• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      microRNA與皮膚衰老的研究進(jìn)展

      2024-06-01 04:30:18包樹(shù)明諾布央卓左蕊向小燕
      中國(guó)美容醫(yī)學(xué) 2024年4期
      關(guān)鍵詞:成纖維細(xì)胞微小RNA衰老

      包樹(shù)明 諾布央卓 左蕊 向小燕

      [摘要]皮膚衰老是人體衰老最直觀的表現(xiàn),目前已發(fā)現(xiàn)皮膚衰老過(guò)程中伴著microRNA(miRNA)表達(dá)的改變。這表明miRNA可能參與了皮膚衰老過(guò)程的調(diào)控,可能有用于作為皮膚衰老的標(biāo)志物和抗衰老治療策略。本文旨在探討miRNA如何通過(guò)影響皮膚角質(zhì)形成細(xì)胞、成纖維細(xì)胞、免疫細(xì)胞及黑素細(xì)胞的增殖、分化、細(xì)胞穩(wěn)定、蛋白通路、細(xì)胞周期等方面導(dǎo)致皮膚的衰老。

      [關(guān)鍵詞]微小RNA;衰老;角質(zhì)形成細(xì)胞;成纖維細(xì)胞;黑素細(xì)胞;免疫細(xì)胞

      [中圖分類(lèi)號(hào)]R339.3+8? ? [文獻(xiàn)標(biāo)志碼]A? ? [文章編號(hào)]1008-6455(2024)04-0186-05

      Research Progress of microRNA and Skin Aging

      BAO Shuming1,2, NUOBU Yangzhuo1,2, ZUO Rui1,2, XIANG Xiaoyan1,2

      (1.Department of Plastic, Cosmetic and Burn Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China; 2.North Sichuan Medical College, Nanchong 637000, Sichuan, China)

      Abstract: Skin aging is the most intuitive manifestation of human aging. Currently, it has been found that the skin aging process is accompanied by the change of microRNA (miRNA) expression. This suggests that miRNA may be involved in the regulation of skin aging. This article aims to explore how miRNA can cause skin aging by affecting the aging of keratinocytes, fibroblasts, immune cells and melanocytes.

      Key words: miRNA; senescence; keratinocytes; fibroblasts; melanocytes; immune cells

      皮膚的衰老主要分為遺傳基因調(diào)控的內(nèi)在衰老和環(huán)境因素引起的外在衰老[1-3]。皮膚最直接的變化預(yù)示著人類(lèi)衰老的進(jìn)行,因此對(duì)皮膚衰老的研究于認(rèn)識(shí)人類(lèi)衰老而言至關(guān)重要。miRNA是一類(lèi)小的非編碼內(nèi)源性進(jìn)化保守的RNA(長(zhǎng)度約為19~24個(gè)核苷酸),通常通過(guò)調(diào)節(jié)信使RNA(mRNA)的水平影響蛋白質(zhì)的翻譯。其主要功能與基因表達(dá)的轉(zhuǎn)錄后調(diào)控有關(guān)[4-5]。miRNA已被證明參與了人類(lèi)多種病理生理過(guò)程,如細(xì)胞生物學(xué)行為、癌癥和年齡相關(guān)疾病等[6]。令人欣喜的是,隨著研究的積累,發(fā)現(xiàn)有miRNA參與了有衰老作用的信號(hào)通道和蛋白的調(diào)節(jié)[7]。此外,有研究表明,miRNA在調(diào)節(jié)細(xì)胞增殖和清除衰老因素之間的平衡中起著至關(guān)重要的作用[8]。綜合目前的研究miRNA的表達(dá)也可能被認(rèn)為是衰老的標(biāo)志物之一[9]。遺憾的是,尚缺乏明確的實(shí)驗(yàn)數(shù)據(jù)證明miRNA參與衰老。本文重點(diǎn)關(guān)注近幾年有關(guān)miRNA與皮膚衰老之間的研究,現(xiàn)報(bào)道如下。

