摘要: 礦質(zhì)營養(yǎng)對植物生長發(fā)育具有重要作用。如何優(yōu)化養(yǎng)分管理調(diào)控土壤生態(tài)功能及植物免疫反應(yīng),從而實現(xiàn)對植物病害有效防控,是當(dāng)前研究的熱點問題之一。本文綜述了植物礦質(zhì)營養(yǎng)元素與病害之間的相互關(guān)系,從物理抗性、生化抗性、分子抗性及微生物調(diào)控等方面闡述了植物礦質(zhì)元素對病害的調(diào)控機理。合理供應(yīng)礦質(zhì)養(yǎng)分不僅能調(diào)節(jié)植物的組織和結(jié)構(gòu)特性建立抵御病原體入侵的物理屏障,通過影響植物抗菌代謝物合成、氨基酸代謝、植物防御相關(guān)酶活性等誘導(dǎo)植物生化抗性,還能從分子水平調(diào)控植物信號及激活植物免疫反應(yīng)以誘導(dǎo)植物分子抗性。此外,礦質(zhì)營養(yǎng)還可通過改變植物根系分泌物的組成,調(diào)控根際微生物結(jié)構(gòu),進而維持植物及土壤健康。因此,利用植物礦質(zhì)營養(yǎng)協(xié)調(diào)植物?土壤?微生物相互作用提高植物抗性,可為植物病害的綠色防控提供新思路。未來可從多種礦質(zhì)營養(yǎng)復(fù)合調(diào)控植物免疫機制,植物和微生物對礦質(zhì)營養(yǎng)響應(yīng)差異機理,以及發(fā)展精準(zhǔn)施肥技術(shù)提高植物對病害的抗性等方面進行深入研究。
關(guān)鍵詞: 礦質(zhì)營養(yǎng); 植物病害; 植物健康; 土壤健康; 養(yǎng)分管理
植物病害是影響農(nóng)作物穩(wěn)產(chǎn)高產(chǎn)的主要原因之一。據(jù)統(tǒng)計,水稻稻瘟病、小麥斑點病、玉米莖腐病三大糧食作物病害分別造成全球水稻平均減產(chǎn)30.3%,小麥平均減產(chǎn)21.5%,玉米平均減產(chǎn)22.6%,嚴(yán)重威脅糧食安全[1?3]。未來隨著全球貿(mào)易的增加和氣候的變化,病原體的地理分布將發(fā)生變化,使病害發(fā)生日益加劇[4]。在目前的農(nóng)業(yè)生態(tài)系統(tǒng)中,病害防控主要依賴于化學(xué)農(nóng)藥、殺菌劑及培育植物抗病品種,然而病原菌在進化過程中會產(chǎn)生耐藥性和提高對抗性品種的致病能力[5- 6],因此需要開發(fā)新型防治技術(shù)和完善病害防控體系,實現(xiàn)病害的綠色防控。
農(nóng)業(yè)生產(chǎn)依賴于大量化肥的投入,化肥是糧食安全的基本保障。我國利用只占世界9% 的耕地養(yǎng)活了占全球21% 的人口,其中化肥的貢獻(xiàn)是主要的原因之一。然而長期不合理施肥會導(dǎo)致植物病害頻發(fā),嚴(yán)重威脅農(nóng)業(yè)生產(chǎn)。合理的養(yǎng)分供應(yīng)有利于增強植物物理屏障、調(diào)節(jié)體內(nèi)代謝化合物及酶活性、改善土壤的微生物群落結(jié)構(gòu)與功能[7?9],進而提高植物對病原菌的抵抗力。因此,匹配作物養(yǎng)分需求進行合理施肥,解析植物礦質(zhì)營養(yǎng)對植物抗病性的影響機制,協(xié)調(diào)土壤?植物?微生物的生命共同體功能,將有利于實現(xiàn)糧食安全、資源高效、環(huán)境友好、綠色低碳的農(nóng)業(yè)可持續(xù)發(fā)展目標(biāo)。然而,目前關(guān)于植物礦質(zhì)營養(yǎng)與病害的關(guān)系及其調(diào)控機理的認(rèn)知還缺乏系統(tǒng)性?;诖耍疚膶χ参锎罅繝I養(yǎng)元素、中微量營養(yǎng)元素及其他營養(yǎng)元素與植物病害之間的相互作用進行系統(tǒng)總結(jié),探討植物礦質(zhì)營養(yǎng)在增強植物物理屏障、激活植物免疫反應(yīng)和構(gòu)建微生物防線方面的作用,以期為田間養(yǎng)分合理管理、植物病害綠色防控與農(nóng)業(yè)可持續(xù)發(fā)展提供新的思路和方向。
1 礦質(zhì)營養(yǎng)與病害的關(guān)系
1.1 大量營養(yǎng)元素與病害的關(guān)系
氮(N) 素營養(yǎng)與植物病害密切相關(guān),其不僅為植物和微生物的生長發(fā)育提供營養(yǎng),還能影響病原菌的侵染與定殖,調(diào)節(jié)植物?微生物互作關(guān)系,從而影響病害的發(fā)生[3] 。有研究表明,過量施用氮肥會導(dǎo)致植株發(fā)病率的增加,即氮素誘導(dǎo)出現(xiàn)植物對病害敏感性(nitrogen induced susceptibility, NIS) 現(xiàn)象[10],如高氮導(dǎo)致葡萄霜霉病、小麥條銹病、水稻稻瘟病、稻曲病及煙草青枯病等發(fā)病率增加[11?15]。除此之外,不同氮素形態(tài)也能影響病害的發(fā)生,例如硝態(tài)氮能夠抑制番茄和豌豆的根腐病、甜菜冠腐病和黃瓜枯萎病等;銨態(tài)氮則能抑制水稻稻瘟病、小麥全蝕病、煙草黑根腐病和草莓黑根腐病等[16]。由此可見,受植株種類、病原菌類型、氮素形態(tài)、施肥時期及施肥量等因素的影響,氮素在病害中發(fā)揮著不同的作用。
植株對磷(P) 素吸收會影響植物葉片磷含量,從而影響植株防御反應(yīng)和植物抗病能力[17]。過量的磷供應(yīng)會降低水稻對稻瘟病抗性;而缺磷會抑制植物免疫反應(yīng),促進植物與有益細(xì)菌的相互作用,但也增加植物細(xì)菌病害爆發(fā)的風(fēng)險[18]。也有研究發(fā)現(xiàn),炭疽病菌在磷養(yǎng)分過量時導(dǎo)致植物病害發(fā)生,而在磷酸鹽限制條件下促進擬南芥生長[19?20]。低磷供應(yīng)增強水稻對黃單胞菌[21]和大豆對尖孢鐮刀菌的抗性[22]。因此,多數(shù)情況下土壤中磷養(yǎng)分過多會增加植株患病風(fēng)險,在實際生產(chǎn)過程中需要供應(yīng)適當(dāng)磷以維持植物抗病性和促進植物生長以獲得更好的產(chǎn)量和品質(zhì)。
鉀(K) 在植物體內(nèi)以離子形式存在,參與植物多種防御反應(yīng)。鉀的供應(yīng)能降低植株易侵染部位的暴露風(fēng)險以防控植物病害爆發(fā)[23]。在茶樹研究中,鉀素顯著增加了茶樹對炭疽病菌的抗性[24];氯化鉀施用能降低禾谷鐮刀菌導(dǎo)致的玉米莖腐病[25]。此外,缺鉀會增加水稻對帚枝霉菌的敏感性[26]。因此,充足的鉀素供應(yīng)在幫助植物抵抗病原菌侵染中具有重要作用。
1.2 中量營養(yǎng)元素與病害的關(guān)系
鈣(Ca) 被植物吸收后在細(xì)胞內(nèi)主要以結(jié)合態(tài)形式存在,能調(diào)控多種植物生理過程[27]。鈣營養(yǎng)的供應(yīng)能增強水稻對稻瘟病菌和稻帚枝霉菌的抗性,減少稻瘟病和葉鞘腐敗病的發(fā)生[28?29]。此外,嫁接番茄幼苗在高濃度鈣營養(yǎng)液中培養(yǎng)時,對青枯病具有較強的抗性,隨著溶液中鈣濃度的增加,木質(zhì)部分泌物中的病原菌數(shù)量也隨之減少[30]。也有研究發(fā)現(xiàn),施用鈣肥有利于增強花生對多種土傳病原菌的抗性[31]。
鎂(Mg) 在植物和微生物相互作用中具有重要功能,可影響植物健康和病害的發(fā)生,如施加鎂肥可降低小麥全蝕病、水稻褐斑病、稻云形病、紋枯病、番茄枯萎病及花斑病和馬鈴薯軟腐病的發(fā)生[32?33]。然而,鎂供應(yīng)過量會加劇番茄和辣椒的細(xì)菌性斑點病以及花生莢腐病的發(fā)病率[32]。在酸性土壤中,鎂養(yǎng)分缺乏也會降低植物對病原菌果膠分解酶的抑制,導(dǎo)致枯萎病、細(xì)菌性軟腐病等病害的發(fā)生[32]。此外,研究發(fā)現(xiàn)鎂離子不影響菌絲體生長,但會抑制禾谷鐮刀菌的毒素積累[34]。
硫(S) 作為植物生長和免疫過程中的多種關(guān)鍵代謝物質(zhì)的組成成分,在植物與病原菌的抗?fàn)庍^程中扮演著重要角色。比較大白菜對軟腐病、病毒病和霜霉病的抗性,發(fā)現(xiàn)隨著硫施用量的增加,作物對病害的抵抗能力逐漸增加,在高水平硫供應(yīng)條件下能基本防控白菜軟腐病[35]。然而,有研究表明植物根系和根際微生物可產(chǎn)生含硫維生素(VB6),促進大豆疫霉侵染和根腐病的發(fā)生[36- 37]。
1.3 微量營養(yǎng)元素與病害的關(guān)系
鐵(Fe)、錳(Mn)、銅(Cu)、鋅(Zn)、鎳(Ni) 是植物必需微量營養(yǎng)元素,可調(diào)控植物光合及呼吸電子傳遞、細(xì)胞壁結(jié)構(gòu)、氧化應(yīng)激反應(yīng)、植物激素水平和碳氮代謝等生理活動,進而影響植物的免疫反應(yīng)過程[38?39]。研究發(fā)現(xiàn),小麥能在質(zhì)外體空間富集鐵以抑制小麥赤霉病病原真菌的繁殖[40]。水稻對鐵和錳的吸收能增強植株對條斑病的抗性反應(yīng)[41]。水稻對錳的吸收,還能激活植物的抗性反應(yīng),從而增強其對稻瘟病的抗性[42?43]。此外,增加錳營養(yǎng)也有利于防控茄病鐮刀菌和立枯絲核菌導(dǎo)致的大豆病害[44]。銅可抑制水稻黃單胞菌的生長,通過外源添加銅能提高水稻對白葉枯病抗病性[45]。同時,外源施加銅可實現(xiàn)對水稻條紋葉枯病和水稻矮縮病毒導(dǎo)致的病毒病害的有效防控。Kasmita 等[46]在水培體系下發(fā)現(xiàn),鋅的供應(yīng)能增強西瓜抵抗尖孢鐮刀菌侵染的能力。研究表明,葉面噴施硫酸鋅能防控鏈格孢菌引起的辣椒葉斑病[47],鋅也能增強辣椒免疫能力,從而防控灰葡萄孢菌導(dǎo)致的病害[48]。研究發(fā)現(xiàn),應(yīng)用硫酸鎳能抑制大豆白霉病[49]、水稻褐斑病[50]、大豆銹病[51]和玉米葉枯病的發(fā)生[52]。
