• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      巨噬細胞極化在炎癥性腸病中的研究進展

      2024-09-20 00:00:00張夢婷項鏡蓉朱濛昕曹凱磊石通國奚沁華
      胃腸病學 2024年1期
      關(guān)鍵詞:巨噬細胞炎癥性腸病極化

      摘要 炎癥性腸?。↖BD)是一種慢性炎癥性胃腸道疾病,包括克羅恩病和潰瘍性結(jié)腸炎。IBD可能是由遺傳易感因素、環(huán)境因素和腸道微生物群改變之間復(fù)雜的相互作用所引起,導致先天性和適應(yīng)性免疫反應(yīng)失調(diào)。最近研究發(fā)現(xiàn)巨噬細胞在腸道炎癥反應(yīng)中具有可塑性,不僅可以調(diào)節(jié)炎癥的發(fā)生,而且可以促進組織修復(fù)和愈合。IBD的發(fā)展過程中存在巨噬細胞極化異常,促炎M1巨噬細胞與抗炎M2巨噬細胞表型和功能之間的平衡受到細胞內(nèi)外刺激的調(diào)節(jié),因此這一過程有望成為新的潛在的治療靶點。本文就巨噬細胞極化在IBD中的研究進展作一綜述。

      關(guān)鍵詞 炎癥性腸??; 巨噬細胞; 極化; 治療

      Progress of Research on Macrophage Polarization in Inflammatory Bowel Disease ZHANG Mengting, XIANG Jingrong, ZHU Mengxin, CAO Kailei, SHI Tongguo, XI Qinhua." Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province (215006)

      Correspondence to: XI Qinhua, Email: xqhxqhxqh@126.com

      Abstract Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract that includes Crohn's disease and ulcerative colitis. IBD may be caused by complex interactions between genetic susceptibility, environmental factors, and alterations in the gut microbiota, resulting in dysregulated innate and adaptive immune responses. Recent studies have identified macrophages in the intestinal inflammatory response as having the plasticity to not only regulate inflammation, but also to promote tissue repair and healing. As aberrant macrophage polarization occurs during the development of IBD, the balance between the phenotype and function of pro?inflammatory M1 and anti?inflammatory M2 macrophages is regulated by extracellular and intracellular stimuli, and this process is therefore expected to be a potential target for new therapeutic approaches. This article reviewed the progress of research on macrophage polarization in IBD.

      Key words Inflammatory Bowel Disease; Macrophages; Polarization; Therapy

      炎癥性腸病(inflammatory bowel disease, IBD)是免疫介導的復(fù)雜的消化道慢性炎癥性疾病,包括克羅恩?。–rohn's disease, CD)和潰瘍性結(jié)腸炎(ulcerative colitis, UC),以臨床緩解期與復(fù)發(fā)期交替出現(xiàn)為特點,通常伴有狹窄、膿腫和瘺管等并發(fā)癥,使患者的生命質(zhì)量嚴重下降[1]。最新研究發(fā)現(xiàn)IBD作為復(fù)雜、嚴重的慢性公共衛(wèi)生問題,其發(fā)病率和流行率在世界范圍內(nèi)不斷上升,已成為顯著的全球醫(yī)療負擔[2]。越來越多的研究提示IBD是由于基因、免疫系統(tǒng)、腸道菌群和其他環(huán)境因素之間的相互作用而引起的,但目前對IBD的確切發(fā)病機制仍知之甚少,這阻礙了IBD的臨床診治[3]。因此,研究IBD的發(fā)病機制并評估新的抗炎策略非常重要。

      目前,針對IBD的治療以抗炎藥物(糖皮質(zhì)激素、氨基水楊酸鹽)、免疫抑制劑(硫唑嘌呤、巰嘌呤、甲氨蝶呤)和生物制劑[抗腫瘤壞死因子(TNF)類藥物、其他抗白細胞介素(IL)類藥物]為主,但臨床療效不甚理想,仍有許多患者因治療失敗、復(fù)發(fā)或不良反應(yīng)而需要替代療法[4]。巨噬細胞作為先天性免疫系統(tǒng)的核心組成,可以清除入侵的病原體,觸發(fā)適應(yīng)性免疫應(yīng)答,并在腸道慢性炎癥微環(huán)境中受腸道微生物或炎癥因子等的刺激而極化為相反的表型狀態(tài)[5]。隨著免疫治療領(lǐng)域的不斷發(fā)展,巨噬細胞在健康和疾病中的作用引起了越來越多的關(guān)注,其可塑性和傷口愈合能力有望成為治療IBD的潛在新療法的有吸引力的靶點[6]。本文從巨噬細胞極化、巨噬細胞在IBD中的作用和影響以及與巨噬細胞極化的相關(guān)靶點等方面作一綜述,以期為靶向巨噬細胞在IBD中治療提供新的方向和策略。

