王希望 金晶晶 王瑩 王晨曉 張永華 顧亞嬌 王曉
摘要: 胰源性糖尿病是一種繼發(fā)于胰腺外分泌疾病的糖尿病, 2014年被美國糖尿病學會正式提出, 其最常見的病因是慢性胰腺炎, 其次是胰腺癌。目前該病的臨床誤診率極高, 且胰源性糖尿病患者相較于2型糖尿病患者有更高的死亡和再入院風險。因此, 充分了解、 并早期正確識別及診斷胰源型糖尿病, 對降低該病的致殘率與病死率具有重要意義。本文全面總結了繼發(fā)于胰腺炎及胰腺癌的胰源性糖尿病的可能發(fā)病機制、 診治與管理等方面的研究進展。
關鍵詞: ?胰腺疾??; ?糖尿病; ?胰島素; ?診斷; ?治療學
基金項目: ?河南省特色骨干學科中醫(yī)學學科建設項目 (STG-ZYX02-202116); ?河南省中醫(yī)藥科學研究專項課題 (2019JDZX2050)
Pathogenesis, diagnosis, and treatment of pancreatogenic diabetes
WANG Xiwang1, JIN Jingjing1, WANG Ying1, WANG Chenxiao2, ZHANG Yonghua2, GU Yajiao2, WANG Xiao2. (1. The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou 450000, China;2. Spleen, Stomach and Hepatobiliary Department, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China)
Corresponding author: ?WANG Xiao, ?wangxiao1113@126.com ?(ORCID: ?0000-0002-4676-2487)
Abstract:
Pancreatogenic diabetes is a type of diabetes mellitus secondary to exocrine pancreatic disease, and it was officially proposed by the American Diabetes Association in 2014, with chronic pancreatitis as the most common etiology, followed by pancreatic cancer. At present, the misdiagnosis rate of this disease is extremely high, and patients with pancreatogenic diabetes have a higher risk of death and readmission than patients with type 2 diabetes. Therefore, it is of great significance to fully understand, correctly identify, and diagnose pancreatogenic diabetes in the early state, so as to reduce the disability rate and mortality rate of this disease. This article reviews the advances in the possible pathogenesis, diagnosis, treatment, and management of pancreatic diabetes secondary to pancreatitis and pancreatic cancer.
Key words: ?Pancreatic Diseases; ?Diabetes Mellitus; ?Insulin; ?Diagnosis; ?Therapeutics
Research funding: ?Henan Characteristic Backbone Discipline Construction Project of Traditional Chinese Medicine ?(STG-ZYX02-202116); ?Special Project of Traditional Chinese Medicine in Henan Province ?(2019JDZX2050)