鉬(Mo)、硼(B)、氯(Cl) 作為植物必需營養(yǎng)元素,在植物病害防治中也有著重要作用。鉬的供應(yīng)能直接抑制病原菌生長發(fā)育,在土壤中施用鉬肥可顯著降低由煙草疫霉引發(fā)的煙草黑脛病的嚴(yán)重程度[53]。葉面噴施高水平鉬提高了對煙草青枯病的防控能力[54]。硼對植物病害的防控具有重要作用,土壤中硼的缺乏增加了新型雙生病毒引發(fā)的成熟期大豆“青癥”病害的風(fēng)險[55]。研究發(fā)現(xiàn),硼的吸收利用可影響西瓜對病毒病害的抵抗能力[56]。同時,硼可抑制果樹病原菌的生長和毒力,提高果樹抗病能力和果實產(chǎn)量[57?58]。氯離子可通過滲透調(diào)節(jié)作用降低病原菌水分利用能力,從而抑制小麥全蝕病和白粉病、玉米莖腐病等病害的發(fā)生[25, 59?60]。
1.4 有益營養(yǎng)元素與病害的關(guān)系
硅(Si) 是改善植物生長發(fā)育的有益元素,可增強植物抵抗多種生物和非生物脅迫的能力,降低對化學(xué)農(nóng)藥的依賴[61?63]。硅酸鉀溶液可激活植物防御反應(yīng),防控玫瑰白粉病,同時硅營養(yǎng)也能增強黃瓜、小麥和大麥對白粉病的抗性[64]。此外,營養(yǎng)液中添加硅酸鈉能抑制稻平臍孺孢導(dǎo)致的水稻褐斑病[65],抑制炭疽病菌對菜豆的侵染[66],也可降低水稻稻瘟病的發(fā)生[ 6 7 ]。硒(Se) 對于植物而言也是一種有益營養(yǎng)元素,廣泛參與植物體內(nèi)抗氧化反應(yīng),能夠改善作物品質(zhì)和提高植物抗病性[68?69]。研究發(fā)現(xiàn),與噴施硫酸鈉相比,噴施硒酸鈉可提高水稻對稻瘟病抗性[70]。此外,硒也能較好地防治番茄灰霉病[68]。
綜上所述,植物礦質(zhì)養(yǎng)分供應(yīng)可影響病害的發(fā)生(表1),其機理主要體現(xiàn)在植物物理防御、生化防御、分子防御和微生物調(diào)控等方面。
2 礦質(zhì)營養(yǎng)對病害的影響機理
2.1 植物物理防御機制
植物礦質(zhì)營養(yǎng)可通過調(diào)節(jié)植物組織和結(jié)構(gòu)特性,形成抵御病原體入侵的物理屏障,進而影響植物的病害防御。氮素供應(yīng)過多雖然能促進植物生長,但會降低組織中木質(zhì)素的含量,不利于蠟質(zhì)層和角質(zhì)層的形成,如高氮施用會降低水稻的次生細(xì)胞壁厚度以及減少細(xì)胞壁主要成分(纖維素和木質(zhì)素),從而有利于病原微生物的侵入[99]。不同氮素形態(tài)也會影響植物的物理防御強度,例如,與硝態(tài)氮相比,銨態(tài)氮營養(yǎng)顯著增加甘藍(lán)葉片表皮蠟的含量[100]。鉀也能增強植物的物理屏障,如植物厚角組織細(xì)胞增厚,厚壁細(xì)胞木質(zhì)化程度及纖維素含量增加,從而防止病原菌的入侵和擴散[23, 101]。研究表明,Ca2+與果膠羧基的結(jié)合可增強植物細(xì)胞壁強度,有利于維持植物細(xì)胞的穩(wěn)定性進而抵抗病原菌侵染[27, 102]。錳可增加植物葉片木質(zhì)化程度及胼胝質(zhì)的累積,從而增強黃瓜對炭疽病菌的抗性[103]。硼與植物細(xì)胞壁中的果膠相互作用可增加細(xì)胞壁機械強度,通過與質(zhì)膜上糖蛋白和糖脂形成順式-二醇復(fù)合物以維持細(xì)胞膜完整性,有利于維持植物組織結(jié)構(gòu),從而抵抗病原菌的入侵[104]。硅能夠積聚在植物細(xì)胞壁中,形成硅酸鹽結(jié)晶,從而增加細(xì)胞壁的硬度和穩(wěn)定性,有利于植物抵御病原菌的侵染[61- 62, 96]。
2.2 植物生化防御機制
植物礦質(zhì)營養(yǎng)可通過影響植物代謝物或激活植物防御相關(guān)酶活性誘導(dǎo)植物生化抗性。植物抗菌代謝物是植物產(chǎn)生的能夠有效抑制病原菌的生長和孢子萌發(fā)的次級代謝物,如氮素促進酚類和類黃酮類物質(zhì)合成,進而誘導(dǎo)植物局部防御反應(yīng)及系統(tǒng)抵抗力[3]。磷可以誘導(dǎo)抗菌活性次生代謝物質(zhì)的產(chǎn)生,如增加黃酮類和硫代葡萄糖苷類等物質(zhì)的合成從而增強抗病能力[ 1 0 5 ]。鉀營養(yǎng)能增強植物莽草酸途徑代謝,合成酚類物質(zhì)以及降低真菌水解酶含量,進而抑制病原菌菌絲的發(fā)育,阻止木質(zhì)部結(jié)構(gòu)的分解和導(dǎo)管的堵塞[23]。鎂離子(Mg2+) 可以擾亂病原菌次生代謝,如硫酸鎂與桂皮油組合增強了對櫻桃鏈格孢菌的抑制,這與抑制病原菌的代謝作用有關(guān)[106]。植物螯合肽、鐵氧還蛋白、硫氧還蛋白、維生素、輔酶A 等含硫次生代謝產(chǎn)物能調(diào)控植物光合作用與呼吸作用的電子傳遞過程,影響植物糖類和脂質(zhì)代謝,對維持植物生長及抵御病原菌入侵有重要作用[88, 107]。此外,硫還參與硫代葡萄糖苷、植保素等植物抗病代謝物質(zhì)的合成,并且硫酸鹽對病原菌具有直接抑制作用,這有利于植物防控病原菌的入侵[87- 88, 108]。錳參與植物多種防御反應(yīng),可調(diào)控酚類和萜類化合物的合成,對維持植物抗病性具有重要作用[42, 109]。硼能調(diào)節(jié)植物體內(nèi)的活性氧爆發(fā),參與糖類物質(zhì)跨膜運輸、木質(zhì)素和類黃酮的合成,進而影響植物對病原體的識別和防御反應(yīng)[104, 110]。硅能夠調(diào)節(jié)植物代謝,增加植物抗菌毒素的合成,促進多胺代謝,從而抵抗病原菌入侵[61, 111?112]。
氨基酸和有機酸屬于初級代謝物,當(dāng)?shù)?yīng)過多時,植物游離氨基酸的過度積累將抑制有機酸的合成,從而破壞其下游免疫防御反應(yīng)的激活和植物與有益微生物的共生,形成了有利于病原菌生長的微環(huán)境[113?115]。不同氮素形態(tài)也可影響酰胺及氨基酸代謝,如硝態(tài)氮可促進精胺和亞精胺等防御信號物質(zhì)的產(chǎn)生,而對于部分作物,供應(yīng)銨態(tài)氮比例較高時可增加氨基丁酸等氨基酸的含量,進而抑制相關(guān)防御反應(yīng)[3]。缺鉀的植株中積累更多的可溶性糖和氨基酸等小分子有機物,為病原菌的生長提供了大量易被利用的養(yǎng)分[23, 94]。
植物防御相關(guān)酶的激活也影響植物對病原體入侵的抵抗能力。鎂增加了水稻抗氧化酶系統(tǒng)活性,從而增強水稻對稻云形致病菌、立枯絲核菌和水稻褐斑病菌的抵抗力[7]。植物吸收的二氧化硫和硫酸鹽可轉(zhuǎn)化為含硫氨基酸、谷胱甘肽和富硫蛋白,對改善植物抗氧化能力方面具有重要作用[89]。植物體內(nèi)鐵離子含量影響鐵離子依賴的過氧化氫清除酶活性,從而影響植物抗病性[38]。植物吸收錳依賴于根系的特殊的轉(zhuǎn)運體(the diverse natural resistance-associatedmacrophage proteins,NRAMP),研究發(fā)現(xiàn)OsNRAMP5的表達(dá)增強水稻對Mn2+的吸收,OsNRAMP5 突變體中錳元素含量、超氧化物歧化酶活性和H2O2 含量顯著降低,使得水稻對稻瘟病菌的抵抗力下降[42]。外源施加銅可增強抗壞血酸氧化酶的活性,實現(xiàn)對水稻條紋葉枯病和水稻矮縮病的有效防控。銅離子也參與調(diào)節(jié)超氧化物歧化酶活性,通過控制活性氧水平和化感物質(zhì)氧化過程,影響植株對病原菌的抗性[92]。鎳能調(diào)節(jié)植物的非氧化還原功能酶和氧化還原反應(yīng)功能酶的活性,而影響植株碳和氮的代謝[38]。同時,鎳鹽能增強植物硝酸鹽和亞硝酸鹽還原酶活性,從而抵抗生物脅迫[50]。氯主要以離子形式被植物體吸收,通過維持細(xì)胞膨壓、調(diào)節(jié)氣孔開度和養(yǎng)分吸收、提高酶活性等途徑來影響植物抗病性[116]。硒能增強谷胱甘肽過氧化物酶活性,改善植物生物脅迫[70]。綜上所述,植物礦質(zhì)營養(yǎng)可以通過激活防御相關(guān)酶參與植物對生物脅迫的防御。
2.3 植物分子防御機制