      一、巨噬細胞分型及其極化

      巨噬細胞極化是巨噬細胞對特定組織中的微環(huán)境刺激和信號產(chǎn)生特異性表型和功能性反應(yīng)的過程,腸道中的巨噬細胞可分為經(jīng)典活化型M1和替代活化型M2[7]。當感染或炎癥嚴重時,巨噬細胞首先表現(xiàn)為M1表型,釋放TNF?α、IL?1β、IL?12和IL?23來對抗刺激。M1巨噬細胞的持續(xù)作用會導致組織損傷,而M2巨噬細胞分泌大量IL?10和轉(zhuǎn)化生長因子(TGF)?β來抑制炎癥,參與組織修復(fù)、重塑、血管生成和維持體內(nèi)平衡。此外,在腸道炎癥消退、組織修復(fù)和恢復(fù)正常腸道穩(wěn)態(tài)過程中,凋亡的中性粒細胞和上皮細胞會誘導巨噬細胞從M1向M2轉(zhuǎn)換[7?8]。

      1. 巨噬細胞的起源:隨著小鼠模型技術(shù)的發(fā)展,研究證實大多數(shù)組織駐留巨噬細胞來自胚胎發(fā)育期間卵黃囊中的紅細胞?髓系祖細胞,可根據(jù)生態(tài)位信號調(diào)節(jié)功能和分化,并具有自我更新能力[9?10]。如在腸道穩(wěn)態(tài)中,外肌層組織內(nèi)的巨噬細胞可與控制腸道分泌和蠕動的腸神經(jīng)元和肌間神經(jīng)元相互作用,而在固有層中,巨噬細胞向腸道干細胞提供信號,產(chǎn)生杯狀細胞、Paneth細胞和腸上皮細胞[8]。值得一提的是,腸道巨噬細胞群是胎源性巨噬細胞,在出生后的三個月內(nèi),血液中的循環(huán)單核細胞被招募進來,通過一系列中間產(chǎn)物進行局部分化,逐漸取代胎源性巨噬細胞群,驅(qū)動這一過程的關(guān)鍵是微生物群,并持續(xù)了整個成年期,以維持正常的腸道巨噬細胞庫[11]。

      2. 巨噬細胞的表型:M1/M2命名法最初是在20年前由Mills等提出,雖然已建立了大量巨噬細胞極化相關(guān)的體外模型,但在體內(nèi)由于多種刺激導致激活的M1/M2巨噬細胞混合在一起,很難區(qū)分M1與M2[5,12]。近來有研究通過系統(tǒng)生物學方法對巨噬細胞亞型進行功能表型分析,證實靜息M0可極化為M1、M2a、M2b、M2c和M2d,根據(jù)信號蛋白和表達基因圖譜將巨噬細胞劃分為炎癥型(M1和M2b)和傷口愈合型(M2a、M2c和M2d)[13]。

      3. 巨噬細胞的功能:M1巨噬細胞通常由Th1細胞因子[如干擾素(IFN)?γ和TNF?α]、細菌脂多糖或Toll樣受體(TLR)激動劑識別誘導,并能產(chǎn)生促炎因子(如IL?12、IL?23和IL?1β),促進Th1和Th17免疫應(yīng)答,加重上皮細胞損傷[14?16]。M2a巨噬細胞可被IL?4和IL?13誘導,具有促進Th細胞活化、抑制炎癥、促進組織修復(fù)和促進血管生成等功能[17?18]。M2b巨噬細胞可由脂多糖、免疫復(fù)合物、TLR激動劑或IL?1受體配體刺激誘導,可通過免疫復(fù)合物交聯(lián)Fcγ受體,促進Th2免疫,并分泌高水平IL?10[19]。M2c巨噬細胞可被免疫復(fù)合物、糖皮質(zhì)激素、前列腺素和IL?10激活,通過滲出、細胞外基質(zhì)(ECM)重塑和血管生成來促進組織修復(fù)[20]。M2d巨噬細胞可通過多種機制極化,包括與癌細胞腹水共培養(yǎng)或暴露于IL?6、白血病抑制因子或嘌呤核苷腺苷,具有刺激血管生成、癌癥轉(zhuǎn)移的作用[21?22]。目前巨噬細胞活化狀態(tài)改變的原因尚不清楚,可能是由于單核細胞的招募及其對局部變化的反應(yīng)或M1與M2巨噬細胞之間的復(fù)極化,或兩者的結(jié)合。由于腸道巨噬細胞的異質(zhì)性增加,巨噬細胞亞群在IBD中的作用有待進一步研究。