      1? miRNA可能作為衰老的生物標(biāo)志物

      在高齡人群中,發(fā)現(xiàn)127個(gè)miRNA隨時(shí)間的積累差異表達(dá),同時(shí)發(fā)現(xiàn)這些miRNA通過(guò)調(diào)節(jié)蛋白質(zhì)翻譯、轉(zhuǎn)錄、免疫反應(yīng)與衰老機(jī)制產(chǎn)生聯(lián)系[10]。Kinser HE等[11]發(fā)現(xiàn)lin-4、let-7、miR-17和miR-34在長(zhǎng)壽人群中顯著表達(dá),認(rèn)為這些miRNA是長(zhǎng)壽基因,促進(jìn)壽命延長(zhǎng),對(duì)抗衰老。同時(shí),眾多研究團(tuán)隊(duì)對(duì)不同年齡段人群組織或血清中miRNA進(jìn)行分析鑒定后發(fā)現(xiàn):miR-29b、miR-106b、miR-130b、miR-142-5p、miR-340、miR-340-3p,miR-374a-5p、miR-376c、miR-151a-5p、miR-181a-5p和miR-1248隨年齡增加表達(dá)顯著下調(diào),miR-92a、miR-222、miR-375、miR-211-5p、miR-1225-3p、miR-5095、let-7a-5p、miR-30b-5p、miR-30c-5p、miR-126-3p、miR-142-3p和miR-210、miR-126-3p則隨年齡增加表達(dá)顯著上調(diào)[12-16]。此外,Storci G等[17]在百歲老人的外周血單核細(xì)胞和真皮成纖維細(xì)胞中發(fā)現(xiàn)了有抗衰老作用的miR-335-5p、miR-532-5p和miR-508-3p。紫外線的持續(xù)暴露是皮膚過(guò)早衰老的原因之一,長(zhǎng)期UVB照射后皮膚中l(wèi)et-7家族、miR-23a、miR-22、miR-200b、miR-34a、miR-27a家族、miR-1246及miR-101表達(dá)上調(diào)[18-22]。綜上,在衰老皮膚中miRNA的表達(dá)差異可能表明其參與衰老的調(diào)控,并可能有用于作為衰老的標(biāo)志物和抗衰老治療策略。然而,關(guān)于miRNA參與機(jī)體衰老的各種機(jī)制,尤其是皮膚衰老的調(diào)控,仍然不明確。

      2? miRNA在皮膚衰老中的作用

      隨著研究的積累,miRNA通過(guò)調(diào)節(jié)基因的表達(dá)調(diào)節(jié)皮膚發(fā)育已被證實(shí)。然而,miRNA在調(diào)節(jié)皮膚發(fā)育、成熟、功能和衰老中的作用尚未完全清楚。目前許多關(guān)于miRNA與衰老的研究仍然在進(jìn)行。以下將總結(jié)近幾年來(lái)miRNA與參與皮膚結(jié)構(gòu)的細(xì)胞(即角質(zhì)形成細(xì)胞、真皮成纖維細(xì)胞、免疫細(xì)胞、黑素細(xì)胞等)調(diào)節(jié)皮膚衰老的分子機(jī)制。

      2.1 miRNA影響角質(zhì)形成細(xì)胞的衰老:角質(zhì)形成細(xì)胞是組成皮膚表皮的主要細(xì)胞,主要為皮膚及其附件提供硬度和耐水能力,表皮硬度彈性降低是衰老直觀的表現(xiàn)[23]。UVB的暴露會(huì)導(dǎo)致皮膚的衰老這是現(xiàn)在已達(dá)成的共識(shí)。2012年,Zhou BR等[24]首次報(bào)道了UVB輻射后正常人角質(zhì)形成細(xì)胞中的miRNA表達(dá),總共有44個(gè)miRNA表達(dá)變化,其中15個(gè)下調(diào),29個(gè)上調(diào)。這些miRNA中最高上調(diào)了33倍,最高下調(diào)了19倍,miR-30a是其中上調(diào)最顯著的miRNA之一。2019年,Muther C[25]的團(tuán)隊(duì)對(duì)不同年齡段的人角質(zhì)形成細(xì)胞60個(gè)與衰老調(diào)節(jié)有關(guān)的miRNA進(jìn)行了鑒定,隨后從中選擇了6個(gè)miRNA(miR-30a-3p、miR-30a-5p、miR-30c-5p、miR-30c-3p、miR-365a-5p、miR-4443)進(jìn)行實(shí)時(shí)PCR驗(yàn)證,結(jié)果證實(shí)老化皮膚的角質(zhì)形成細(xì)胞中除miR-4443表達(dá)顯著降低外其余miRNA均顯著過(guò)表達(dá)。隨后,作者選擇了高表達(dá)的miR-30a進(jìn)行相關(guān)機(jī)制研究發(fā)現(xiàn),miR-30a與抗衰老相關(guān)的LOX(編碼賴(lài)氨酰氧化酶調(diào)節(jié)劑),IDH1(編碼異檸檬酸脫氫酶)和AVEN(編碼半胱天冬酶抑制劑)之間的強(qiáng)直接相關(guān)性。最新的研究發(fā)現(xiàn),miR-30a通過(guò)靶向有絲分裂受體BNIP3L,導(dǎo)致角質(zhì)形成細(xì)胞終末分化過(guò)程中線粒體缺陷,使得細(xì)胞分化能力降低老化,因此,他們認(rèn)為miR-30a隨著時(shí)間積累損害表皮穩(wěn)態(tài)使表皮衰老[26]。近期,Yang Z等[27]通過(guò)動(dòng)物實(shí)驗(yàn)發(fā)現(xiàn),經(jīng)1 064 nm Nd:YAG激光作用后小鼠角質(zhì)形成細(xì)胞系HaCaT中miR-24-3p表達(dá)下調(diào),膠原蛋白合成和皮膚屏障的保護(hù)作用增強(qiáng),而過(guò)表達(dá)miR-24-3p則會(huì)抑制激光照射對(duì)膠原蛋白合成和皮膚屏障的保護(hù)作用。此外,miR-24-3p也在內(nèi)皮細(xì)胞中被發(fā)現(xiàn)有衰老誘導(dǎo)抑制增殖的作用[28]。

