢獻(xiàn)率達(dá)87.759%,對(duì)應(yīng)的方差貢獻(xiàn)率分別為61.899%、16.269%、9.591%,基本能夠代表所有指標(biāo)的絕大部分信息。
將原始數(shù)據(jù)標(biāo)準(zhǔn)化,將各主成分相應(yīng)的因子得分乘以相應(yīng)方差的算術(shù)平方根,計(jì)算出綜合評(píng)價(jià)得分值,各得分值與相應(yīng)特征值的方差貢獻(xiàn)率的乘積累加,得出不同樹形的綜合評(píng)價(jià)指數(shù)[16]。如表8所示,綜合樹體相對(duì)光照度、冠層特征參數(shù)、果實(shí)品質(zhì)幾個(gè)方面的因素,得出4種樹形的優(yōu)劣順序依次為:C、D、A、B。
3 討 論
適宜的樹體結(jié)構(gòu)有利于冠層透光率的提高,樹冠內(nèi)的光照分布狀況會(huì)直接影響果實(shí)品質(zhì),果實(shí)品質(zhì)的提高是獲得最大經(jīng)濟(jì)效益的關(guān)鍵,是果樹栽植和整形的出發(fā)點(diǎn)和落腳點(diǎn)[10,17]。筆者比較了4種樹形不同層次的相對(duì)光照度和果實(shí)品質(zhì),C、D、B、A的平均相對(duì)光照度依次降低,C、D的低光效區(qū)比例顯著低于A、B的低光效區(qū)比例。在樹體上、中、下3層中,除D樹形下層外,C的單果質(zhì)量均顯著高于其他樹形,B、C兩種樹形不同部位果實(shí)的單果質(zhì)量自上而下呈現(xiàn)略微下降的趨勢(shì),與相對(duì)光照度呈正相關(guān),說明光照度會(huì)影響樹體的光合能力以及光合產(chǎn)物向果實(shí)的運(yùn)轉(zhuǎn)分配,進(jìn)而影響單果質(zhì)量,這與劉麗等[2]在中油20號(hào)桃上的研究結(jié)果一致。研究表明,果實(shí)品質(zhì)與光照度有關(guān),光照度高,光照分布均勻,葉片可以更好地進(jìn)行光合作用,一定程度上促進(jìn)優(yōu)質(zhì)果的生產(chǎn)[18-19]。果實(shí)品質(zhì)受土壤養(yǎng)分、當(dāng)?shù)貧夂驐l件、果園地理位置等多種因素影響[20],筆者僅對(duì)不同樹形果實(shí)品質(zhì)進(jìn)行了初步研究,還需進(jìn)一步探索。
總孔隙度、開度、葉面積指數(shù)是表征植被冠層結(jié)構(gòu)的重要參數(shù),與光能截獲及利用、果實(shí)產(chǎn)量和品質(zhì)的形成等過程密切相關(guān)[13,21]??偪紫抖扰c開度呈正相關(guān),二者對(duì)光能截獲率存在直接影響,葉面積指數(shù)越大,樹體結(jié)構(gòu)越緊湊,光能截獲率越高,光能浪費(fèi)越少。在本研究中,C和D的總孔隙度、開度顯著低于其他樹形,葉面積指數(shù)均高于其他樹形,兩者的光能截獲率均高于90%,且高于A、B的光能截獲率。C、D為單層葉幕,未出現(xiàn)樹體郁閉現(xiàn)象。
香氣作為重要的次生代謝產(chǎn)物,賦予了果實(shí)獨(dú)特的風(fēng)味品質(zhì),是果實(shí)重要的內(nèi)在品質(zhì)特征之一[22]。本研究中檢測(cè)到的香氣物質(zhì)主要是醇類、萜類、醛類、酮類、酯類和內(nèi)酯類物質(zhì)[23-25],乙酸己酯是桃果實(shí)香氣的主要貢獻(xiàn)成分,C樹形果實(shí)的乙酸己酯含量最高。C、D均提高了果實(shí)中酯類和內(nèi)酯類物質(zhì)的含量,降低了醇類物質(zhì)的含量,促進(jìn)了果實(shí)香氣由清香型向果香型轉(zhuǎn)變。以上結(jié)果表明,通過整形修剪這一栽培管理措施影響樹體透光情況及光能分布、果實(shí)的生長(zhǎng)發(fā)育,可以間接影響果實(shí)香氣物質(zhì)成分與含量[26-28]。
4 結(jié) 論
C冠層平均相對(duì)光照度最高,有效光照區(qū)域所占比例最高,光能截獲率最高,葉片一天光合的凈積累量最高。C、D兩種樹形的果香型揮發(fā)物酯類、內(nèi)酯類物質(zhì)含量較高,檢測(cè)到的具有花香型香氣特性的芳樟醇含量較高。C綜合得分最高,果實(shí)品質(zhì)整體較好,是比較適宜促早栽培模式下中農(nóng)早珍珠桃的優(yōu)良樹形。
參考文獻(xiàn)References:
[1] 徐磊,陳超. 中國(guó)桃產(chǎn)業(yè)經(jīng)濟(jì)分析與發(fā)展趨勢(shì)[J]. 果樹學(xué)報(bào),2023,40(1):133-143.