植物礦質(zhì)營養(yǎng)從分子水平調(diào)控植物信號及激活植物免疫反應(yīng)以誘導(dǎo)植物分子抗性,維持植物健康。植物激素在植物生長發(fā)育中起著關(guān)鍵作用,其中水楊酸(SA)、茉莉酸(JA) 和乙烯(ETH) 是植物防御反應(yīng)的重要調(diào)節(jié)因子。氮可誘導(dǎo)病原菌侵染部位化學(xué)信號的產(chǎn)生,如活性氧、鈣信號、一氧化氮及水楊酸等信號級聯(lián)反應(yīng),進而激活下游防御相關(guān)基因的表達(dá)[3]。研究發(fā)現(xiàn),低氮供應(yīng)可誘導(dǎo)植株水楊酸信號途徑,增強番茄對青枯病菌和細(xì)菌性葉斑病菌的抗性[117];氮脅迫也可誘導(dǎo)稻瘟病菌表達(dá)致病相關(guān)基因,產(chǎn)生相應(yīng)致病性蛋白[118]。磷可以調(diào)節(jié)植物激素,如通過協(xié)調(diào)水楊酸、細(xì)胞分裂素、茉莉酸和獨腳金內(nèi)酯的平衡來影響植物的抗性基因表達(dá),從而增強抗病能力[105]。鉀營養(yǎng)也能影響植物多種激素調(diào)控途徑而提高植物對病害的抵抗,如通過介導(dǎo)茉莉酸、乙烯和油菜素內(nèi)酯提高對水稻病害的防御[119]。此外,植物鉀離子轉(zhuǎn)運體OsAKT1 及其相關(guān)的胞內(nèi)激酶OsCIPK23 的合成在幫助植物抵抗病原真菌和病毒的侵染過程中具有重要作用[74, 101]。
鈣介導(dǎo)的植物防御與Ca2+信號相關(guān),維持鈣穩(wěn)態(tài)對于植物生長和激活免疫反應(yīng)至關(guān)重要,植物存在大量Ca2+轉(zhuǎn)運體以檢測和傳遞脅迫反應(yīng)的早期信號[27]。在病原菌侵染時,Ca2+可通過各種通道內(nèi)流,激活呼吸爆發(fā)氧化酶同源物(RBOHs) 以介導(dǎo)質(zhì)外體活性氧的爆發(fā),直接刺激絲裂原活化蛋白激酶(mitogenactivatedprotein kinase,MAPK) 信號級聯(lián)反應(yīng)和細(xì)胞內(nèi)的鈣依賴性蛋白激酶(calcium-dependent proteinkinases,CDPKs)、鈣調(diào)蛋白(calcium calmodulins,CaMs) 和鈣調(diào)磷酸酶B 類蛋白(calcineurin B-likeproteins,CBLs) 介導(dǎo)的鈣信號以激活細(xì)胞內(nèi)的免疫受體,進而觸發(fā)病原體相關(guān)的分子模式觸發(fā)免疫(PTI) 和效應(yīng)觸發(fā)免疫(ETI)[120]。病原微生物會利用胞外多糖等爭奪植物的Ca2+,影響Ca2+內(nèi)流信號,干擾植物鈣介導(dǎo)的免疫反應(yīng),從而增強自身存活和致病能力[78]。
鐵營養(yǎng)通過一氧化氮和乙烯等信號分子誘導(dǎo)雙子葉植物對缺鐵的響應(yīng),增強植物防御反應(yīng)[39];外源施加鐵營養(yǎng)能增強被病原菌毒性蛋白XopAK 抑制的OsMYBxoc1 途徑的抗病反應(yīng)[41]。外源施加銅營養(yǎng)或在水稻中過量表達(dá)OsCOPT1 和OsCOPT5 兩種銅離子轉(zhuǎn)運體基因能改善植株銅離子分布狀況,從而提高水稻對白葉枯病的抗病性[45]。鋅作為植物結(jié)構(gòu)蛋白質(zhì)輔因子,Zn2+參與鋅指蛋白結(jié)構(gòu)域的形成,進而影響植物對病原菌效應(yīng)子的識別和抵抗能力[93]。硅能影響病原體相關(guān)的分子模式觸發(fā)免疫(PTI) 和效應(yīng)觸發(fā)免疫(ETI)[121],調(diào)控植物乙烯和茉莉酸等激素代謝和揮發(fā)性有機物的合成等,從而增強植株抵御病害的能力[61, 111?112]。
2.4 微生物調(diào)控機制
根際微生物具有多樣性和復(fù)雜性,被稱為植物的第二基因組,為防止土壤病原菌入侵根系提供了第一道防線[122],對植物及土壤健康至關(guān)重要[123]。礦質(zhì)營養(yǎng)元素可以通過改變根系分泌物的組成和根際微生物群落結(jié)構(gòu)及活性影響植物健康。氮素供應(yīng)過多會增加土壤微生物群落中病原菌的豐度,并降低有益微生物的豐度,進而加劇植物病害爆發(fā)的風(fēng)險[10, 12, 100]。不同的氮素形態(tài)供應(yīng)也能調(diào)控植物的抗病性,其不僅影響植株的生長發(fā)育和植物根系構(gòu)型的變化[124],還能調(diào)控土壤生物群落結(jié)構(gòu),影響植物對病害的抵抗能力[125]。相比于施加銨態(tài)氮,施加硝態(tài)氮的土壤增加了土壤真菌群落的網(wǎng)絡(luò)穩(wěn)定性,降低了尖孢鐮刀菌和多種腐生菌的豐度,從而降低了黃瓜枯萎病發(fā)病率[126]。此外,有研究發(fā)現(xiàn)硝態(tài)氮能通過調(diào)節(jié)檸檬酸鹽分泌來保護黃瓜免受尖孢鐮刀菌的侵害[127]。
土壤磷與植物根系結(jié)構(gòu)和土壤微生物群落結(jié)構(gòu)的變化密切相關(guān)[128?129]。對于大多數(shù)植物而言,在缺磷條件下,植物可以通過結(jié)合土壤中的叢枝菌根真菌,分泌酸性磷酸酶、羧酸鹽和質(zhì)子等物質(zhì)溶解土壤中的磷,以及增強根系中磷酸鹽轉(zhuǎn)運蛋白的表達(dá)等方式,提高磷的獲取效率[130?131]。磷主要以正磷酸鹽的形式通過根系或菌根途徑吸收利用,能參與調(diào)控植物與微生物相互作用[132]。土壤磷的有效性通過影響植物根系構(gòu)型、分泌物類型和土壤微生物群落結(jié)構(gòu),與植物病害密切相關(guān)[128?129]。磷與植物病害的研究中,病害的發(fā)生與土壤養(yǎng)分密切相關(guān)。叢枝菌根真菌(AMF) 通過預(yù)激活植物防御反應(yīng)來增強植物對病原真菌的抵抗力[133],增加寄主植物根系吸收養(yǎng)分面積,協(xié)助寄主吸收土壤養(yǎng)分,進而促進植物生長,增強植物抵抗力。但過量的磷添加往往不利于土壤健康,土壤中磷有效性的提升會降低叢枝菌根真菌的定殖和叢枝覆蓋面積,降低植物抗性[134?135]。在多年人參連作條件下,發(fā)病土壤中的速效磷含量較健康土壤顯著升高,磷酸酶活性顯著降低[136]。速效磷含量的提升降低了土壤中芽孢桿菌等有益菌的豐度,且可能會顯著富集病原菌,導(dǎo)致土傳病害和葉際病害的發(fā)生[137?138]。
隨著鉀營養(yǎng)在調(diào)控微生物群落結(jié)構(gòu)和控制植物病害的作用方面越來越受到關(guān)注,研究發(fā)現(xiàn)亞磷酸鉀在結(jié)合有益菌進行病害防控方面具有較大潛力[77],并且植物根際和葉際微生物群落的組裝受到鉀供應(yīng)水平的驅(qū)動[77, 139]。因此,合理供應(yīng)鉀營養(yǎng)有利于增強植物免疫反應(yīng)和協(xié)調(diào)微生物組群落結(jié)構(gòu)以防控植物病害。
微生物會試圖減少Ca2+流入植物細(xì)胞內(nèi),以建立它們與宿主所需的相互作用,例如,病原細(xì)菌產(chǎn)生的胞外多糖具有多陰離子的性質(zhì),可以有效螯合Ca2+,從而降低擬南芥的免疫力[78]。有研究發(fā)現(xiàn),施用鈣肥后會影響花生的根際微生物群落,如在苗期花生根際顯著富集粘質(zhì)沙雷氏菌以拮抗茄枯菌和黃曲霉菌等土傳病原菌,而在莢果灌漿期富集鞘氨醇單胞菌和新鞘氨醇桿菌等有益菌增強花生對羅氏菌核菌和花生細(xì)球孢菌等病原菌的抗性[31]。此外,鈣添加也能直接影響病原微生物活性以控制植物病害,如抑制病原細(xì)菌胞外果膠酶活性和病原真菌孢子的生長發(fā)育來防控植物病害[27]。硫養(yǎng)分過多會加劇土壤酸化的風(fēng)險,使得植物體內(nèi)易形成酸性環(huán)境,從而促進病原微生物的生長繁殖,導(dǎo)致根腐病等病害發(fā)生[140]。
缺鐵的土壤環(huán)境誘導(dǎo)了植物根系香豆素的分泌,這有助于優(yōu)化根際微生物群落的組裝和改善土壤理化性質(zhì),從而增強植物營養(yǎng)吸收和降低植物病害發(fā)病率[ 1 4 1 ? 1 4 2 ]。鐵也能調(diào)控植物與有益微生物相互作用,如貝萊氏芽孢桿菌與植物之間存在“先借后還、借少還多”的鐵素利用的定殖機制,并且在定殖后增強多種拮抗病原菌的功能[143]。因此,通過合理利用礦質(zhì)營養(yǎng)元素調(diào)控植物?微生物互作關(guān)系,維持植物和土壤健康,對于植物病害的防控具有重要意義。
3 總結(jié)與展望
綜上,植物礦質(zhì)營養(yǎng)對植物的生長發(fā)育與健康有著至關(guān)重要的作用(圖1)。合理供應(yīng)礦質(zhì)養(yǎng)分能調(diào)節(jié)植物的組織和形態(tài)結(jié)構(gòu)特性,如強化植物細(xì)胞壁和增強角質(zhì)層,以建立抵御入侵病原體的物理屏障。礦質(zhì)營養(yǎng)還能調(diào)節(jié)植物多種生化代謝途徑以防控病原菌,如調(diào)控酚類和木質(zhì)素等抗菌物質(zhì)的合成以及增強植物酶活性。同時,礦質(zhì)養(yǎng)分可通過調(diào)節(jié)活性氧和信號分子影響植物激素代謝和激活植物的免疫反應(yīng)。此外,養(yǎng)分供應(yīng)對調(diào)控植物根系生長和植物根系分泌物具有重要作用,如利用香豆素類和有機酸類等物質(zhì)的分泌招募有益菌以拮抗病原菌。因此,利用植物礦質(zhì)營養(yǎng)協(xié)調(diào)植物?土壤?微生物的相互作用,可為改善作物健康和發(fā)展農(nóng)作物病害綠色防控技術(shù)提供新的思路。同時為了綜合實現(xiàn)多目標(biāo)的植物和微生物種質(zhì)資源的開發(fā)利用,促進綠色智能肥料產(chǎn)業(yè)的創(chuàng)新性發(fā)展,還需要從以下幾個方面系統(tǒng)解析和評估植物礦質(zhì)營養(yǎng)對植物生長發(fā)育與健康的貢獻(xiàn):