      2.2 miRNA影響成纖維細(xì)胞的衰老:成纖維細(xì)胞是組成皮膚真皮層的主要細(xì)胞,具有產(chǎn)生膠原蛋白和彈性纖維蛋白的能力,是皮膚保持結(jié)構(gòu)和拉伸運(yùn)動(dòng)的重要細(xì)胞。成纖維細(xì)胞的功能退化將會(huì)導(dǎo)致皮膚松弛、皺紋,皮膚傷口愈合減慢等皮膚衰老表現(xiàn)[2]。迄今為止,諸多文獻(xiàn)結(jié)果顯示miRNA也參與調(diào)節(jié)成纖維細(xì)胞的發(fā)育和功能。成纖維細(xì)胞的衰老與miRNA差異表達(dá)及細(xì)胞失去代謝和復(fù)制活性,導(dǎo)致細(xì)胞外基質(zhì)的不平衡周轉(zhuǎn)、膠原蛋白、彈性蛋白和透明質(zhì)酸含量降低有關(guān)。Tan J等[29]在老年小鼠皮膚中鑒定出29種異常表達(dá)的miRNA(如:miR-302b-3p、miR-291a-5p、miR-139-3p、miR-467c-3p、miR-186-3p),發(fā)現(xiàn)miR-302b-3p能誘導(dǎo)小鼠真皮成纖維細(xì)胞衰老,實(shí)際上miR-302-3p通過(guò)直接靶向N末端激酶2(JNK2)抑制長(zhǎng)壽相關(guān)基因Sirtuin 1(Sirt1)表達(dá)加速皮膚成纖維細(xì)胞衰老。Sirtuin 1是參與細(xì)胞增殖調(diào)控的基因[30]。miR-34a能夠靶向抑制Sirtuin1大大加速皮膚的纖維化,皮膚纖維化是衰老的標(biāo)志[31]。此外,最新的研究發(fā)現(xiàn)衰老細(xì)胞中上調(diào)的miR-146a也通過(guò)SIRT通路參與衰老的調(diào)節(jié)[32]。與轉(zhuǎn)化生長(zhǎng)因子β(TGF-β)的作用相反,miR-30a在皮膚中下調(diào)成纖維細(xì)胞增殖,而miR-30a水平的升高與細(xì)胞老化和紫外線暴露相關(guān)。在衰老的皮膚中膠原蛋白含量是減少的,2019年,Mamalis A等[33]發(fā)現(xiàn)在老化皮膚中miRNA-29、miRNA-196a和Let-7a上調(diào),miRNA-21、miRNA-23b和miRNA-31下調(diào),這些miRNA可以通過(guò)TGF-β/SMAD途徑,導(dǎo)致真皮成纖維細(xì)胞增殖和膠原蛋白沉積減緩成纖維細(xì)胞的衰老。小細(xì)胞囊泡(SEV)是塑造皮膚生理和病理發(fā)育的關(guān)鍵協(xié)調(diào)器,有趣的是在衰老成纖維細(xì)胞中SEV隨年齡增加而減少[34]。