XU Lei,CHEN Chao. Economic situation and development countermeasures of Chinese peach industry[J]. Journal of Fruit Science,2023,40(1):133-143.
[2] 劉麗,李秋利,高登濤,魏志峰,石彩云,王志強(qiáng),劉軍偉. 樹形對(duì)桃樹生長(zhǎng)、產(chǎn)量和品質(zhì)的影響[J]. 果樹學(xué)報(bào),2022,39(1):36-46.
LIU Li,LI Qiuli,GAO Dengtao,WEI Zhifeng,SHI Caiyun,WANG Zhiqiang,LIU Junwei. Effects of tree shapes on growth,yield and quality of peach[J]. Journal of Fruit Science,2022,39(1):36-46.
[3] 王安柱,張芳芳,韓明玉,田海成,田玉命,趙彩平. 主干形桃樹對(duì)光截獲能力和果實(shí)產(chǎn)量品質(zhì)的影響[J]. 果樹學(xué)報(bào),2009,26(1):86-89.
WANG Anzhu,ZHANG Fangfang,HAN Mingyu,TIAN Haicheng,TIAN Yuming,ZHAO Caiping. Effects of the central leader tree form on the light interception ability,fruit yield and quality of peach[J]. Journal of Fruit Science,2009,26(1):86-89.
[4] 牛茹萱,趙秀梅,王晨冰,張帆,張雪冰,王發(fā)林. 桃不同樹形的冠層特征及對(duì)果實(shí)產(chǎn)量、品質(zhì)的影響[J]. 果樹學(xué)報(bào),2019,36(12):1667-1674.
NIU Ruxuan,ZHAO Xiumei,WANG Chenbing,ZHANG Fan,ZHANG Xuebing,WANG Falin. Effects of canopy characteristics on fruit yield and quality with different training systems in nectarines[J]. Journal of Fruit Science,2019,36(12):1667-1674.
[5] 黃國(guó)嫣,唐宗福,彭雅婷,王艷,李文祥. 不同樹形對(duì)‘麗江雪桃光合作用強(qiáng)度及果實(shí)品質(zhì)的影響[J]. 天津農(nóng)業(yè)科學(xué),2015,21(4):103-106.
HUANG Guoyan,TANG Zongfu,PENG Yating,WANG Yan,LI Wenxiang. Effects of different tree shapes on photosynthesis and fruit quality of ‘Lijiang Snow Peach[J]. Tianjin Agricultural Sciences,2015,21(4):103-106.
[6] 王瑩瑩,劉立常,劉志伍,鄭曉翠,王孝娣. 早熟油桃新品種‘中農(nóng)早珍珠[J]. 園藝學(xué)報(bào),2021,48(4):839-840.
WANG Yingying,LIU Lichang,LIU Zhiwu,ZHENG Xiaocui,WANG Xiaodi. A new early ripening nectarine cultivar ‘Zhongnong Zaozhenzhu[J]. Acta Horticulturae Sinica,2021,48(4):839-840.
[7] 王孝娣,王海波,劉鳳之,王瑩瑩. 一種利用水平中心干多直立主枝樹形栽培桃的方法:CN112806204A[P]. 2021-05-18[2023-07-25]. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=CN112806204A&DbName=SCPD2021.
WANG Xiaodi,WANG Haibo,LIU Fengzhi,WANG Yingying. Method for cultivating peaches by using tree form with multiple horizontal central trunks and upright main branches:CN112806204A[P]. 2021-05-18[2023-07-25]. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=CN112806204A&DbNa-
me=SCPD2021.
[8] 王孝娣,王海波,劉鳳之,鄭曉翠,宋楊. 一種高干Y形雙主干樹形栽培桃的方法:CN108094029B[P]. 2019-09-17[2023-07-25]. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=CN108094029B&DbName=SCPD2019.
WANG Xiaodi,WANG Haibo,LIU Fengzhi,ZHENG Xiaocui,SONG Yang. Method for culturing peach trees in high Y-shaped dual-trunk tree shape:CN108094029B[P]. 2019-09-17[2023-07-25]. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=CN108094029B&DbName=SCPD2019.
[9] 王孝娣,王海波,劉鳳之,王瑩瑩. 一種桃樹的整形修剪方法:CN111492881A[P]. 2020-08-07[2023-07-25]. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=CN111492881A&DbNa-me=SCPD2020.