2014年, 美國糖尿病學會將由胰腺外分泌疾病導致的糖尿病命名為胰源性糖尿病或3c型糖尿病。胰源性糖尿病的綜合發(fā)病率約6/100 000例[1] , 約占所有糖尿病的8%[2] 。胰源性糖尿最常見的病因是慢性胰腺炎, 約占79%; 其次是胰導管腺癌, 約占8%[3] 。據統(tǒng)計, 胰源性糖尿病的患病率顯著高于1型糖尿病, 但仍顯著低于2型糖尿病。胰源性糖尿病患者因各種原因導致的β細胞或α細胞缺乏, 其血糖水平難以控制, 故更易發(fā)生低血糖相關并發(fā)癥, 甚至死亡。研究[4] 表明, 胰源性糖尿病患者相較于2型糖尿病患者的死亡和再入院風險更高。作為一種由胰腺外分泌疾病引起的糖尿病, 胰源性糖尿病常被誤診為2型糖尿病。研究[5-6]顯示, 45%~90%的胰源性糖尿病患者被誤歸為2型糖尿病。目前,國內關于胰源性糖尿病的研究尚少, 充分了解、 正確識別并診斷胰源型糖尿對提高患者的生存及生活質量具有重要意義。
1 發(fā)病機制
1. 1 胰島功能障礙, 胰島素分泌不足 免疫介導下的胰島功能障礙是胰源性糖尿病發(fā)生的關鍵機制。在胰腺炎早期, 高水平的細胞因子和應激性炎癥環(huán)境導致β細胞功能障礙。胰腺實質因嚴重纖維化, 胰腺腺泡、 導管和神經束等有功能的胰腺組織最終被結締組織取代,從而失去血管及分泌功能。而繼發(fā)于胰腺癌的糖尿病不同于其他原因引起的糖尿病, 并非因纖維炎癥破壞或胰腺切除引起, 而是由癌癥釋放的介質引起的副腫瘤效應[7] 。研究[8] 表明, 胰腺癌術后患者胰島素抵抗和β細胞功能障礙均有所改善。加權基因共表達網絡分析研究[9] 證實, 巨噬細胞活化和Toll樣受體信號通路是胰源性糖尿病的重要病理生理學特征, 胰源性糖尿病患者巨噬細胞活化時, 胰島中ITGAM (整合素αM)、 ITGB2 (整合素β2)、 PTPRC (蛋白酪氨酸磷酸酶受體C) 和CSF-1R(集落刺激因子-1受體) 的表達均顯著上調, 上述生物標志物可能有助于胰源性糖尿病的輔助診斷。
胰腺炎相關糖尿病的發(fā)生發(fā)展與巨噬細胞的募集和活化引發(fā)炎癥細胞大量釋放進而導致胰島功能改變相關。研究[9] 表明, 巨噬細胞的早期募集和活化是加重胰腺細胞損壞的重要環(huán)節(jié)之一。巨噬細胞是慢性胰腺炎發(fā)展過程中浸潤胰腺的主要炎癥細胞, 在胰腺纖維化的進展中發(fā)揮重要作用 (圖1)。在巨噬細胞和慢性胰腺炎的發(fā)病機制中, 核因子κB (NF-κB) 是巨噬細胞募集到胰腺的主要參與者之一, 受損的腺泡細胞可釋放激活巨噬細胞的趨化因子和炎癥因子, 促進NF-κB亞基P65和IL-6、 TNF-α、 單核細胞趨化蛋白-1等促炎細胞因子活化, 引起強烈的炎癥反應[10]。促炎細胞因子如IL-10、TNF-α、 IFN-γ可抑制受葡萄糖刺激的胰島素釋放。高濃度IL-1受體和IL-1β可誘導β細胞凋亡[11], 而高濃度的 IFN- γ 可導致胰十二指腸同源盒 1(pancreatic and duodenal homebox 1, PDX-1) 或胰島素啟動子因子1的轉錄因子易位減少[12]。研究[13]表明, PDX-1對于胰腺細胞的發(fā)育至關重要, 其參與β細胞的成熟和十二指腸的分化。在慢性胰腺炎患者中, 由于PDX-1水平的降低, β細胞的分化和存活率也隨之降低, 進而導致胰島素的產生受損。另有研究[14] 發(fā)現(xiàn)腎上腺髓質素和泛酰巰基乙胺水解酶也是炎癥產生的結果, 可能改變胰源性糖尿病患者的胰島細胞功能。此外, 巨噬細胞與胰腺星狀細胞(pancreatic stellate cell, PSC) 相互作用可促進慢性胰腺炎的進展, 巨噬細胞產生的轉化生長因子-β和血小板源性生長因子 (PDGF) 是PSC的有效激活劑, 活化的PSC釋放的細胞因子可能誘導胰腺巨噬細胞極化為M2表型,同時活化的M2巨噬細胞轉化生長因子-β和PDGF高表達, 直接與PSC相互作用, 促進PSC的增殖和活化, 最終引起胰腺纖維化。
胰腺癌相關糖尿病患者的胰腺組織中存在高水平的鈣衛(wèi)蛋白 (S100A6/A8/A9) 和連接蛋白[15-17]。上述蛋白在胰腺導管癌患者的胰島中過度表達, 在中性粒細胞和活化的巨噬細胞中可見大量S100A6/A8/A9, 原因可能在于胰腺癌早期單核細胞、 巨噬細胞、 中性粒細胞等細胞聚集。研究[18] 發(fā)現(xiàn), 與健康人相比, 胰腺癌合并糖尿病患者的胰腺組織中S100A6的表達上調。有學者[16, 19]提出, 半乳糖凝集素-3、 基質金屬蛋白酶-9、 脂聯(lián)素和IL-1受體拮抗劑可作為鑒別2型糖尿病和胰腺癌相關糖尿病的生物標志物[20] 。