      最新的研究也報(bào)道,miR-218能夠靶向SEV,進(jìn)而通過(guò)激活下游TGF-β1-SMAD2/3途徑促進(jìn)成纖維細(xì)胞的活性增加了小鼠皮膚的厚度和膠原I的含量[32,35]。真皮成纖維細(xì)胞的衰老過(guò)程也與下調(diào)的miRNA有關(guān),去年的研究報(bào)道房顫導(dǎo)致的心肌纖維化的成纖維細(xì)胞中miR-4443的表達(dá)顯著降低。抗纖維化因子血小板豆素1和TGF-β1的表達(dá)進(jìn)一步促進(jìn)miR-4443下調(diào),增強(qiáng)心肌成纖維細(xì)胞的活性和膠原蛋白的產(chǎn)生,從而對(duì)纖維化和心肌損傷發(fā)揮保護(hù)作用[36]。參與細(xì)胞周期和增殖的因子p53、p21、p16、p38、哺乳動(dòng)物雷帕霉素靶蛋白(mTOR)、絲分裂激活蛋白激酶(MAPK)也參與了miRNAs與衰老過(guò)程之間的聯(lián)系[37]。有證據(jù)表明,p53會(huì)誘發(fā)衰老[38]。已有研究證明p53下游基因CDKN1A/p21在衰老過(guò)程中被上調(diào)[39]。Lezzi A等[40]在2021年報(bào)道了p53與p21和CDKN1A之間呈反向趨勢(shì),衰老成纖維細(xì)胞中miR-16-5p、miR-454-3p、miR-17-5p、miR-30655的上調(diào),促進(jìn)p21和CDKN1A表達(dá)和p53表達(dá)上調(diào),導(dǎo)致細(xì)胞周期蛋白依賴(lài)性激酶的作用被上調(diào)的p53停滯,從而觸發(fā)細(xì)胞周期停滯和永久性細(xì)胞衰老。

      2.3 miRNA影響黑素細(xì)胞的衰老:黑素細(xì)胞是皮膚抵御紫外線損害的重要細(xì)胞,其產(chǎn)生的黑色素能夠分泌到角質(zhì)成形細(xì)胞中分布,吸收紫外線,避免光老化。中年以后,隨著年齡的積累,黑素細(xì)胞逐漸減少[41]。目前的研究認(rèn)為,miRNA在黑色素生成調(diào)節(jié)中起著至關(guān)重要的作用。在衰老皮膚中黑素細(xì)胞分泌和降解黑色素的能力降低,最直觀的表現(xiàn)就是皮膚色素的沉著,光老化加速。Shen Z等[42]用UVB照射體外培養(yǎng)的黑素細(xì)胞后測(cè)定miRNA譜的表達(dá)變化,與未照射相比有15個(gè)miRNA上調(diào),包括miR-448、miR-1246、miR-423-5p、miR-320a-3p、miR-320c、miR-320d、miR-320b、miR-375-3p、miR-125b-1-3p、miR-193a-5p、miR-485-5p、miR-7704、let-7a-3p、miR-22-3p和miR-744-5p。其中miR-4488,miR-320d和miR-7704升高最顯著。小眼炎相關(guān)轉(zhuǎn)錄因子(MITF)通過(guò)調(diào)節(jié)各種基因作為黑素細(xì)胞功能、發(fā)育和存活的主要調(diào)節(jié)劑[43]。miR-7013在衰老的皮膚組織中上升,MITF是miR-7013-3p的靶基因,miR-7013-3p的過(guò)表達(dá)會(huì)抑制MITF的mRNA和蛋白表達(dá),使得黑素細(xì)胞增殖、色素降解、氧化應(yīng)激的能力降低[44]。相反,miR-340、miR-181a-5p和miR-199a上調(diào)通過(guò)靶向MITF來(lái)減少皮膚色素沉著[45-46]。此外,Zhang Z等[47]的新近綜述中也報(bào)道了miR-508-3p、miR-218、miR-141-3p、miR-200a-3p能通過(guò)MITF途徑影響黑色素的產(chǎn)生。MITF也是編碼酪氨酸酶(TYR)和透明質(zhì)酸酶的關(guān)鍵基因。Du B等[48-49]研究發(fā)現(xiàn),衰老過(guò)程中過(guò)表達(dá)的miR-183在黑色素B16細(xì)胞中可以直接靶向MITF來(lái)降低TYR的表達(dá),調(diào)節(jié)B16細(xì)胞中的黑色素生成。同時(shí),過(guò)表達(dá)的miR-183也降低了細(xì)胞增殖調(diào)節(jié)因子絲裂原活化蛋白激酶1(MEK1)、細(xì)胞外調(diào)節(jié)蛋白激酶L/2(ERK1/2)和cAMP應(yīng)答元件結(jié)合蛋白(CREB)的表達(dá),使得黑素細(xì)胞發(fā)育受阻。