WANG Xiaodi,WANG Haibo,LIU Fengzhi,WANG Yingying. Peach tree shaping and pruning method:CN111492881A[P]. 2020-08-07[2023-07-25]. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=CN111492881A&DbName=SCPD2020.
[10] 魏欽平,魯韌強(qiáng),張顯川,王小偉,高照全,劉軍. 富士蘋果高干開心形光照分布與產(chǎn)量品質(zhì)的關(guān)系研究[J]. 園藝學(xué)報(bào),2004,31(3):291-296.
WEI Qinping,LU Renqiang,ZHANG Xianchuan,WANG Xiaowei,GAO Zhaoquan,LIU Jun. Relationships between distribution of relative light intensity and yield and quality in different tree canopy shapes for ‘Fuji apple[J]. Acta Horticulturae Sinica,2004,31(3):291-296.
[11] ROBINSON T L,LAKSO A N,REN Z B. Modifying apple tree canopies for improved production efficiency[J]. HortScience,1991,26(8):1005-1012.
[12] 李民吉,張強(qiáng),李興亮,周貝貝,高木旺,楊雨璋,周佳,張軍科,魏欽平. 矮化中間砧‘宮藤富士蘋果栽植密度對(duì)樹體生長(zhǎng)、冠層光照和果實(shí)產(chǎn)量的影響[J]. 園藝學(xué)報(bào),2020,47(3):421-431.
LI Minji,ZHANG Qiang,LI Xingliang,ZHOU Beibei,GAO Muwang,YANG Yuzhang,ZHOU Jia,ZHANG Junke,WEI Qinping. Effect of different planting densities on growth,distribution of light in the canopy and yield of ‘Fuji apple trees on dwarfing interstocks[J]. Acta Horticulturae Sinica,2020,47(3):421-431.
[13] 史祥賓,劉鳳之,程存剛,王孝娣,冀曉昊,王寶亮,鄭曉翠,王海波. 設(shè)施葡萄不同新梢間距處理對(duì)冠層光環(huán)境及果實(shí)品質(zhì)的影響[J]. 園藝學(xué)報(bào),2018,45(3):436-446.
SHI Xiangbin,LIU Fengzhi,CHENG Cungang,WANG Xiaodi,JI Xiaohao,WANG Baoliang,ZHENG Xiaocui,WANG Haibo. Effects of different new shoots spacing on canopy light environment and fruit quality of grapevine under protected cultivation[J]. Acta Horticulturae Sinica,2018,45(3):436-446.
[14] JI X H,WANG B L,WANG X D,SHI X B,LIU P P,LIU F Z,WANG H B. Effects of different color paper bags on aroma development of Kyoho grape berries[J]. Journal of Integrative Agriculture,2019,18(1):70-82.
[15] 宋賀,何維,劉祚祚,李瑞婷,吳杰,廖天,姜燕. 基于主成分分析綜合評(píng)價(jià)“熱農(nóng)1號(hào)” 余甘子果實(shí)品質(zhì)[J]. 食品工業(yè)科技,2023,44(8):318-325.
SONG He,HE Wei,LIU Zuozuo,LI Ruiting,WU Jie,LIAO Tian,JIANG Yan. Comprehensive evaluation of “Renong No. 1” Phyllanthus emblica L. quality based on principal component analysis[J]. Science and Technology of Food Industry,2023,44(8):318-325.
[16] 劉丙花,王開芳,王小芳,梁靜,白瑞亮,解小鋒,孫蕾. 基于主成分分析的藍(lán)莓果實(shí)質(zhì)地品質(zhì)評(píng)價(jià)[J]. 核農(nóng)學(xué)報(bào),2019,33(5):927-935.
LIU Binghua,WANG Kaifang,WANG Xiaofang,LIANG Jing,BAI Ruiliang,XIE Xiaofeng,SUN Lei. Evaluation of fruit texture quality of blueberry based on principal component analysis[J]. Journal of Nuclear Agricultural Sciences,2019,33(5):927-935.
[17] HAMADZIRIPI E T,THERON K I,MULLER M,STEYN W J. Apple compositional and peel color differences resulting from canopy microclimate affect consumer preference for eating quality and appearance[J]. HortScience,2014,49(3):384-392.
[18] 龔鵬,楊波,辛玉寶,張平,張強(qiáng),李金明,楊偉. 扁桃不同樹形光合特性及產(chǎn)量的比較研究[J]. 新疆農(nóng)業(yè)科學(xué),2008,45(3):479-483.
GONG Peng,YANG Bo,XIN Yubao,ZHANG Ping,ZHANG Qiang,LI Jinming,YANG Wei. Comparative research on photosynthetic,characteristics and yield of different tree figures of almond[J]. Xinjiang Agricultural Sciences,2008,45(3):479-483.