1. 2 胰島素抵抗 胰島素抵抗是糖尿病的一個突出特征[21], 同時也可能是胰腺炎后繼發(fā)糖尿病的一個因素[22-23] 。研究[24] 證實, 胰源性糖尿病患者均存在肝胰島素抵抗, 胰多肽應答不足在其中起著關鍵作用。目前, 胰多肽已被證實是一種調節(jié)肝臟胰島素敏感性的血糖調節(jié)激素, 可以逆轉胰腺炎中胰島素受體的減少[25] ,對胰多肽缺乏的胰腺炎患者給予胰多肽可逆轉肝胰島素抵抗。除了胰島素受體可用性改變外, 慢性胰腺炎患者肝胰島素功能的改變也與肝細胞IκBβ和NF-κB的炎癥激活有關, 阻止NF-κB活化可改善肝臟的胰島素敏感性[26-27] 。
1. 3 促胰島素效應減少——腸促胰島素激素的減少胰高血糖素樣肽-1 (glucagon-like peptide-1, GLP-1) 和葡萄糖依賴性促胰島素多肽 (glucose-dependent insulinotropic polypeptide, GIP) 是腸道消化和吸收營養(yǎng)物質時釋放的一種激素。GLP-1具有調節(jié)胰島素分泌、 延緩胃排空等功能, 能夠刺激胰島素的釋放, 抑制胰高血糖素的分泌, 降低食欲, 并減緩胃排空[28] 。研究[29-30] 發(fā)現(xiàn), GLP-1還可促進胰腺β細胞的生長和分化, 保護β細胞的作用。GIP可促進胰島素釋放而抑制α細胞分泌胰高血糖素。這2種激素均可被二肽基肽酶-4迅速滅活。胰腺功能不全時營養(yǎng)物質吸收障礙, 腸促胰島素激素釋放減少, 餐后胰島素也相應減少, 血糖相應升高。
1. 4 腸道菌群紊亂 腸道菌群在促進2型糖尿病的發(fā)生中發(fā)揮獨特作用[31] 。腸道微生物群對人體的代謝和炎癥反應具有調節(jié)功能[32] 。菌群紊亂與免疫細胞失調以及炎性細胞因子的水平有關, 因此被認為是不同炎癥介導疾病的重要因素。慢性胰腺炎發(fā)生時的胰腺損傷和炎癥反應可導致腸黏膜屏障完整性受損, 進而導致腸道微生物群發(fā)生變化[33] 。腸道生態(tài)系統(tǒng)和細菌代謝的變化反之導致糖尿病和代謝異常。因此, 腸道微生物群有可能在胰源性糖尿病的發(fā)生發(fā)展中發(fā)揮作用。印度一項研究[34] 招募的健康對照、 1型糖尿病患者、 2型糖尿病患者和繼發(fā)于慢性胰腺炎的胰源性糖尿病患者中, 某些細菌物種的豐度存在明顯組間差異, 包括瘤胃球菌屬和糞桿菌門。另有研究[35] 在非糖尿病慢性胰腺炎患者中觀察到糞桿菌豐度降低和血漿內毒素增加, 這一現(xiàn)象在糖尿病慢性胰腺炎中表現(xiàn)更為明顯; 空腹和餐后血糖與糞桿菌豐度呈負相關, 而內毒素與血糖呈正相關, 與胰島素呈負相關。上述結果提示, 腸道微生物疾病與慢性胰腺炎代謝變化相關。
1. 5 遺傳因素 研究已經確定了慢性胰腺炎的特異性基因, 如PRSS1 (絲氨酸蛋白酶1), SPINK1 (絲氨酸肽酶抑制因子Kazal型1)、 CFTR (囊性纖維化跨膜傳導調節(jié)因子)、 CTRC (胰凝乳蛋白酶-C) 和CASR (鈣敏感受體)。PRSS1基因的突變增強了胰蛋白酶原的自身激活。研究[36] 表明, PRSS1外顯子區(qū)域的突變與慢性胰腺炎繼發(fā)糖尿病有關。在慢性胰腺炎患者中, 外顯子異常有60%的概率發(fā)展為糖尿?。?7] 。胰腺癌也具有遺傳異質性, 早前已報道過的就包括CFTR、 BRCA1、 BRCA2、 CDKN2A、PALB2和ATM基因[39-40] 。有研究表明, 有胰腺癌家族史的個體患胰腺癌的風險更高。目前已鑒定出許多易感基因。BRCA2和PALB2是遺傳性胰腺癌中最常見的突變基因。CFTR基因突變在年輕時發(fā)生胰腺癌的風險為中等[40] 。ATM基因突變與家族性胰腺癌易感性相關[41] 。
2 診斷
目前胰源性糖尿病尚無廣泛認可的診斷標準。根據2021年美國糖尿病協(xié)會[42] 的敘述符合以下標準的患者可以做出診斷:(1) 符合糖尿病診斷標準,(2) 胰腺分泌功能不全,(3) 影像學表明胰腺病理性改變,(4) 不具有1型糖尿病相關的自身免疫標志物。
3 治療與管理
目前尚未形成系統(tǒng)的胰源性糖尿病的治療指南, 這使胰源性糖尿病無法得到有效管理。此外在臨床中胰源性糖尿病常被誤診為2型糖尿病, 這導致治療效果常常不理想, 甚至會導致部分患者預后不良[4] 。目前急需提高臨床醫(yī)生對胰源性糖尿病的了解以幫助他們決定使用何種方案來控制患者的癥狀, 進而防止疾病惡化。目前可以從胰源性糖尿病發(fā)病機制入手, 對該型糖尿病進行基礎的控制和治療。針對胰源性糖尿病應嚴格控制血糖的升高、 解決外分泌功能不全、 預防并降低并發(fā)癥, 同時還應重視飲食和營養(yǎng)的管理。