1) 礦質(zhì)營養(yǎng)調(diào)控植物免疫的機制。盡管近期發(fā)現(xiàn)了植物礦質(zhì)營養(yǎng)對特定植物病害的防控作用,但如何平衡多種營養(yǎng)復(fù)合調(diào)控植物免疫反應(yīng)通路改變的機制還有待深入探究,并且在礦質(zhì)營養(yǎng)如何調(diào)節(jié)植物對復(fù)合病害侵染的作用機制報道較少。
2) 礦質(zhì)營養(yǎng)調(diào)控微生態(tài)改善植物?微生物組防控植物病害。礦質(zhì)營養(yǎng)對植物的根際微生態(tài)環(huán)境具有重要影響,如通過影響植物根系分泌物進而調(diào)控根際有益促生菌與病原菌之間的相互作用??紤]到許多微生物能量的產(chǎn)生、營養(yǎng)的獲取、細(xì)胞黏附和生物膜形成等生物過程都受礦質(zhì)營養(yǎng)元素的影響,需要深入解析植物和微生物對礦質(zhì)營養(yǎng)供應(yīng)的響應(yīng)機制,以指導(dǎo)對植物病害的防控。
3) 優(yōu)化農(nóng)田養(yǎng)分管理。需要完善土壤、作物和氣候相匹配的新一代綠色智能肥料生產(chǎn)和應(yīng)用的技術(shù)體系,實現(xiàn)農(nóng)產(chǎn)品優(yōu)質(zhì)高產(chǎn)、資源高效、作物病害防控、生態(tài)環(huán)境健康的農(nóng)業(yè)綠色發(fā)展目標(biāo),在增加生產(chǎn)投入的同時降低病害爆發(fā)的損失。此外,如何更好地發(fā)展精準(zhǔn)施肥技術(shù)以協(xié)同提高植物抵抗病害的能力,仍值得進一步探究。
參 考 文 獻(xiàn):
[ 1 ]Savary S, Willocquet L, Pethybridge S J, et al. The global burden ofpathogens and pests on major food crops[J]. Nature Ecology amp;Evolution, 2019, 3(3): 430?439.
[ 2 ]Ristaino J B, Anderson P K, Bebber D P, et al. The persistent threatof emerging plant disease pandemics to global food security[J].Proceedings of the National Academy of Sciences of the UnitedStates of America, 2021, 118(23): e2022239118.
[ 3 ]Sun Y M, Wang M, Mur L A J, et al. Unravelling the roles ofnitrogen nutrition in plant disease defences[J]. International Journalof Molecular Sciences, 2020, 21(2): 572.
[ 4 ]Yang L N, Ren M Z, Zhan J S. Modeling plant diseases underclimate change: Evolutionary perspectives[J]. Trends in PlantScience, 2023, 28(5): 519?526.
[ 5 ]Zhou D, Chen X Z, Chen X G, et al. Plant immune receptorsinteract with hemibiotrophic pathogens to activate plant immunity[J]. Frontiers in Microbiology, 2023, 14: 1252039.
[ 6 ] Wang Y, Pruitt R N, Nürnberger T, Wang Y C. Evasion of plant immunity by microbial pathogens[J]. Nature Reviews Microbiology,2022, 20(8): 449?464.
[ 7 ]Hui S G, Zhang P, Yuan M. Optimizing nutrient transporters toenhance disease resistance in rice: A review[J]. Journal of ExperimentalBotany, 2024, 75(10): 2799?2808.
[ 8 ]Tripathi R, Tewari R, Singh K P, et al. Plant mineral nutrition anddisease resistance: A significant linkage for sustainable crop protection[J]. Frontiers in Plant Science, 2022, 13: 883970.
[ 9 ]施衛(wèi)明, 李光杰, 艾超, 周衛(wèi). 中國植物營養(yǎng)生物學(xué)研究重要進展和展望[J]. 植物營養(yǎng)與肥料學(xué)報, 2022, 28(12): 2310?2323.
Shi W M, Li G J, Ai C, Zhou W. Important progress and prospectsof plant nutritional biology in China[J]. Journal of Plant Nutritionand Fertilizers, 2022, 28(12): 2310?2323.
[ 10 ]Huang H C, Thu T N T, He X H, et al. Increase of fungal pathogenicityand role of plant glutamine in nitrogen-induced susceptibility (NIS)to rice blast[J]. Frontiers in Plant Science, 2017, 8: 265.
[ 11 ]Ash G J, Brown J F. Effect of nitrogen nutrition of the host on theepidemiology of Puccinia striiformis f. sp. tritici and crop yield inwheat[J]. Australasian Plant Pathology, 1991, 20(3): 108?114.
[ 12 ]Shobit T, Radha P, Balasubramanian R, et al. Interactive effects ofMagnaporthe inoculation and nitrogen doses on the plant enzymemachinery and phyllosphere microbiome of resistant and susceptiblerice cultivars[J]. Archives of Microbiology, 2018, 200(9): 1287?1305.
[ 13 ]吳博凡. 高氮促進煙草青枯病爆發(fā)的機制研究[D]. 重慶: 西南大學(xué)碩士學(xué)位論文, 2023.
Wu B F. Study on the mechanism of high nitrogen fertilizerapplication promoting outbreak of tobacco bacterial wilt[D].Chongqing: MS Thesis of Southwest University, 2023.
[ 14 ]Demetrio M, Valentina R, Giuliana M, et al. Influence of nitrogenon grapevine susceptibility to downy mildew[J]. Plants, 2023, 12(2):263.
[ 15 ]Rani R, Sharma V K, Pannu P P S, Lore J S. Influence of nitrogenfertilizer dose on 1 smut of rice (Oryza sativa) caused byUstilaginoidea virens[J]. The Indian Journal of AgriculturalSciences, 2015, 85(8): 1003?1006.
[ 16 ]王敏, 周犇, 曾吉興, 等. 硝態(tài)氮抑制尖孢鐮刀菌侵染促進黃瓜生長的內(nèi)在生理機制[J]. 植物營養(yǎng)與肥料學(xué)報, 2020, 26(11): 1944?1952.
Wang M, Zhou B, Zeng J X, et al. Inherent physiological mechanismof nitrate nitrogen in suppressing Fusarium oxysporum infection andincreasing growth of cucumber plants[J]. Journal of Plant Nutritionand Fertilizers, 2020, 26(11): 1944?1952.