      4. 影響巨噬細胞極化的因素

      ①集落刺激因子1(CSF1):CSF1是典型的巨噬細胞生長因子,被認為是髓系前體細胞向單核系分化,并分化為巨噬細胞的主要驅(qū)動因素,黏膜和肌層巨噬細胞的發(fā)育和生存均依賴于CSF1受體信號。有研究證實抗CSF1受體抗體治療可大量消耗巨噬細胞,影響Paneth細胞分化,導致LGR5+腸干細胞減少,從而影響腸上皮細胞分化[22?23]。IL?34被稱為是CSF1的“孿生”細胞因子,兩者有共同的受體,即CSF1受體,且激活方式相似,啟動相同的信號通路。在IBD中,IL?34與CSF1受體在相同區(qū)域共表達,IL?34缺乏會加重急性結(jié)腸炎和傷口愈合階段小鼠的結(jié)腸炎[24?25]。更有體外數(shù)據(jù)顯示,IL?34可促進循環(huán)單核細胞向M2巨噬細胞分化,而CSF1主要促進M1巨噬細胞分化[26?27]。此外,CSF1和IL?34激活的巨噬細胞在免疫反應(yīng)中表現(xiàn)出不同的巨噬細胞極化潛能。CSF1分化的M1巨噬細胞較IL?34分化的M1巨噬細胞更能促進初始T細胞向Th1分化[26]。

      ②IL?10受體:IL?10受體信號轉(zhuǎn)導對小鼠和人類腸道巨噬細胞的調(diào)節(jié)表型具有重要作用,IL?10受體會激活非受體酪氨酸激酶JAK1和TYK2,誘導下游信號通路,包括STAT3磷酸化和核轉(zhuǎn)位[28]。IL?10受體缺陷的巨噬細胞表現(xiàn)出明顯的促炎特征,包括NOS2、IL?23a、CCL5、CCR7等的升高,可導致嚴重的結(jié)腸炎[29]。巨噬細胞特異性敲低IL?10下游轉(zhuǎn)錄因子STAT3的小鼠也會發(fā)生自發(fā)性結(jié)腸炎[30]。Ackermann等[31]通過給予極早發(fā)性IBD小鼠腹腔注射野生型巨噬細胞,再消耗內(nèi)源性高炎癥巨噬細胞,進行為期6周的造血干細胞基因療法,結(jié)果顯示這種療法能顯著減輕結(jié)腸炎癥狀,且與腸巨噬細胞中IL?10信號通路的基因校正密切相關(guān)。IL?10還能通過誘導哺乳動物雷帕霉素靶蛋白(mTOR)抑制劑DDIT4來抑制mTOR活性,阻斷脂多糖誘導的巨噬細胞代謝重組,從而抑制葡萄糖攝取和糖酵解,促進氧化磷酸化。在小鼠結(jié)腸炎模型和IBD患者中,IL?10信號通路的缺失導致巨噬細胞中受損線粒體的積累,NLRP3炎癥小體的激活失調(diào)和IL?1β的產(chǎn)生[32]??梢娋奘杉毎械腎L?10受體信號轉(zhuǎn)導對于預(yù)防炎癥具有重要作用。

      ③TGF?β:TGF?β也是影響腸巨噬細胞分化的關(guān)鍵因素,包括產(chǎn)生IL?10、整合素、基質(zhì)金屬蛋白酶(MMP)?2等[33]。TGF?β和IL?10可誘導腸巨噬細胞表達髓樣細胞觸發(fā)受體(TREM?1)下調(diào),而TREM?1是一種強有力的放大炎癥的受體[34]。有研究表明TGFβ?TGFβ受體軸通過抑制結(jié)腸巨噬細胞表達單核細胞CCL8來調(diào)節(jié)巨噬細胞的轉(zhuǎn)換[33]。