3. 1 控制血糖 二甲雙胍和胰島素是胰源性糖尿病最常用的藥物, 這與近期的幾項專家推薦[43-45] 一致。專家推薦將胰島素作為繼發(fā)于胰腺炎的糖尿病患者的一線治療[46] , 因為這可以解決胰島素缺乏的原發(fā)性缺陷。胰島素可有效解決繼發(fā)于慢性胰腺炎的晚期糖尿病患者胰島素缺乏所引起的高血糖。然而, 使用胰島素治療胰源性糖尿病有使患者發(fā)生低血糖的風險, 尤其是對外周胰島素敏感性可能增強的慢性胰腺炎患者來說, 另外Wu等[47] 的研究提及繼發(fā)于慢性胰腺炎的糖尿病患者使用胰島素有增加胰腺癌患病的風險。
二甲雙胍作為一種胰島素增敏劑能降低肝葡萄糖的輸出并提高外周胰島素敏感性, 常用于大多數2型糖尿病患者的一線治療用藥。Yang等[48] 的研究提及使用二甲雙胍不僅可以減少每天降血糖所需的胰島素量還具有保護β細胞的作用, 同時二甲雙胍的抗腫瘤作用可能降低胰腺癌的發(fā)病風險[49-50] 。另外Maida等[51] 的實驗表明二甲雙胍能增強小鼠胰腺GLP-1和GIP受體的基因表達, 可對胰島的胰島素分泌產生有利影響。二甲雙胍還被報道能夠延長糖尿病合并非轉移性胰腺癌患者的生存期。以上理論及研究可為二甲雙胍作為胰源性糖尿病一線用藥提供有力支撐。其他治療2型糖尿病的藥物如噻唑烷二酮類藥物、 α-葡萄糖苷酶抑制劑、 磺脲類和二肽基肽酶-4抑制劑等也可用于胰源性糖尿病的治療, 但考慮其副作用一般不作為常規(guī)治療用藥[52] 。目前尚無確切的治療指南, 對于胰源性糖尿病的治療只能在監(jiān)測藥物不良反應的基礎上使用。
3. 2 解決外分泌功能不全 胰源性糖尿病患者常因合并外分泌功能不全而導致消化吸收障礙, 進而引發(fā)代謝并發(fā)癥[53] 。臨床上針對胰腺外分泌障礙常采用胰酶代替治療的方法。即進食的同時給予胰酶, 并持續(xù)監(jiān)測其療效。胰酶有助于改善胰源性脂肪瀉患者對胰島素的反應, 并可逆轉GIP反應性的下降。此外, 胰腺外分泌功能不全可能導致脂溶性維生素 (維生素A、 D、 E和K)的吸收障礙。Duggan等[54] 的研究提及慢性胰腺炎患者尤其是晚期疾病合并脂肪瀉患者有極高概率會發(fā)生骨量丟失甚至骨質疏松。故應及時補充維生素D以預防代謝性骨疾病。
3. 3 日常營養(yǎng)與管理 一旦被診斷為糖尿病后應該立即改變生活方式。在日常生活中應該有意識地調整飲食結構, 應優(yōu)先選擇低升糖指數飲食并限制碳水類食物的攝入, 以盡可能減少高血糖發(fā)生的頻率, 降低糖尿病并發(fā)癥發(fā)生的風險。同時應避免飲用含糖飲料, 除非是發(fā)生低血糖時。肥胖患者同時應積極減重、 規(guī)律運動并戒煙戒酒。
3. 4 預防并降低并發(fā)癥的發(fā)生 胰源性糖尿病又被稱為 “脆性糖尿病”, 因胰腺炎癥導致胰島破壞, β細胞 (胰島素)、 α細胞 (胰高血糖素)、 δ細胞 (生長抑素) 和PP細胞 (胰多肽) 丟失導致該類糖尿病患者的血糖較難控制[55] , 也因此胰源性糖尿病更容易發(fā)生低血糖及低血糖相關并發(fā)癥。故在飲食管理中應優(yōu)先預防患者經常發(fā)生的低血糖事件。促進低血糖的因素還包括碳水化合物吸收不良和不規(guī)律的飲食等。針對這些問題應加強對患者進行低血糖相關方面的教育, 同時患者還應進行血糖監(jiān)測, 并詳細記錄血糖水平、 飲食攝入、 胰酶替代療法使用情況和運動情況, 以積極調整飲食及藥物的使用, 進而減少患者低血糖及其并發(fā)癥的發(fā)生[56] 。
4 展望
現(xiàn)階段由于缺乏對胰源性糖尿病系統(tǒng)的認識, 該類型糖尿病常會被誤診為2型糖尿病。但與2型糖尿病相比, 胰源性糖尿病患者的血糖控制更難, 低血糖發(fā)作更頻繁、 胰島素使用劑量多、 方案更復雜, 發(fā)生癌癥的風險更高, 死亡年齡更早, 死亡風險更大。所以及時正確地診斷胰源性糖尿病的影響是深遠的, 能大大提高此類型糖尿病患者的生存和生活質量并大大降低致殘率和死亡率。遺憾的是目前胰源性糖尿病完整的發(fā)病機制尚不明確, 國內尚缺乏有關的流行病學數據, 尚無系統(tǒng)高效的用藥安全性評估, 更未形成得到廣泛認可的診斷、治療和管理指南, 這無疑給臨床工作帶來了巨大的挑戰(zhàn), 給胰源性糖尿病患者帶來巨大的傷痛, 給社會帶來巨大的經濟損失。期待未來能有更多相關方向的研究來解決目前臨床存在的問題。
利益沖突聲明: 本文不存在任何利益沖突。
作者貢獻聲明: 王希望、 王晨曉、 張永華對研究思路或設計有關鍵貢獻, 參與研究數據的獲取、 分析、 解釋工作;金晶晶、 王瑩參與撰寫及修改文章; 王曉、 顧亞嬌對文章關鍵內容進行指導與修改。
參考文獻:
[1] XIAO AY, TAN MLY, WU LM, et al. Global incidence and mortality of pancreatic diseases: A systematic review, meta-analysis, and meta-regression of population-based cohort studies[J]. Lancet Gastroenterol Hepatol, 2016, 1(1): 45-55. DOI: 10.1016/S2468-1253(16)30004-8.
[2] PETROV MS, BASINA M.? DIAGNOSIS OF ENDOCRINE DISEASE: Diagnosing and classifying diabetes in diseases of the exocrine pancreas[J]. Eur J Endocrinol, 2021, 184(4): R151-R163. DOI: 10.1530/EJE-20-0974.
[3] HART PA, BELLIN MD, ANDERSEN DK, et al. Type 3c (pancreato?genic) diabetes mellitus secondary to chronic pancreatitis and pan?creatic cancer[J]. Lancet Gastroenterol Hepatol, 2016, 1(3): 226-237. DOI: 10.1016/S2468-1253(16)30106-6.
[4] CHO J, SCRAGG R, PETROV MS. Risk of mortality and hospitalization after post-pancreatitis diabetes mellitus vs type? 2 diabetes mellitus: A population-based matched cohort study[J]. Am J Gastroenterol, 2019, 114(5): 804-812. DOI: 10.14309/ajg.0000000000000225.
[5] WOODMANSEY C, MCGOVERN AP, MCCULLOUGH KA, et al. Inci?dence, demographics, and clinical characteristics of diabetes of the exocrine pancreas (type 3c): A retrospective cohort study[J]. Dia?betes Care, 2017, 40(11): 1486-1493. DOI: 10.2337/dc17-0542.
[6] SANTOS R, COLEMAN HG, CAIRNDUFF V, et al. Clinical prediction models for pancreatic cancer in general and at-risk populations: A systematic review[J]. Am J Gastroenterol, 2023, 118(1): 26-40. DOI: 10.14309/ajg.0000000000002022.
[7] LIAO WC, CHEN PR, HUANG CC, et al. Relationship between pancre?atic cancer-associated diabetes and cachexia[J]. J Cachexia Sarco?penia Muscle, 2020, 11(4): 899-908. DOI: 10.1002/jcsm.12553.
[8] DONATH MY. Targeting inflammation in the treatment of type 2 dia?betes: Time to start[J]. Nat Rev Drug Discov,? 2014,? 13(6):? 465-476. DOI: 10.1038/nrd4275.
[9] LI GQ, SUN JF, ZHANG J, et al. Identification of inflammation-related biomarkers in diabetes of the exocrine pancreas with the use of weighted gene co-expression network analysis[J]. Front Endocrinol (Lausanne), 2022, 13: 839865. DOI: 10.3389/fendo.2022.839865.