[ 17 ]Campos-Soriano L, Bundó M, Bach-Pages M, et al. Phosphateexcess increases susceptibility to pathogen infection in rice[J].Molecular Plant Pathology, 2020, 21(4): 555?570.
[ 18 ]Yang S Y, Lin W Y, Hsiao Y M, et al. Milestones in understandingtransport, sensing, and signaling of the plant nutrient phosphorus[J].The Plant Cell, 2024, 36(5): 1504?1523.
[ 19 ]Hiruma K, Aoki S, Takino J, et al. A fungal sesquiterpenebiosynthesis gene cluster critical for mutualist-pathogen transition inColletotrichum tofieldiae[J]. Nature Communications, 2023, 14(1):5288.
[ 20 ]Hiruma K, Gerlach N, Sacristán S, et al. Root endophyte Colletotrichumtofieldiae confers plant fitness benefits that are phosphate statusdependent[J]. Cell, 2016, 165(2): 464?474.
[ 21 ]Kong Y Z, Wang G, Chen X, et al. OsPHR2 modulates phosphatestarvation-induced OsMYC2 signalling and resistance to Xanthomonasoryzae pv. oryzae[J]. Plant, Cell amp; Environment, 2021, 44(10):3432?3444.
[ 22 ]Kang J, Qiu W, Zhang W, et al. Understanding how various formsof phosphorus stress affect microbiome functions and boost plantdisease resistance: Insights from metagenomic analysis[J]. Scienceof the Total Environment, 2023, 904: 166899.
[ 23 ]劉曉燕, 何萍, 金繼運. 鉀在植物抗病性中的作用及機理的研究進展[J]. 植物營養(yǎng)與肥料學(xué)報, 2006, 12(3): 445?450.
Liu X Y, He P, Jin J Y. Advances in effect of potassium nutrition onplant disease resistance and its mechanism[J]. Journal of PlantNutrition and Fertilizers, 2006, 12(3): 445?450.
[ 24 ]阮建云 石元值, 馬立鋒, 吳洵. 鉀營養(yǎng)對茶樹幾種病害抗性的影響[J]. 土壤, 2003, 35(2): 165?167.
Ruan J Y, Shi Y Z, Ma L F, Wu X. Effect of K nutrition on theoccurrence of typical fungal diseases in tea plants[J]. Soils, 2003,35(2): 165?167.
[ 25"]李文娟, 何萍, 金繼運. 氯化鉀對玉米莖腐病抗性反應(yīng)中酚類物質(zhì)代謝的影響[J]. 植物營養(yǎng)與肥料學(xué)報, 2008, 14(3): 508?514.
Li W J, He P, Jin J Y, et al. Effect of potassium chloride on phenolicmetabolism in resistant response to corn stalk rot[J]. Journal of PlantNutrition and Fertilizers, 2008, 14(3): 508?514.
[ 26 ]張江林. 鉀素營養(yǎng)增強水稻抵抗葉鞘腐敗病的生理機制[D]. 湖北武漢: 華中農(nóng)業(yè)大學(xué)博士學(xué)位論文, 2021.
Zhang J L. Physiological mechanisms of potassium nutritionenhancing the rice (Oryza sativa L.) resistance to sheath rotdisease[D]. Wuhan, Hubei: PhD Dissertation of HuazhongAgricultural University, 2021.
[ 27 ]王芳, 李振輪, 陳艷麗, 等. 鈣抑制植物病害作用及機制的研究進展[J]. 生物技術(shù)通報, 2017, 33(2): 1?7.
Wang F, Li Z L, Chen Y L, et al. Recent advances on inhibitionmechanisms of calcium on plant diseases[J]. BiotechnologyBulletin, 2017, 33(2): 1?7.
[ 28 ]Zheng L Y, Yu Y Y, Zheng Y, et al. Long small RNA76113 targetsCYCLIC NUCLEOTIDE-GATED ION CHANNEL 5 to repressdisease resistance in rice[J]. Plant Physiology, 2023, 194(3): 1889?1905.
[ 29 ]Reddy M M, Reddy C S, Reddy A G R. Effect of foliar applicationof nutrients on sheath rot disease of rice[J]. Indian Journal of PlantProtection, 1998, 26(2): 107?111.
[ 30 ]Yamazaki H, Kikuchi S, Hoshina T, Kimura T. Effect of calciumconcentration in nutrient solution before and after inoculation withRalstonia solanacearum on resistance of tomato seedlings tobacterial wilt[J]. Soil Science and Plant Nutrition, 1999, 45(4):1009?1014.
[ 31 ]Wei Z, Wen Z B, Fu D J, et al. The resistance of peanut to soilbornepathogens improved by rhizosphere probiotics under calciumtreatment[J]. BMC Microbiology, 2021, 21(1): 299.
[ 32 ] Huber D M, Jones J B. The role of magnesium in plant disease[J].Plant and Soil, 2013, 368(1): 73?85.
[ 33 ]Wu C H, Dewir Y H, Hahn E J, Paek K Y. Optimization of culturingconditions for the production of biomass and phenolics fromadventitious roots of Echinacea angustifolia[J]. Journal of PlantBiology, 2006, 49: 193?199.
[ 34 ]Pinson-Gadais L, Richard-Forget F, Frasse P, et al. Magnesiumrepresses trichothecene biosynthesis and modulates Tri5, Tri6, andTri12 genes expression in Fusarium graminearum[J]. Mycopathologia,2008, 165(1): 51?59.
[ 35 ]劉光棟, 楊力, 宋國菡, 等. 氮硫養(yǎng)分平衡對大白菜營養(yǎng)品質(zhì)和抗病性影響的研究[J]. 山東農(nóng)業(yè)大學(xué)學(xué)報, 1999, 30(4): 417?420.
Liu G D, Yang L, Song G H, et al. Effect of nitrogen and sulphurbalance on nutritional quality and disease resistance of Chinesecabbage[J]. Journal of Shandong Agricultural University, 1999,30(4): 417?420.
[ 36 ]Xia C Y, Zhao Y Q, Zhang L, et al. Myxobacteria restrainPhytophthora invasion by scavenging thiamine in soybeanrhizosphere via outer membrane vesicle-secreted thiaminase I[J].Nature Communications, 2023, 14(1): 5646.
[ 37 ]Wang W, Liu J B, Mishra B, et al. Sparking a sulfur war betweenplants and pathogens[J]. Trends in Plant Science, 2022, 27(12):1253?1265.
[ 38 ]馬琦琦, 李麗君, 王斌, 等. 微肥對植物生長作用及施用技術(shù)的研究進展[J]. 安徽農(nóng)業(yè)科學(xué), 2022, 50(13): 4?6.
Ma Q Q, Li L J, Wang B, et al. Research progress on the effects ofmicro-fertilizers on plant growth and application techniques[J].Journal of Anhui Agricultural Sciences, 2022, 50(13): 4?6.
[ 39 ]Romera F J, García M J, Lucena C, et al. Induced systemicresistance (ISR) and Fe deficiency responses in dicot plants[J].Frontiers in Plant Science, 2019, 10: 287.
[ 40 ]Gu Q, Wang Y J, Zhao X Z, et al. Inhibition of histoneacetyltransferase GCN5 by a transcription factor FgPacC controlsfungal adaption to host-derived iron stress[J]. Nucleic AcidsResearch, 2022, 50(11): 6190?6210.
[ 41 ]Zhang H M, Sun B L, Wu W, et al. The MYB transcription factorOsMYBxoc1 regulates resistance to Xoc through directly repressingtranscription of iron transport gene OsNRAMP5 in rice[J]. PlantCommunications, 2024, 5(6): 100859.
[ 42 ]呂超. 水稻鎘積累基因OsNramp5缺失對稻瘟病抗性的影響研究[D]. 湖北武漢: 華中農(nóng)業(yè)大學(xué)碩士學(xué)位論文, 2022.
Lü C. Effects of cadmium accumulation gene OsNramp5 deletionon rice blast resistance[D]. Wuhan, Hubei: MS Thesis of HuazhongAgricultural University, 2022.
[ 43 ]Peris-Peris C, Serra-Cardona A, Sánchez-Sanuy F, et al. TwoNRAMP6 isoforms function as iron and manganese transporters andcontribute to disease resistance in rice[J]. Molecular Plant-MicrobeInteractions, 2017, 30(5): 385?398.
[ 44 ]馬立功, 張勻華, 季宏平, 等. 微量元素對大豆根腐病主要病原菌生長及其產(chǎn)毒作用的研究[J]. 黑龍江農(nóng)業(yè)科學(xué), 2010, (5): 59?61.
Ma L G, Zhang Y H, Ji H P, et al. Effect of microelements on thegrowing and toxin production of pathogens of soybean root rot[J].Heilongiiang Agricultural Sciences, 2010, (5): 59?61.
[ 45 ] Yuan M, Chu Z H, Li X H, et al. The bacterial pathogen Xanthomonas oryzae overcomes rice defenses by regulating hostcopper redistribution[J]. The Plant Cell, 2010, 22(9): 3164?3176.
[ 46 ]Kasmita K, Tim C, Chandrasekar K, et al. The transcriptomicprofile of watermelon is affected by zinc in the presence of Fusariumoxysporum f. sp. niveum and Meloidogyne incognita[J]. Pathogens(Basel, Switzerland), 2021, 10(7): 796.
[ 47 ]Shoaib A, Akhtar M, Javaid A, et al. Antifungal potential of zincagainst leaf spot disease in chili pepper caused by Alternaria alternata[J]. Physiology and Molecular Biology of Plants, 2021, 27(6):1361?1376.
[ 48 ]Kuvelja A, Morina F, Mijovilovich A, et al. Zinc priming enhancesCapsicum annuum immunity against infection by Botrytis cinereafrom the whole plant to the molecular level[J]. Plant Science, 2024,343: 112060.