      2.4 miRNA影響皮膚免疫細(xì)胞的衰老:朗格漢斯細(xì)胞(LC)和樹(shù)突狀細(xì)胞(DC)是皮膚中參與免疫反應(yīng)的主要細(xì)胞,其功能主要為識(shí)別呈遞抗原至淋巴結(jié)中的T細(xì)胞,啟動(dòng)適應(yīng)性免疫反應(yīng)或誘導(dǎo)耐受性。目前的研究多認(rèn)為,皮膚衰老與皮膚免疫能力的降低與LC和DC中miRNA的差異表達(dá)降低了LC和DC的增殖和功能導(dǎo)致皮膚對(duì)細(xì)菌、病毒和真菌感染的敏感性降低有關(guān)[50]。幾種miRNA被確定與LC和DC發(fā)育(miR-22和miR-142)、成熟和分化(miR-21、miR-34a、miR-99b、miR-223及miR-511)和免疫功能(miR-10、miR-21、miR-142-3p、miR-146a及miR-155)有關(guān)[51]。早在2012年,Xu YP等[52]發(fā)現(xiàn)LC細(xì)胞的衰老與miR-709、miR-449和miR-9表達(dá)的上調(diào)和miR-200c、miR-10a表達(dá)下調(diào)有關(guān),進(jìn)一步研究發(fā)現(xiàn),這些差異表達(dá)的miRNA能夠靶向TGF-β、RUNX、C/EBP、RANK、CSF、Gfi1、IRF8、AhR阻斷LC的功能和發(fā)育。此外,miR-21和miR-34a在DC分化和調(diào)控抗原中發(fā)揮關(guān)鍵因素,在衰老DC中miR-21和miR-34a下調(diào)了JAG1和WNT1的表達(dá),導(dǎo)致DC發(fā)育和功能缺陷[53]。另一項(xiàng)研究發(fā)現(xiàn),體外FMS樣酪氨酸激酶3配體(Flt3-L)參與DC的分化,并且是miR-142的靶標(biāo),有趣的是衰老皮膚中miR-142表達(dá)上調(diào)會(huì)抑制Fit3-L阻斷DC的分化[54]。miR-6875-5p在衰老皮膚中過(guò)表達(dá),最近miR-6875-5p也被證明參與了DC的分化,但卻是通過(guò)靶向E蛋白家族成員E2-2,E2-2能在轉(zhuǎn)錄水平上調(diào)控DC的發(fā)育,過(guò)表達(dá)的miR-6875-5p抑制STAT3/E2信號(hào)通路降低DC的分化[55]。除此之外,DC的成熟依賴(lài)于特異性細(xì)胞間黏附分子3(ICAM-3)和捕獲非整合蛋白(SIGN),DC的免疫作用依賴(lài)于人細(xì)胞因子信號(hào)轉(zhuǎn)導(dǎo)抑制因子1(SOCS-1),它們是miR-155的靶點(diǎn)。因此,衰老DC中miR-155的下調(diào),阻礙了DC的成熟,促進(jìn)SOCS-1的表達(dá),抑制DC釋放炎性因子IL-12[56-57]。DC的凋亡也受miRNA調(diào)控,如miR-146、miR-29、miR-126,其在衰老DC中的過(guò)表達(dá)顯著促進(jìn)了DC的凋亡[58]。綜上,隨年齡調(diào)節(jié)變化的miRNA可能通過(guò)影響靶向多種調(diào)節(jié)LC和DC發(fā)育或功能的信號(hào)通路,使得皮膚免疫能力降低來(lái)參與皮膚衰老。

      3? 小結(jié)

      綜上,與衰老相關(guān)的miRNA的表達(dá)會(huì)影響皮膚組織結(jié)構(gòu)細(xì)胞中各種基因的功能,并可能促進(jìn)或抵消細(xì)胞衰老。本文總結(jié)了部分已發(fā)表miRNA與皮膚組成細(xì)胞之間衰老的研究。發(fā)現(xiàn)許多miRNA在不同年齡人群中表達(dá)差異,這使得它們?cè)谡{(diào)節(jié)與年齡相關(guān)信號(hào)通路時(shí)導(dǎo)致皮膚在不同年齡段有不同的外觀表現(xiàn)。雖然一些研究已明確了某一特定miRNA在特定皮膚細(xì)胞中的衰老調(diào)節(jié)機(jī)制,但仍難以全面解釋皮膚衰老。因此,miRNAs調(diào)節(jié)皮膚衰老的過(guò)程仍需進(jìn)一步探索,這或許將為抗衰老提供一種治療策略。

      [參考文獻(xiàn)]

      [1]Xie X Y, Wang Y N, Zeng Q T, et al. Characteristic features of neck skin aging in Chinese women[J]. J Cosmet Dermatol, 2018,17(5):935-944.

      [2]Russell-Goldman E, Murphy G F. The pathobiology of skin aging new insights into an old dilemma[J]. Am J Pathol, 2020,190(7):1356-1369.

      [3]Schneider S, Pollet M, Majora M, et al. Intrinsic versus extrinsic skin aging: Extrinsically differ from intrinsically aged human skin fibroblasts in their metabolic adaptive responses and by carrying a signature of catastrophic failure[J]. J Invest Dermatol, 2022,142(8):S105.

      [4]Alles J, Fehlmann T, Fischer U, et al. An estimate of the total number of true human miRNAs[J]. Nucleic Acids Res, 2019,47(7):3353-3364.