[10] ZHANG Y, ZHANG WQ, LIU XY, et al. Immune cells and immune cell-targeted therapy in chronic pancreatitis[J]. Front Oncol, 2023, 13: 1151103. DOI: 10.3389/fonc.2023.1151103.
[11] CASU AN, GRIPPO PJ, WASSERFALL C, et al. Evaluating the immu?nopathogenesis of diabetes after acute pancreatitis in the diabetes RElated to acute pancreatitis and its mechanisms study: From the type? 1 diabetes in acute pancreatitis consortium[J]. Pancreas, 2022, 51(6): 580-585. DOI: 10.1097/MPA.0000000000002076.
[12] PONDUGALA PK, SASIKALA M, GUDURU VR, et al. Interferon-γ de?creases nuclear localization of pdx-1 and triggers β-cell dysfunction in chronic pancreatitis[J]. J Interferon Cytokine Res, 2015, 35(7): 523-529. DOI: 10.1089/jir.2014.0082.
[13] ELSHARKAWI I, PARAMBATH D, SABER-AYAD M, et al. Exploring the effect of epigenetic modifiers on developing insulin-secreting cells[J]. Hum Cell, 2020, 33(1): 1-9. DOI: 10.1007/s13577-019-00292-y.
[14] QIN WJ, KANG MX, LI C, et al. VNN1 overexpression in pancreatic cancer cells inhibits paraneoplastic islet function by increasing oxi?dative stress and inducing? β -cell dedifferentiation[J]. Oncol Rep, 2023, 49(6): 120. DOI: 10.3892/or.2023.8557.
[15] HU FL, LOU N, JIAO JY, et al. Macrophages in pancreatitis: Mecha?nisms and therapeutic potential[J]. Biomed Pharmacother,? 2020, 131: 110693. DOI: 10.1016/j.biopha.2020.110693.
[16] ANDERSEN DK, KORC M, PETERSEN GM, et al. Diabetes, pancreato?genic diabetes, and pancreatic cancer[J]. Diabetes,? 2017,? 66(5): 1103-1110. DOI: 10.2337/db16-1477.
[17] LIAO WC, HUANG BS, YU YH, et al. Galectin-3 and S100A9: Novel dia?betogenic factors mediating pancreatic cancer-associated diabetes[J]. Diabetes Care, 2019, 42(9): 1752-1759. DOI: 10.2337/dc19-0217.
[18] HU YF, ZENG N, GE YQ, et al. Identification of the shared gene sig?natures and biological mechanism in type 2 diabetes and pancreatic cancer[J]. Front Endocrinol (Lausanne), 2022, 13: 847760. DOI: 10.3389/fendo.2022.847760.
[19] XU TT, XU XX, LIU PC, et al.? Transcriptomic analyses and potential therapeutic targets of pancreatic cancer with concomitant diabetes[J]. Front Oncol, 2020, 10: 563527. DOI: 10.3389/fonc.2020.563527.
[20] OLDFIELD L, EVANS A, RAO RG, et al. Blood levels of adiponectin and IL-1Ra distinguish type? 3c from type? 2 diabetes: Implications for earlier pancreatic cancer detection in new-onset diabetes[J]. EBio?Medicine, 2022, 75: 103802. DOI: 10.1016/j.ebiom.2021.103802.
[21] LEE SH, PARK SY, CHOI CS.? Insulin resistance: From mechanisms to therapeutic strategies[J]. Diabetes Metab J, 2022, 46(1): 15-37. DOI: 10.4093/dmj.2021.0280.
[22] GILLIES N, PENDHARKAR SA, ASRANI VM, et al. Interleukin-6 is as?sociated with chronic hyperglycemia and insulin resistance in pa?tients after acute pancreatitis[J]. Pancreatology, 2016, 16(5): 748-755. DOI: 10.1016/j.pan.2016.06.661.
[23] OLESEN SS, SVANE HML, NICOLAISEN SK, et al. Clinical and bio?chemical characteristics of postpancreatitis diabetes mellitus: A cross-sectional study from the Danish nationwide DD2 cohort[J]. J Diabetes, 2021, 13(12): 960-974. DOI: 10.1111/1753-0407.13210.
[24] ASLAM M, VIJAYASARATHY K, TALUKDAR R, et al. Reduced pan?creatic polypeptide response is associated with early alteration of glycemic control in chronic pancreatitis[J]. Diabetes Res Clin Pract, 2020, 160: 107993. DOI: 10.1016/j.diabres.2019.107993.