[ 49 ]Fontes B A, Torres Rodrigues F C, Pican?o B B M, et al. Nickelpotentiates soybean resistance against Sclerotinia sclerotioruminfection[J]. Tropical Plant Pathology, 2024, 49(2): 193?208.
[ 50 ]Hawerroth C, Einhardt A M, Fontes B A, et al. Nickel enhances riceresistance against Bipolaris oryzae infection[J]. Plant and Soil,2023, 490(1): 291?303.
[ 51 ]Einhardt A M, Ferreira S, Souza G M F, et al. Cellular oxidativedamage and impairment on the potosynthetic apparatus caused byAsian Soybean Rust on soybeans are alleviated by nickel[J]. ActaPhysiologiae Plantarum, 2020, 42(7): 115.
[ 52 ]Oliveira L M, Araújo M U P, Silva B N, et al. Maize resistance tonorthern corn leaf blight is potentiated by nickel[J]. Plant Pathology,2021, 71(2): 262?278.
[ 53 ]Yu B J, Li J L, Moussa M G, et al. Molybdenum inhibited thegrowth of Phytophthora nicotiana and improved the resistance ofNicotiana tabacum L. against tobacco black shank[J]. PesticideBiochemistry and Physiology, 2024, 199: 105803.
[ 54 ]鄭世燕, 丁偉, 杜根平, 等. 增施礦質(zhì)營養(yǎng)對煙草青枯病的控病效果及其作用機理[J]. 中國農(nóng)業(yè)科學(xué), 2014, 47(6): 1099?1110.
Zheng S Y, Ding W, Du G P, et al. Control efficacy and actionmechanism of mineral nutrition on tobacco bacterial wilt[J]. ScientiaAgricultura Sinica, 2014, 47(6): 1099?1110.
[ 55 ]Wang X L, Wang M X, Wang L K, et al. Whole plant microbiomeprofiling reveals a novel geminivirus associated with soybean staygreendisease[J]. Plant Biotechnology Journal, 2022, 20(11): 2159?2173.
[ 56 ]畢馨月. 硼元素調(diào)控西瓜抗黃瓜綠斑駁花葉病毒(CGMMV)侵染的分子機制研究[D]. 遼寧沈陽: 沈陽農(nóng)業(yè)大學(xué)博士學(xué)位論文,2022.
Bi X Y. Molecular mechanism of boron regulating watermelonresistance to cucumber green mottle mosaic virus (CGMMV)infection[D]. Liaoning, Shenyang: PhD Dissertation of ShenyangAgricultural University, 2022.
[ 57 ]龔新明, 關(guān)軍鋒, 張繼澍, 等. 鈣、硼營養(yǎng)對黃冠梨品質(zhì)和果面褐斑病發(fā)生的影響[J]. 植物營養(yǎng)與肥料學(xué)報, 2009, 15(4): 942?947.
Gong X M, Guan J F, Zhang J S, et al. Effects of calcium and boronon quality and browning spot disease of Huangguan pear[J]. Journalof Plant Nutrition and Fertilizers, 2009, 15(4): 942?947.
[ 58 ] 姜哲軒, 徐芳森. 植物硼營養(yǎng)高效的分子調(diào)控途徑[J]. 華中農(nóng)業(yè)大學(xué)學(xué)報, 2023, 42(6): 43?49.
Jiang Z X, Xu F S. Molecular regulatory pathways for boronefficiency in plants[J]. Journal of Huazhong Agricultural University,2023, 42(6): 43?49.
[ 59 ]何錦豪. 施用氯化銨對小麥全蝕病的防效[J]. 麥類作物學(xué)報,1984, 5(6): 44.
He J H. Effect of ammonium chloride on preventing wheat takeall[J]. Journal of Triticeae Crops, 1984, 5(6): 44.
[ 60 ]Kettlewell P S, Cook J W, Parry D W. Evidence for an osmoticmechanism in the control of powdery mildew disease of wheat byfoliar-applied potassium chloride[J]. European Journal of PlantPathology, 2000, 106(3): 297?300.
[ 61 ]王琰琰, 王劍, 潘勇, 等. 硅在植物中抵御生物脅迫機制的研究進展[J]. 植物生理學(xué)報, 2024, 60(1): 35?44.
Wang Y Y, Wang J, Pan Y, et al. Mechanism research advances inplant biotic stress resistance regulated by silicon[J]. Plant PhysiologyJournal, 2024, 60(1): 35?44.
[ 62 ]張占田, 陳海寧, 樊兆博, 等. 硅對植物生長發(fā)育的影響及應(yīng)用研究[J]. 煙臺果樹, 2023, (4): 28?30.
Zhang Z T, Chen H N, Fan Z B, et al. Effect and application ofsilicon on plant growth and development[J]. Yantai Fruits, 2023,(4): 28?30.
[ 63 ]吳伊鑫, 黃奇?zhèn)ィ?葉木軍, 等. 農(nóng)藥減施條件下追施硅肥對水稻抗逆性及產(chǎn)量的影響[J]. 浙江大學(xué)學(xué)報: 農(nóng)業(yè)與生命科學(xué)版, 2021,47(4): 507?516.
Wu Y X, Huang Q W, Ye M J, et al. Effects of topdressing ofsilicon fertilizer on stress resistance and yield of rice under reducedpesticide application[J]. Journal of Zhejiang University: Agricultureand Life Sciences, 2021, 47(4): 507?516.
[ 64 ]Wang M, Gao L M, Dong S Y, et al. Role of silicon on plantpathogeninteractions[J]. Frontiers in Plant Science, 2017, 8: 701.
[ 65 ]Silva M R J, Pereira S C, Rodrigues F A, et al. Silicon andmanganese on the activity of enzymes involved in rice resistanceagainst brown spot[J]. Tropical Plant Pathology, 2012, 37(5): 339?345.
[ 66 ]Polanco L R, Rodrigues F A, Nascimento K J T, et al. Photosyntheticgas exchange and antioxidative system in common bean plantsinfected by Colletotrichum lindemuthianum and supplied withsilicon[J]. Tropical Plant Pathology, 2014, 39(1): 35?42.
[ 67 ]Sun W C, Zhang J, Fan Q H, et al. Silicon-enhanced resistance torice blast is attributed to silicon-mediated defence resistance and itsrole as physical barrier[J]. European Journal of Plant Pathology,2010, 128(1): 39?49.
[ 68 ]Li C Y, Hu C X, Xie J T, et al. Selenium combined with methyljasmonate to control tomato gray mold by optimizing microbialcommunity structure in plants[J]. Journal of Fungi, 2022, 8(7): 731.
[ 69 ]賈瑋, 明佳佳, 鄭亞偉, 等. 硒對農(nóng)業(yè)植物病害防控的研究進展[J].生物技術(shù)進展, 2017, 7(5): 457?461.
Jia W, Ming J J, Zheng Y W, et al. Progress on prevention andcontrol of selenium to agricultural plant diseases[J]. CurrentBiotechnology, 2017, 7(5): 457?461.
[ 70 ]黃潔. 硒調(diào)控水稻響應(yīng)鎘與稻瘟病脅迫的作用研究[D]. 安徽合肥: 安徽農(nóng)業(yè)大學(xué)碩士學(xué)位論文, 2022.
Huang J. Study on the regulation of selenium on rice response tocadmium and rice blast stress[D]. Hefei, Anhui: MS Thesis ofAnhui Agricultural University, 2022.
[ 71 ]Ballini E, Nguyen T T, Morel J B. Diversity and genetics ofnitrogen-induced susceptibility to the blast fungus in rice andwheat[J]. Rice, 2013, 6(1): 32.
[ 72 ]Chi W J, Wang Z Y, Liu J M, et al. Ammonium uptake andassimilation are required for rice defense against sheath blightdisease[J]. Cereal Research Communications, 2019, 47(1): 98?110.
[ 73 ]Shi X T, Long Y, He F, et al. The fungal pathogen Magnaportheoryzae suppresses innate immunity by modulating a host potassiumchannel[J]. PLoS Pathogens, 2018, 14(1): e1006878.
[ 74 ]Jing X X, Wang P Y, Liu J J, et al. A viral protein competitivelybound to rice CIPK23 inhibits potassium absorption and facilitatesvirus systemic infection in rice[J/OL]. Plant Biotechnology Journal:1?6. [2024-07-03]. https://doi.org/10.1111/pbi.14350.
[ 75 ]龍書生, 李亞玲, 張宇宏, 馬秉元. 玉米莖稈糖分含量與玉米對鐮刀菌莖腐病抗性的關(guān)系[J]. 植物保護學(xué)報, 2003, 30(1): 111?112.
Long S S, Li Y L, Zhang Y H, Ma B Y. Relationships betweensugar content in corn stalk and resistance to corn stalk rot caused byFusariuum[J]. Journal of Plant Protection, 2003, 30(1): 111?112.
[ 76 ]Su L, Qiu P F, Fang Z Y, et al. Potassium phosphite enhances theantagonistic capability of Bacillus amyloliquefaciens to managetomato bacterial wilt[J]. Plant Disease, 2021, 106(2): 654?660.
[ 77 ]宋毅, 陳航航, 崔鑫, 等. 鉀營養(yǎng)狀況介導(dǎo)的油菜葉片生長及其對葉際微生物的影響[J]. 植物學(xué)報, 2024, 59(1): 54?65.
Song Y, Chen H H, Cui X, et al. Potassium nutrient status-mediatedleaf growth of oilseed rape (Brassica napus) and its effect onphyllosphere microorganism[J]. Chinese Bulletin of Botany, 2024,59(1): 54?65.
[ 78 ]Aslam S N, Newman M A, Erbs G, et al. Bacterial polysaccharidessuppress induced innate immunity by calcium chelation[J]. CurrentBiology, 2008, 18(14): 1078?1083.
[ 79 ]Cao Y, Wang Y Y, Gui C L, et al. Beneficial rhizobacteriumtriggers induced systemic resistance of maize to Gibberella stalk rotvia calcium signaling[J]. Molecular Plant-Microbe Interactions,2023, 36(8): 516?528.