      [5]Karagkouni D, Paraskevopoulou M D, Tastsoglou S, et al. DIANA-LncBase v3: indexing experimentally supported miRNA targets on non-coding transcripts[J]. Nucleic Acids Res, 2020,48(D1):D101-D110.

      [6]Matsubara K, Matsubara Y, Uchikura Y, et al. Pathophysiology of preeclampsia: the role of exosomes[J]. Int J Mol Sci, 2021,22(5):2572.

      [7]Grillari J, Hackl M, Grillari-Voglauer R. miR-17-92 cluster: ups and downs in cancer and aging[J]. Biogerontology, 2010,11(4):501-506.

      [8]Pokorski M, Barassi G, Bellomo R G, et al. Bioprogressive paradigm in physiotherapeutic and antiaging strategies: a review[J]. Adv Exp Med Biol, 2018,1116:1-9.

      [9]Ortiz G G R, Mohammadi Y, Nazari A,et al. A state-of-the-art review on the MicroRNAs roles in hematopoietic stem cell aging and longevity[J]. Cell Commun Signal, 2023,21(1):85.

      [10]Huan T, Chen G, Liu C, et al. Age-associated microRNA expression in human peripheral blood is associated with all-cause mortality and age-related traits[J]. Aging Cell, 2018,17(1):e12678.

      [11]Kinser H E, Pincus Z. MicroRNAs as modulators of longevity and the aging process[J]. Hum Genet, 2020,139(3):291-308.

      [12]Zhang H, Yang H, Zhang C, et al. Investigation of microRNA expression in human serum during the aging process[J]. J Gerontol A Biol Sci Med Sci, 2015,70(1):102-109.

      [13]Ameling S, Kacprowski T, Chilukoti R K, et al.Associations of circulating plasma microRNAs with age, body mass index and sex in a population-based study[J]. BMC Med Genomics, 2015,8:61.

      [14]Olivieri F, Bonafe M, Spazzafumo L, et al. Age- and glycemia-related miR-126-3p levels in plasma and endothelial cells[J]. Aging (Albany NY), 2014,6(9):771-787.

      [15]Szemraj M, Oszajca K, Szemraj J, et al. MicroRNA Expression Analysis in Serum of Patients with Congenital Hemochromatosis and Age-Related Macular Degeneration (AMD)[J]. Med Sci Monit, 2017,23:4050-4060.

      [16]Noren H N, Martin-Montalvo A, Dluzen D F, et al. Metformin-mediated increase in DICER1 regulates microRNA expression and cellular senescence[J]. Aging Cell, 2016,15(3):572-581.

      [17]Storci G, De Carolis S, Papi A, et al. Genomic stability, anti-inflammatory phenotype, and up-regulation of the RNAseH2 in cells from centenarians[J]. Cell Death Differ, 2019,26(9):1845-1858.

      [18]Blackstone B N, Wilgus T A, Roy S, et al. Skin biomechanics and mirna expression following chronic UVB irradiation[J]. Adv Wound Care (New Rochelle), 2020,9(3):79-89.

      [19]Zhang Y, Yang C, Yang S, et al. MiRNA-27a decreases ultraviolet B irradiation-induced cell damage[J]. J Cell Biochem, 2020,121(2):1032-1038.

      [20]Li W, Wu Y F, Xu R H, et al. miR-1246 releases RTKN2-dependent resistance to UVB-induced apoptosis in HaCaT cells[J]. Mol Cell Biochem, 2014,394(1-2):299-306.

      [21]Gao W, Yuan L M, Zhang Y, et al. miR-1246-overexpressing exosomes suppress UVB-induced photoaging via regulation of TGF-beta/Smad and attenuation of MAPK/AP-1 pathway[J]. Photochem Photobiol Sci, 2023,22(1):135-146.

      [22]Greussing R, Hackl M, Charoentong P, et al. Identification of microRNA-mRNA functional interactions in UVB-induced senescence of human diploid fibroblasts[J]. BMC Genomics, 2013,14:224.

      [23]Min M, Chen X B, Wang P, et al. Role of Keratin 24 in human epidermal keratinocytes[J]. PLoS One, 2017,12(3):e0174626.

      [24]Zhou B R, Xu Y, Permatasari F, et al. Characterization of the miRNA profile in UVB-irradiated normal human keratinocytes[J]. Exp Dermatol, 2012,21(4):317-319.

      [25]Muther C, Jobeili L, Garion M, et al. An expression screen for aged-dependent microRNAs identifies miR-30a as a key regulator of aging features in human epidermis[J]. Aging (Albany NY), 2017,9(11):2376-2396.

      [26]Chevalier F P, Rorteau J, Ferraro S, et al. Mir-30a-5p alters epidermal terminal differentiation during aging by regulating bnip3l/nix-dependent mitophagy[J]. Cells, 2022,11(5):836.