[25] HENNIG R, KEKIS PB, FRIESS H, et al. Pancreatic polypeptide in pan?creatitis[J]. Peptides,? 2002,? 23(2):? 331-338. DOI:? 10.1016/s0196-9781(01)00605-2.
[26] CAI DS, YUAN MS, FRANTZ DF, et al. Local and systemic insulin re?sistance resulting from hepatic activation of IKK-beta and NF-kappaB[J]. Nat Med, 2005, 11(2): 183-190. DOI: 10.1038/nm1166.
[27] HEO YJ, CHOI SE, JEON JY, et al. Visfatin induces inflammation and insulin resistance via the NF-κB and STAT3 signaling pathways in hepatocytes[J]. J Diabetes Res, 2019, 2019: 4021623. DOI: 10.1155/2019/4021623.
[28] CHEANG JY, MOYLE PM. Glucagon-like peptide-1 (GLP-1)-based therapeutics: Current status and future opportunities beyond type 2 diabetes[J]. ChemMedChem, 2018, 13(7): 662-671. DOI: 10.1002/cmdc.201700781.
[29] TUDUR? E, L?PEZ M, DI?GUEZ C, et al. Glucagon-like peptide? 1 analogs and their effects on pancreatic islets[J]. Trends Endocrinol Metab, 2016, 27(5): 304-318. DOI: 10.1016/j.tem.2016.03.004.
[30] DRUCKER DJ.? Mechanisms of action and therapeutic application of glucagon-like peptide-1[J]. Cell Metab,? 2018,? 27(4):? 740-756. DOI: 10.1016/j.cmet.2018.03.001.
[31] SALGA?O MK, OLIVEIRA LGS, COSTA GN, et al. Relationship be?tween gut microbiota, probiotics, and type? 2 diabetes mellitus[J]. Appl Microbiol Biotechnol, 2019, 103(23-24): 9229-9238. DOI: 10.1007/s00253-019-10156-y.
[32] TILG H, ZMORA N, ADOLPH TE, et al. The intestinal microbiota fuel?ling metabolic inflammation[J]. Nat Rev Immunol, 2020, 20(1): 40-54. DOI: 10.1038/s41577-019-0198-4.
[33] TAO J, CHEEMA H, KESH K, et al. Chronic pancreatitis in a caerulein-in?duced mouse model is associated with an altered gut microbiome[J]. Pancreatology, 2022, 22(1): 30-42. DOI: 10.1016/j.pan.2021.12.003.
[34] TALUKDAR R, SARKAR P, JAKKAMPUDI A, et al. The gut microbi?ome in pancreatogenic diabetes differs from that of Type? 1 and Type? 2 diabetes[J]. Sci Rep,? 2021,? 11(1):? 10978. DOI:? 10.1038/s41598-021-90024-w.
[35] JANDHYALA SM, MADHULIKA A, DEEPIKA G, et al. Altered intesti?nal microbiota in patients with chronic pancreatitis: Implications in diabetes and metabolic abnormalities[J]. Sci Rep, 2017, 7: 43640. DOI: 10.1038/srep43640.
[36] ZOU WB, TANG XY, ZHOU DZ, et al. SPINK1, PRSS1, CTRC, and CFTR genotypes influence disease onset and clinical outcomes in chronic pancreatitis[J]. Clin Transl Gastroenterol, 2018, 9(11): 204. DOI: 10.1038/s41424-018-0069-5.
[37] LIU QC, ZHUANG ZH, ZENG K, et al. Prevalence of pancreatic dia?betes in patients carrying mutations or polymorphisms of the PRSS1 gene in the Han population[J]. Diabetes Technol Ther,? 2009,? 11(12): 799-804. DOI: 10.1089/dia.2009.0051.
[38] KIMURA H, KLEIN AP, HRUBAN RH, et al. The role of inherited patho?genic CDKN2A variants in susceptibility to pancreatic cancer[J]. Pan?creas, 2021, 50(8): 1123-1130. DOI: 10.1097/MPA.0000000000001888.
[39] YIN LD, WEI JS, LU ZP, et al. Prevalence of germline sequence variations among patients with pancreatic cancer in China[J]. JAMA Netw Open, 2022, 5(2): e2148721. DOI: 10.1001/jamanetworkopen.2021.48721.
[40] MCWILLIAMS R, HIGHSMITH WE, RABE KG, et al.? Cystic fibrosis transmembrane regulator gene carrier status is a risk factor for young onset pancreatic adenocarcinoma[J]. Gut, 2005, 54(11): 1661-1662. DOI: 10.1136/gut.2005.074534.
[41] ABE K, KITAGO M, KITAGAWA Y, et al. Hereditary pancreatic can?cer[J]. Int J Clin Oncol,? 2021,? 26(10):? 1784-1792. DOI:? 10.1007/s10147-021-02015-6.