[19] 陳久紅,馬建江,李永豐,位杰,王巖,黃國(guó)輝. 香梨不同樹形冠層結(jié)構(gòu)、光合特性及產(chǎn)量品質(zhì)的比較[J]. 河南農(nóng)業(yè)科學(xué),2021,50(8):113-123.
CHEN Jiuhong,MA Jianjiang,LI Yongfeng,WEI Jie,WANG Yan,HUANG Guohui. Comparison of canopy structure,photosynthetic characteristics,yield and quality of Korla fragrant pear with different tree shapes[J]. Journal of Henan Agricultural Sciences,2021,50(8):113-123.
[20] 何鳳梨,王飛,魏欽平,王小偉,張強(qiáng). 桃樹冠層相對(duì)光照分布與果實(shí)產(chǎn)量品質(zhì)關(guān)系的研究[J]. 中國(guó)農(nóng)業(yè)科學(xué),2008,41(2):502-507.
HE Fengli,WANG Fei,WEI Qinping,WANG Xiaowei,ZHANG Qiang. Relationship between distribution of relative light intensity in canopy and yield and quality of peach fruit[J]. Scientia Agricultura Sinica,2008,41(2):502-507.
[21] 牛茹萱,王晨冰,趙秀梅,王發(fā)林,王鴻. 非耕地日光溫室油桃根域限制對(duì)冠層特征及果實(shí)品質(zhì)的影響[J]. 果樹學(xué)報(bào),2017,34(1):26-32.
NIU Ruxuan,WANG Chenbing,ZHAO Xiumei,WANG Falin,WANG Hong. Effects of root restriction on canopy characteristics and fruit quality of greenhouse-grown nectarine in non-arable land[J]. Journal of Fruit Science,2017,34(1):26-32.
[22] 王慶華,王磊,吳文江,郭家選,沈元月,吳國(guó)良. 果實(shí)香氣物質(zhì)的合成及其激素調(diào)控研究進(jìn)展[J/OL]. 分子植物育種,2021:1-11. [2023-06-12]. http://kns.cnki.net/kcms/detail/46.1068.S.20211029.1846.006.html.
WANG Qinghua,WANG Lei,WU Wenjiang,GUO Jiaxuan,SHEN Yuanyue,WU Guoliang. Advances in aroma compounds biosynthesis and hormone regulation of fruit[J/OL]. Molecular Plant Breeding,2021:1-11. [2023-06-12]. http://kns.cnki.net/kcms/detail/46.1068.S.20211029.1846.006.html.
[23] WANG Y J,YANG C X,LI S H,YANG L,WANG Y N,ZHAO J B,JIANG Q. Volatile characteristics of 50 peaches and nectarines evaluated by HP-SPME with GC-MS[J]. Food Chemistry,2009,116(1):356-364.
[24] AUBERT C,MILHET C. Distribution of the volatile compounds in the different parts of a white-fleshed peach (Prunus persica L. Batsch)[J]. Food Chemistry,2007,102(1):375-384.
[25] 席萬鵬,郁松林,周志欽. 桃果實(shí)香氣物質(zhì)生物合成研究進(jìn)展[J]. 園藝學(xué)報(bào),2013,40(9):1679-1690.
XI Wanpeng,YU Songlin,ZHOU Zhiqin. Advances in aroma compounds biosynthesis of peach fruit[J]. Acta Horticulturae Sinica,2013,40(9):1679-1690.
[26] 王貴章,王貴禧,梁麗松,馬慶華. 桃果實(shí)芳香揮發(fā)物及其生物合成研究進(jìn)展[J]. 食品科學(xué),2014,35(17):278-284.
WANG Guizhang,WANG Guixi,LIANG Lisong,MA Qinghua. Recent progress in research on the composition and synthesis of aroma volatiles in peach fruits[J]. Food Science,2014,35(17):278-284.
[27] 李志宇,都振江,王俊芳,張將,劉洪勇,王世平,王恒振. 摘葉對(duì)赤霞珠葡萄及所釀葡萄酒品質(zhì)的影響[J]. 核農(nóng)學(xué)報(bào),2018,32(11):2178-2186.
LI Zhiyu,DU Zhenjiang,WANG Junfang,ZHANG Jiang,LIU Hongyong,WANG Shiping,WANG Hengzhen. Effect of leaf removing on grape berry and their wine quality of Carbernet Sauvignon[J]. Journal of Nuclear Agricultural Sciences,2018,32(11):2178-2186.
[28] 張洋,孫偉,房玉林,鞠延侖. 樹形對(duì)釀酒葡萄產(chǎn)量和品質(zhì)的影響[J]. 中外葡萄與葡萄酒,2023(3):40-45.
ZHANG Yang,SUN Wei,F(xiàn)ANG Yulin,JU Yanlun. Effect of different tree shape on yield and quality of wine grape[J]. Sino-Overseas Grapevine & Wine,2023(3):40-45.