      [27]Yang Z, Duan X, Wang X, et al. The effect of Q-switched 1 064 nm dymium-doped yttrium aluminum garnet laser on the skin barrier and collagen synthesis through miR-24-3p[J]. Lasers Med Sci, 2022,37(1):205-214.

      [28]Min X, Cai M Y, Shao T, et al. A circular intronic RNA ciPVT1 delays endothelial cell senescence by regulating the miR-24-3p/CDK4/pRb axis[J]. Aging Cell, 2022,21(1):e13529.

      [29]Tan J, Hu L, Yang X, et al. miRNA expression profiling uncovers a role of miR-302b-3p in regulating skin fibroblasts senescence[J]. J Cell Biochem, 2020,121(1):70-80.

      [30]Bielach-Bazyluk A, Zbroch E, Mysliwiec H, et al. Sirtuin 1 and skin: implications in intrinsic and extrinsic aging-a systematic review[J]. Cells, 2021,10(4):813.

      [31]Park J, Kim J, Chen Y Q, et al. CO ameliorates cellular senescence and aging by modulating the miR-34a/Sirt1 pathway[J]. Free Radic Res, 2020,54(11-12):848-858.

      [32]Gong H, Chen H, Xiao P, et al. miR-146a impedes the anti-aging effect of AMPK via NAMPT suppression and NAD(+)/SIRT inactivation[J]. Signal Transduct Target Ther, 2022,7(1):66.

      [33]Mamalis A, Koo E, Tepper C, et al. MicroRNA expression analysis of human skin fibroblasts treated with high-fluence light-emitting diode-red light[J]. J Biophotonics, 2019,12(5):e201800207.

      [34]O'Loghlen A. The potential of aging rejuvenation[J]. Cell Cycle, 2022,21(2):111-116.

      [35]Zou Q, Zhang M, Yuan R, et al. Small extracellular vesicles derived from dermal fibroblasts promote fibroblast activity and skin development through carrying miR-218 and ITGBL1[J]. J Nanobiotechnol, 2022,20(1):296.

      [36]Xiao J, Zhang Y, Tang Y, et al. hsa-miR-4443 inhibits myocardial fibroblast proliferation by targeting THBS1 to regulate TGF-β1/α-SMA/collagen signaling in atrial fibrillation[J]. Braz J Med Biol Res, 2021,54(4):e10692.

      [37]孫麗娥,金國(guó)琴.微小RNA在衰老及衰老性疾病發(fā)生發(fā)展中的調(diào)控作用[J].生命的化學(xué),2018,38(2):200-206.

      [38]Xu S, Zhang B, Zhu Y M, et al. miR-194 functions as a novel modulator of cellular senescence in mouse embryonic fibroblasts[J]. Cell Biol Int, 2017,41(3):249-257.

      [39]Papismadov N, Gal H, Krizhanovsky V. The anti-aging promise of p21[J]. Cell Cycle, 2017,16(21):1997-1998.

      [40]Lezzi A, Caiola E, Colombo M, et al. Molecular determinants of response to PI3K/akt/mTOR and KRAS pathways inhibitors in NSCLC cell lines[J]. Am J Cancer Res, 2020,10(12):4488.

      [41]Waller J M, Maibach H I. Age and skin structure and function, a quantitative approach (II): protein, glycosaminoglycan, water, and lipid content and structure[J]. Skin Res Technol, 2006,12(3):145-154.

      [42]Shen Z, Sun J, Shao J, et al. Ultraviolet B irradiation enhances the secretion of exosomes by human primary melanocytes and changes their exosomal miRNA profile[J]. PLoS One, 2020,15(8):e237023.

      [43]Gelmi M C, Houtzagers L E, Strub T, et al. MITF in normal melanocytes, cutaneous and uveal melanoma: a delicate balance[J]. Int J Mol Sci, 2022,23(11):6001.

      [44]Huang Y J, Gao Y, Wang C J, et al. Hydroxyurea regulates the development and survival of B16 Melanoma Cells by upregulating MiR-7013-3p[J]. Int J Med Sci, 2021,18(8):1877-1885.

      [45]Yang Y, Wei X J, Bai J, et al. MicroRNA-340 is involved in ultraviolet B-induced pigmentation by regulating the MITF/TYRP1 axis[J]. J Int Med Res, 2020,48(11):300060520971510.

      [46]Wang X Y, Guan X H, Yu Z P, et al. Human amniotic stem cells-derived exosmal miR-181a-5p and miR-199a inhibit melanogenesis and promote melanosome degradation in skin hyperpigmentation, respectively[J]. Stem Cell Res Ther, 2021,12(1):501.