[ 80 ]Jia F F, Li J G, Dong Y H. Effect of calcium nutrition on resistanceof tomato against bacterial wilt induced by Ralstonia solanacearum[J]. European Journal of Plant Pathology, 2013, 136(3): 547?555.
[ 81 ]Moreira W R, Bispo W, Rios J A, et al. Magnesium-inducedalterations in the photosynthetic performance and resistance of riceplants infected with Bipolaris oryzae[J]. Scientia Agricola, 2015,72(4): 328?333.
[ 82 ]Tatagiba S D, Damatta F M, Rodrigues F A. Magnesium decreasesleaf scald symptoms on rice leaves and preserves their photosyntheticperformance[J]. Plant Physiology and Biochemistry, 2016, 108:49?56.
[ 83 ]Tatagiba S D, Rodrigues F A. Magnesium decreases the symptomsof leaf scald on rice leaves[J]. Tropical Plant Pathology, 2016, 41(2):132?137.
[ 84 ]Schurt D A, Lopes U P, Duarte H S S, Rodrigues F A. Effect ofmagnesium on the development of sheath blight in rice[J]. Journal of Phytopathology, 2014, 162(9): 617?620.
[ 85 ]Jones J P, Engelhard A W, Woltz S. Management of fusarium wiltof vegetables and ornamentals by macro- and microelementnutrition[M]. Saint Paul, Minnesota: American PhytopathologicalSociety Press, 1989.
[ 86 ]Brennan R F. The role of manganese and nitrogen nutrition in thesusceptibility of wheat plants to take-all in Western Australia[J].Fertilizer Research, 1992, 31(1): 35?41.
[ 87 ]Percival G C, Karim M S, Dixon G R. Pathogen resistance in aerialtubers of potato cultivars[J]. Plant Pathology, 1999, 48(6): 768?776.
[ 88 ]Yang Z Y, Hui S G, Lü Y, et al. miR395-regulated sulfatemetabolism exploits pathogen sensitivity to sulfate to boostimmunity in rice[J]. Molecular Plant, 2022, 15(4): 671?688.
[ 89 ]王梅, 尹顯慧, 龍友華, 等. 硫素營養(yǎng)與植物病害關(guān)系研究進展[J].山地農(nóng)業(yè)生物學(xué)報, 2015, 34(5): 70?73.
Wang M, Yin X H, Long Y H, et al. Progress of study on therelationship between sulfur nutrition and plant diseases[J]. Journalof Mountain Agriculture and Biology, 2015, 34(5): 70?73.
[ 90 ]Ei E K, Zainal A M A, Wong M Y, Ismail M R. Effects of silicon,copper and zinc applications on sheath blight disease severity onrice[J]. World Journal of Agricultural Research, 2014, 2(6): 309?314.
[ 91 ]Liew Y A, Omar S R S, Husni M H A, et al. Effects of foliarapplied copper and boron on fungal diseases and rice yield oncultivar MR219[J]. Pertanika Journal of Tropical AgriculturalScience, 2012, 35(2): 339?349.
[ 92 ]Yao S Z, Kang J R, Guo G, et al. The key micronutrient copperorchestrates broad-spectrum virus resistance in rice[J]. ScienceAdvances, 2022, 8(26): eabm0660.
[ 93 ]Catalina C, Soledad M, Mercè L, et al. A role for zinc in plantdefense against pathogens and herbivores[J]. Frontiers in PlantScience, 2019, 10: 1171.
[ 94 ]李文娟, 何萍, 金繼運. 鉀素對玉米莖腐病抗性反應(yīng)中糖類物質(zhì)代謝的影響[J]. 植物營養(yǎng)與肥料學(xué)報, 2011, 17(1): 55?61.
Li W J, He P, Jin J Y. Effect of potassium on sugar metabolism inresistant response to corn stalk rot[J]. Journal of Plant Nutrition andFertilizers, 2011, 17(1): 55?61.
[ 95 ]Sathe A P, Kumar A, Mandlik R, et al. Role of silicon in elevatingresistance against sheath blight and blast diseases in rice (Oryzasativa L)[J]. Plant Physiology and Biochemistry, 2021, 166:128?139.
[ 96 ]寧東峰, 梁永超. 硅調(diào)節(jié)植物抗病性的機理: 進展與展望[J]. 植物營養(yǎng)與肥料學(xué)報, 2014, 20(5): 1280?1287.
Ning D F, Liang Y C. Silicon-mediated plant disease resistance:Advance and perspectives[J]. Journal of Plant Nutrition andFertilizers, 2014, 20(5): 1280?1287.
[ 97 ]Heine G, Tikum G, Horst W J. The effect of silicon on the infectionby and spread of Pythium aphanidermatum in single roots of tomatoand bitter gourd[J]. Journal of Experimental Botany, 2006, 58(3):569?577.
[ 98 ]Liu K, Cai M M, Hu C X, et al. Selenium (Se) reduces Sclerotiniastem rot disease incidence of oilseed rape by increasing plant Seconcentration and shifting soil microbial community and functional profiles[J]. Environmental Pollution, 2019, 254: 113051.
[ 99 ]Zhang W J, Wu L M, Ding Y F, et al. Nitrogen fertilizer applicationaffects lodging resistance by altering secondary cell wall synthesisin japonica rice (Oryza sativa)[J]. Journal of Plant Research, 2017,130(5): 859?871.
[100]Blanke M M, Bacher W, Pring R J, Baker E A. Ammoniumnutrition enhances chlorophyll and glaucousness in kohlrabi[J].Annals of Botany, 1996, 78(5): 599?604.
[101]李思邈, 龐佳音, 方香玲. 氮磷鉀營養(yǎng)影響植物根部病害的研究進展[J]. 植物生理學(xué)報, 2023, 59(11): 2011?2017.
Li S M, Pang J Y, Fang X L, et al. Research advances in the effectsof nitrogen, phosphorus and potassium nutrition on root diseases ofplants[J]. Plant Physiology Journal, 2023, 59(11): 2011?2017.
[102]Anirban B, Amrita C, Amit R. The captivating role of calcium inplant-microbe interaction[J]. Frontiers in Plant Science, 2023, 14:1138252.
[103]Eskandari S, H?fte H, Zhang T. Foliar manganese spray induces theresistance of cucumber to Colletotrichum lagenarium[J]. Journal ofPlant Physiology, 2020, 246/247: 153129.
[104]李娜, 李振輪, 王晗, 等. 硼抑制植物病害作用及機制的研究進展[J]. 植物生理學(xué)報, 2014, 50(1): 7?11.
Li N, Li Z L, Wang H, et al. Recent advances in inhibitionmechanism of boron on plant diseases[J]. Plant Physiology Journal,2014, 50(1): 7?11.
[105]Chan C, Liao Y Y, Chiou T J. The impact of phosphorus on plantimmunity[J]. Plant and Cell Physiology, 2021, 62(4): 582?589.
[106]Feng W, Zheng X D, Chen J P, Yang Y. Combination of cassia oilwith magnesium sulphate for control of postharvest storage rots ofcherry tomatoes[J]. Crop Protection, 2008, 27(1): 112?117.
[107]Rausch T, Wachter A. Sulfur metabolism: a versatile platform forlaunching defence operations[J]. Trends in Plant Science, 2005,10(10): 503?509.
[108]Anna K, Stanislav K. Plant secondary metabolites altering rootmicrobiome composition and function[J]. Current Opinion in PlantBiology, 2022, 67: 102227.
[109]Hing S L, Gandhi K J K, Villari C. The role of manganese in treedefenses against pests and pathogens[J]. Plant Physiology andBiochemistry, 2024, 210: 108641.
[110]Brdar-Jokanovic M. Boron toxicity and deficiency in agriculturalplants[J]. International Journal of Molecular Sciences, 2020, 21(4):1424.
[111]Manivannan A, Ahn Y K. Silicon regulates potential genes involvedin major physiological processes in plants to combat stress[J].Frontiers in Plant Science, 2017, 8: 1346.
[112]孫萬春, 薛高峰, 張杰, 等. 硅對水稻防御性關(guān)鍵酶活性的影響及其與抗稻瘟病的關(guān)系[J]. 植物營養(yǎng)與肥料學(xué)報, 2009, 15(5): 1023?1028.
Sun W C, Xue G F, Zhang J, et al. Influences of silicon on activitiesof key defense enzymes in rice leaves infected by Magnaporthegrisea in relation to rice blast resistance[J]. Journal of Plant Nutritionand Fertilizers, 2009, 15(5): 1023?1028.
[113]Zhang X M, Tubergen P J, Agorsor I D K, et al. Elicitor-inducedplant immunity relies on amino acids accumulation to delay the onset of bacterial virulence[J]. Plant Physiology, 2023, 192(1):601?615.
[114]Chen J. Bringing it in: A transporter of extracellular amino acids forregulation of plant immunity[J]. Plant Physiology, 2022, 190(1):190?192.
[115]郭楠, 瞿紅葉, 高菲, 徐國華. 氨基酸轉(zhuǎn)運蛋白介導(dǎo)植物免疫研究進展[J]. 植物營養(yǎng)與肥料學(xué)報, 2023, 29(12): 2360?2370.
Guo N, Qu H Y, Gao F, Xu G H. The roles of amino acidtransporters in plant immunity[J]. Journal of Plant Nutrition andFertilizers, 2023, 29(12): 2360?2370.
[116]Chen W, He Z L, Yang X E, et al. Chlorine nutrition of higherplants: Progress and perspectives[J]. Journal of Plant Nutrition,2010, 33(7): 943?952.
[117]Ding S T, Sha X Q, Li J X, et al. Nitrogen forms and metabolismaffect plant defence to foliar and root pathogens in tomato[J]. Plant,Cell amp; Environment, 2021, 44(5): 1596?1610.