[42] ASSOCIATION AD. 2. classification and diagnosis of diabetes: Stan?dards of medical care in diabetes-2021[J]. Diabetes Care, 2021, 44(Suppl 1): S15-S33. DOI: 10.2337/dc21-S002.
[43] L?HR JM, DOMINGUEZ-MUNOZ E, ROSENDAHL J, et al. United European Gastroenterology evidence-based guidelines for the diag?nosis and therapy of chronic pancreatitis? (HaPanEU) [J]. United European Gastroenterol J,? 2017,? 5(2):? 153-199. DOI:? 10.1177/2050640616684695.
[44] UC A, ANDERSEN DK, BELLIN MD, et al. Chronic pancreatitis in the 21st century-research challenges and opportunities: Summary of a national institute of diabetes and digestive and kidney diseases workshop[J]. Pancreas, 2016, 45(10): 1365-1375. DOI: 10.1097/MPA.0000000000000713.
[45] CUI YF, ANDERSEN DK.? Pancreatogenic diabetes: Special consider?ations for management[J]. Pancreatology, 2011, 11(3): 279-294. DOI: 10.1159/000329188.
[46] BELLIN MD.? Pancreatogenic diabetes in children with recurrent acute and chronic pancreatitis: Risks, screening, and treatment (mini-review) [J]. Front Pediatr,? 2022,? 10:? 884668. DOI:? 10.3389/fped.2022.884668.
[47] WU K, WANG WL, CHEN H, et al.? Insulin promotes proliferation of pancreatic ductal epithelial cells by increasing expression of PLK1 through PI3K/AKT and NF- κB pathway[J]. Biochem Biophys Res Commun, 2019, 509(4): 925-930. DOI: 10.1016/j.bbrc.2018.12.182.
[48] YANG X, XU ZP, ZHANG CL, et al.? Metformin, beyond an insulin sensitizer, targeting heart and pancreatic? β cells[J]. Biochim Bio?phys Acta Mol Basis Dis, 2017, 1863(8): 1984-1990. DOI: 10.1016/j.bbadis.2016.09.019.
[49] WANG CC, ZHANG TP, LIAO Q, et al. Metformin inhibits pancreatic cancer metastasis caused by SMAD4 deficiency and consequent HNF4G upregulation[J]. Protein Cell, 2021, 12(2): 128-144. DOI: 10.1007/s13238-020-00760-4.
[50] CHEN K, QIAN WK, JIANG ZD, et al. Metformin suppresses cancer initia?tion and progression in genetic mouse models of pancreatic cancer[J]. Mol Cancer, 2017, 16(1): 131. DOI: 10.1186/s12943-017-0701-0.
[51] MAIDA A, LAMONT BJ, CAO X, et al. Metformin regulates the incretin receptor axis via a pathway dependent on peroxisome proliferator-acti?vated receptor- α in mice[J]. Diabetologia,? 2011,? 54(2):? 339-349. DOI: 10.1007/s00125-010-1937-z.
[52] GOODARZI MO, PETROV MS. Diabetes of the exocrine pancreas: Im?plications for pharmacological management[J]. Drugs, 2023, 83(12): 1077-1090. DOI: 10.1007/s40265-023-01913-5.
[53] CAMPAGNOLA P, de PRETIS N, ZORZI A, et al. Chronic pancreati?tis and nutritional support[J]. Best Pract Res Clin Gastroenterol, 2023, 62-63: 101823. DOI: 10.1016/j.bpg.2023.101823.
[54] DUGGAN SN, SMYTH ND, MURPHY A, et al. High prevalence of os?teoporosis in patients with chronic pancreatitis: A systematic review and meta-analysis[J]. Clin Gastroenterol Hepatol, 2014, 12(2): 219-228. DOI: 10.1016/j.cgh.2013.06.016.
[55] DYTZ MG, MARCELINO PAH, de CASTRO SANTOS O, et al. Clini?cal aspects of pancreatogenic diabetes secondary to hereditary pancreatitis[J]. Diabetol Metab Syndr,? 2017,? 9:? 4. DOI:? 10.1186/s13098-017-0203-7.
[56] DUGGAN SN, EWALD N, KELLEHER L, et al. The nutritional manage?ment of type? 3c? (pancreatogenic) diabetes in chronic pancreatitis[J]. Eur J Clin Nutr, 2017, 71(1): 3-8. DOI: 10.1038/ejcn.2016.127.收稿日期:2023-08-02;
錄用日期:2023-09-14
本文編輯:邢翔宇