      [47]Zhang Z, Shen W, Liu W, et al. Role of miRNAs in melanin metabolism: Implications in melanin-related diseases[J]. J Cosmet Dermatol, 2022,21(10):4146-4159.

      [48]Du B, Liu X, Khan A, et al. miRNA-183 approximately 96 approximately 182 regulates melanogenesis, cell proliferation and migration in B16 cells[J]. Acta Histochem, 2020,122(3):151508.

      [49]Jawaid A, Woldemichael B T, Kremer E A, et al. Memory decline and its reversal in aging and neurodegeneration involve mir-183/96/182 biogenesis[J]. Mol Neurobiol, 2019,56(5):3451-3462.

      [50]Zegarska B, Pietkun K, Giemza-Kucharska P, et al. Changes of Langerhans cells during skin ageing[J]. Postepy Dermatol Alergol, 2017,34(3):260-267.

      [51]Zhou H, Wu L. The development and function of dendritic cell populations and their regulation by miRNAs[J]. Protein Cell, 2017,8(7):501-513.

      [52]Xu Y P, Qi R Q, Chen W, et al. Aging affects epidermal Langerhans cell development and function and alters their miRNA gene expression profile[J]. Aging (Albany NY), 2012,4(11):742-754.

      [53]Hashimi S T, Fulcher J A, Chang M H, et al. MicroRNA profiling identifies miR-34a and miR-21 and their target genes JAG1 and WNT1 in the coordinate regulation of dendritic cell differentiation[J]. Blood,2009,114(2):404-414.

      [54]Kuipers H, Schnorfeil F M, Brocker T. Differentially expressed microRNAs regulate plasmacytoid vs. conventional dendritic cell development[J]. Mol Immunol, 2010,48(1-3):333-340.

      [55]Zhu X X, Yin X Q, Hei G Z, et al. Increased miR-6875-5p inhibits plasmacytoid dendritic cell differentiation via the STAT3/E2-2 pathway in recurrent spontaneous abortion[J]. Mol Hum Reprod, 2021,27(8):gaab044.

      [56]Martinez-Nunez R T, Louafi F, Friedmann P S, et al. MicroRNA-155 modulates the pathogen binding ability of dendritic cells (DCs) by down-regulation of DC-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN)[J]. J Biol Chem, 2009,284(24):16334-16342.

      [57]Lu C, Huang X, Zhang X, et al. miR-221 and miR-155 regulate human dendritic cell development, apoptosis, and IL-12 production through targeting of p27kip1, KPC1, and SOCS-1[J]. Blood, 2011,117(16):4293-4303.

      [58]Hong Y, Wu J, Zhao J, et al. miR-29b and miR-29c are involved in Toll-like receptor control of glucocorticoid-induced apoptosis in human plasmacytoid dendritic cells[J]. PLoS One, 2013,8(7):e69926.

      [收稿日期]2022-10-26

      本文引用格式:包樹(shù)明,諾布央卓,左蕊,等.microRNA與皮膚衰老的研究進(jìn)展[J].中國(guó)美容醫(yī)學(xué),2024,33(4):186-190.

      猜你喜歡
      成纖維細(xì)胞微小RNA衰老
      微等離子體與點(diǎn)陣Er:YAG激光(2940nm)治療兔耳增生性瘢痕的療效比較
      兔耳創(chuàng)傷后創(chuàng)面早期外用干擾素與法舒地爾預(yù)防瘢痕增生的實(shí)驗(yàn)研究
      腎纖維化的細(xì)胞和分子基礎(chǔ)
      MiRNA在肺癌診斷與治療中的應(yīng)用進(jìn)展
      豬成纖維細(xì)胞的簡(jiǎn)易分離培養(yǎng)
      微小RNA和腫瘤治療的研究進(jìn)展
      香煙煙霧提取物對(duì)外周血內(nèi)皮祖細(xì)胞衰老的影響及其機(jī)制研究
      衰老與運(yùn)動(dòng)
      物理學(xué)使“衰老”變得不可避免
      飛碟探索(2016年8期)2016-09-06 10:26:12
      鼻咽癌腫瘤干細(xì)胞miRNAs和 lncRNAs及mRNAs表達(dá)譜分析
      和顺县| 元阳县| 改则县| 屯留县| 合川市| 久治县| 原阳县| 南皮县| 彰化市| 德钦县| 龙里县| 灵宝市| 南川市| 晋州市| 洪湖市| 额济纳旗| 兴和县| 石狮市| 尚志市| 信宜市| 桐乡市| 台北县| 安岳县| 乌恰县| 和平区| 宣汉县| 墨玉县| 佛坪县| 辽源市| 阳朔县| 河南省| 滁州市| 伊春市| 沛县| 普陀区| 临猗县| 金门县| 奇台县| 绥中县| 夏津县| 正安县|