[118]江珊, 周曉罡, 蘇源, 周德群. 氮脅迫條件下稻瘟病菌菌絲體蛋白質(zhì)組學(xué)研究[J]. 揚州大學(xué)學(xué)報, 2012, 33(4): 72?76.
Jiang S, Zhou X G, Su Y, Zhou D Q. Preliminary study of myceliumprotein in Magnaporthe oryzae using two-dimensional electrophoresisunder nitrogen starvation[J]. Journal of Yangzhou University, 2012,33(4): 72?76.
[119]Liu M Y, Peng D L, Su W, et al. Potassium sulphate induces resistanceof rice against the root-knot nematode Meloidogyne graminicola[J]. Journal of Integrative Agriculture, 2022, 21(11): 3263?3277.
[120]Wang C, Tang R J, Kou S, et al. Mechanisms of calciumhomeostasis orchestrate plant growth and immunity[J]. Nature,2024, 627(8003): 382?388.
[121]Ahammed G J, Yang Y X. Mechanisms of silicon-induced fungaldisease resistance in plants[J]. Plant Physiology and Biochemistry,2021, 165: 200?206.
[122]Mendes L W, Raaijmakers J M, De Hollander M, et al. Influence ofresistance breeding in common bean on rhizosphere microbiomecomposition and function[J]. The ISME Journal, 2018, 12(1):212?224.
[123]Berendsen R L, Pieterse C M J, Bakker P A H M. The rhizospheremicrobiome and plant health[J]. Trends in Plant Science, 2012,17(8): 478?486.
[124]Meier M, Liu Y, Lay-Pruitt K S, et al. Auxin-mediated root branchingis determined by the form of available nitrogen[J]. Nature Plants,2020, 6(9): 1136?1145.
[125]寶童曦, 高正鋒, 徐絲, 等. 不同氮素形態(tài)配比對煙草青枯病發(fā)生及土壤細(xì)菌群落的影響[J]. 南方農(nóng)業(yè)學(xué)報, 2023, 54(8): 2207?2217.
Bao T X, Gao Z F, Xu S, et al. Effects of different nitrogen formratios on the occurrence of tobacco bacterial wilt and soil bacterialcommunity[J]. Journal of Southern Agriculture, 2023, 54(8): 2207?2217.
[126]Gu Z C, Wang M, Wang Y, et al. Nitrate stabilizes the rhizosphericfungal community to suppress Fusarium wilt disease in cucumber[J]. Molecular Plant-Microbe Interactions, 2020, 33(4): 590?599.
[127]Wang M, Sun Y, Gu Z, et al. Nitrate protects cucumber plantsagainst Fusarium oxysporum by regulating citrate exudation[J].Plant and Cell Physiology, 2016, 57(9): 2001?2012.
[128]Liu D. Root developmental responses to phosphorus nutrition[J].Journal of Integrative Plant Biology, 2021, 63(6): 1065?1090.
[129]熊憫梓, 鈔亞鵬, 趙盼, 等. 不同生境馬鈴薯根際土壤細(xì)菌多樣性分析[J]. 微生物學(xué)報, 2020, 60(11): 2434?2449.
Xiong M Z, Chao Y P, Zhao P, et al. Comparison of bacterialdiversity in rhizosphere soil of potato in different habitats[J]. ActaMicrobiologica Sinica, 2020, 60(11): 2434?2449.
[130]Javot H, Pumplin N, Harrison M J. Phosphate in the arbuscularmycorrhizal symbiosis: Transport properties and regulatory roles[J].Plant, Cell amp; Environment, 2007, 30(3): 310?322.
[131]田江, 梁翠月, 陸星, 陳倩倩. 根系分泌物調(diào)控植物適應(yīng)低磷脅迫的機制[J]. 華南農(nóng)業(yè)大學(xué)學(xué)報, 2019, 40(5): 175?185.
Tian J, Liang C Y, Lu X, Chen Q Q. Mechanism of root exudatesregulating plant responses to phosphorus deficiency[J]. Journal ofSouth China Agricultural University, 2019, 40(5): 175?185.
[132]Shi J C, Wang X L, Wang E T. Mycorrhizal symbiosis in plantgrowth and stress adaptation: From genes to ecosystems[J]. AnnualReview of Plant Biology, 2022, 74(1): 569?607.
[133]Song Y Y, Chen D M, Lu K, et al. Enhanced tomato diseaseresistance primed by arbuscular mycorrhizal fungus[J]. Frontiers inPlant Science, 2015, 6: 786.
[134]Spagnoletti F N, Balestrasse K, Lavado R S, Giacometti R. Arbuscularmycorrhiza detoxifying response against arsenic and pathogenicfungus in soybean[J]. Ecotoxicology and Environmental Safety,2016, 133: 47?56.
[135]Wang M, Xiang L, Jiang W T, et al. Soil arbuscular mycorrhizalfungal community structure and diversity in apple orchards withdifferent replant disease severity around Bohai Bay, China[J].Applied Soil Ecology, 2022, 177: 104524.
[136]Chen F H, Xie Y J, Jia Q W, et al. Effects of the continuouscropping and soilborne diseases of Panax Ginseng C. A. Meyer onrhizosphere soil physicochemical properties, enzyme activities, andmicrobial communities[J]. Agronomy, 2023, 13(1): 210.
[137]Li P F, Liu M, Li G L, et al. Phosphorus availability increasespathobiome abundance and invasion of rhizosphere microbialnetworks by Ralstonia[J]. Environmental Microbiology, 2021,23(10): 5992?6003.
[138]Liu X, Lu Y W, Zhang Z H, Zhou S R. Foliar fungal diseasesrespond differently to nitrogen and phosphorus additions in Tibetanalpine meadows[J]. Ecological Research, 2019, 35(1): 162?169.
[139]孫偉, 張歡洋, 魏倩倩, 等. 葉面噴施山梨醇螯合鉀對花生產(chǎn)量及根際土壤微生物群落的影響[J]. 土壤學(xué)報, 2024, 61(4): 1099?1110.
Sun W, Zhang H Y, Wei Q Q, et al. Effects of foliar spraying ofsorbitol chelated potassium on peanut yield and rhizosphere soilmicrobial community[J]. Acta Pedologica Sinica, 2024, 61(4):1099?1110.
[140]Li X G, Chen D L, Carrión V J, et al. Acidification suppresses thenatural capacity of soil microbiome to fight pathogenic Fusariuminfections[J]. Nature Communications, 2023, 14(1): 5090.
[141]Gu S H, Wei Z, Shao Z Y, et al. Competition for iron drivesphytopathogen control by natural rhizosphere microbiomes[J].Nature Microbiology, 2020, 5(8): 1002?1010.
[142]Gu S H, Yang T J, Shao Z Y, et al. Siderophore-mediatedinteractions determine the disease suppressiveness of microbialconsortia[J]. mSystems, 2020, 5(3): e00811?19.
[143]Liu Q, Zhang C H, Fang H Y, et al. Indispensable biomolecules forplant defense against pathogens: NBS-LRR and “nitrogen pool”alkaloids[J]. Plant Science, 2023, 334: 111752.
作者簡介:
王 敏,博士,南京農(nóng)業(yè)大學(xué)教授,主要從事植物營養(yǎng)施肥、植物營養(yǎng)生理與病害、植物–微生物互作等方面的研究。入選中國科協(xié)青年托舉人才,受聘為中國植物營養(yǎng)與肥料學(xué)會標(biāo)準(zhǔn)工作委員會及養(yǎng)分循環(huán)專業(yè)委員會副主任委員。主持國家級及省部級項目10 余項;以第一或通訊作者發(fā)表SCI 論文20 余篇。獲江蘇省優(yōu)秀博士學(xué)位論文、中華農(nóng)業(yè)科技獎之優(yōu)秀創(chuàng)新團隊獎、全國農(nóng)牧漁業(yè)豐收獎農(nóng)業(yè)技術(shù)推廣成果獎三等獎、全國高校農(nóng)林類專業(yè)微課教學(xué)比賽二等獎;指導(dǎo)本科生獲得第十三屆“挑戰(zhàn)杯”中國大學(xué)生創(chuàng)業(yè)計劃競賽銀獎、第十二屆“挑戰(zhàn)杯”江蘇省大學(xué)生創(chuàng)業(yè)計劃競賽金獎、全國首屆農(nóng)業(yè)資源與環(huán)境專業(yè)大學(xué)生實踐技能競賽特等獎。
郭世偉,博士,南京農(nóng)業(yè)大學(xué)教授。長期致力于植物營養(yǎng)生理、作物施肥理論與實踐等方面的研究。受聘為農(nóng)業(yè)農(nóng)村部科學(xué)施肥專家指導(dǎo)組成員、農(nóng)業(yè)農(nóng)村部肥料標(biāo)準(zhǔn)化技術(shù)委員會委員。主持國家級及省部級項目20 余項;在國內(nèi)外學(xué)術(shù)期刊發(fā)表論文200 余篇,入選愛思唯爾 “中國高被引學(xué)者”。被評為全國百篇優(yōu)秀博士論文、江蘇省優(yōu)秀博士論文及中國植物營養(yǎng)與肥料學(xué)會優(yōu)秀博士論文指導(dǎo)教師,指導(dǎo)本科生獲得第十三屆“挑戰(zhàn)杯”中國大學(xué)生創(chuàng)業(yè)計劃競賽銀獎。入選教育部新世紀(jì)優(yōu)秀人才計劃、江蘇省“青藍(lán)工程”優(yōu)秀青年骨干教師,獲中國自然資源學(xué)會優(yōu)秀科技獎、中華農(nóng)業(yè)科技獎之優(yōu)秀創(chuàng)新團隊獎、江蘇省科學(xué)技術(shù)一等獎及二等獎。
基金項目:國家重點研發(fā)計劃項目(2023YFD1901101);國家自然科學(xué)基金項目(32072673)。