      ④趨化因子CX3CL1:CX3CL1?CX3CR1軸在巨噬細胞的分化和功能中發(fā)揮重要作用。CX3CR1high腸道巨噬細胞可通過分泌IL?10和IL?1β來調(diào)節(jié)T細胞的活性和功能,并能通過其上皮樹突感知并攝取來自腸腔的細菌抗原[35]。在腸道穩(wěn)態(tài)平衡中,腸道微生物群可抑制負載抗原的CX3CR1high腸道巨噬細胞向腸系膜淋巴結(jié)遷移,從而抑制T細胞的抗原呈遞,有效維持對共生細菌的耐受性。而當腸道微生物群受到干擾或處于慢性結(jié)腸炎狀態(tài)時,CX3CR1high的巨噬細胞會分化為促炎效應(yīng)細胞,并獲得向淋巴結(jié)遷移和向淋巴細胞呈遞抗原的能力[8]。有研究[36]利用惡唑酮誘導的小鼠結(jié)腸炎模型來探討CX3CL1?CX3CR1軸對炎癥結(jié)腸血管內(nèi)皮單核細胞的作用,發(fā)現(xiàn)炎癥結(jié)腸血管中CD115單核細胞表達了高水平的炎癥介質(zhì),并證明抗CX3CL1單克隆抗體破壞了CX3CL1的依賴性黏附,可有效抑制CD115單核細胞對靜脈內(nèi)皮的黏附,同時抗CX3CL1單克隆抗體也可減輕T細胞轉(zhuǎn)移性結(jié)腸炎。

      ⑤腸道微生物:腸道微生物是腸道巨噬細胞募集和分化的關(guān)鍵介質(zhì)。在缺乏微生物群的小鼠或用抗菌藥物急性耗竭微生物群的小鼠中,單核細胞來源的和組織駐留巨噬細胞數(shù)量均減少[37?38]。微生物群的調(diào)節(jié)作用主要取決于細菌細胞成分的直接刺激和細菌代謝物的作用[39]。近來有研究證實核受體Nr4a1和微生物群可以調(diào)節(jié)巨噬細胞在腸黏膜中的血管周圍定位,并使腸道巨噬細胞成熟以進行修復(fù),腸道微生物會影響腸道CX3CR1巨噬細胞的分布和形態(tài),腸道微生物的消耗會損害腸道巨噬細胞的更新[40]。Kim等[41]通過小鼠遺傳和類器官共培養(yǎng)實驗表明腸道微生物群通過調(diào)節(jié)CD206+巨噬細胞和間充質(zhì)生態(tài)位促進干細胞分化。微生物群可以通過與飲食之間的相互作用間接影響巨噬細胞極化,膳食纖維經(jīng)腸道微生物酵解形成短鏈脂肪酸,如丁酸鹽。丁酸鹽可抑制組蛋白脫乙酰酶活性,進而抑制腸道巨噬細胞產(chǎn)生促炎細胞因子,如一氧化氮(NO)、IL?6和IL?12,最終發(fā)揮抗炎作用[42]。Liang等[43]通過體內(nèi)和體外研究證實丁酸鹽能促進M2巨噬細胞極化,使CD206和精氨酸酶?1(Arg1)表達升高,且丁酸鹽誘導的M2巨噬細胞的轉(zhuǎn)移促進了葡聚糖硫酸鈉(DSS)損傷后的杯狀細胞產(chǎn)生和黏液修復(fù)。

      二、IBD與巨噬細胞極化

      巨噬細胞對于維持腸道穩(wěn)態(tài)至關(guān)重要,循環(huán)的單核細胞不斷被招募至腸道并分化為成熟的巨噬細胞,以補充大多數(shù)常駐巨噬細胞。這些循環(huán)巨噬細胞高表達CD206和CD163,具有抗炎巨噬細胞的功能,如分泌抗炎細胞因子IL?10和TGF?β[44]。然而在腸道炎癥過程中,單核細胞向成熟腸巨噬細胞的終末分化過程被破壞,在被CCR2控制的趨化因子(如CCL2、CCL7和CCL8)作用下進入炎癥組織,向促炎M1巨噬細胞分化[45?46]。與此同時,細胞因子如IFN?γ和粒細胞?巨噬細胞集落刺激因子(GM?CSF)將進一步增強巨噬細胞的促炎性質(zhì)[47?48]。此外,效應(yīng)T細胞的產(chǎn)物(如IL?22)可驅(qū)動腸上皮細胞的促炎反應(yīng),包括中性粒細胞和單核細胞趨化劑的釋放,從而再次加強促炎細胞的招募[15]。值得注意的是,有研究證實結(jié)腸炎期間M1巨噬細胞占多數(shù),但M2巨噬細胞也存在,如持續(xù)存在于腸道組織基底膜下層,以對抗炎癥并促進愈合[44,49]。有研究[31]發(fā)現(xiàn),通過轉(zhuǎn)移或腹腔注射骨髓來源的M2巨噬細胞,以增加其在結(jié)腸中的比例,可改善小鼠結(jié)腸炎。因此靶向巨噬細胞極化的平衡在IBD治療中具有重要意義。

      三、IBD中的巨噬細胞極化相關(guān)靶點

      D?甘露糖是葡萄糖的C2差向異構(gòu)體,通過葡萄糖轉(zhuǎn)運蛋白(GLUT)的繼發(fā)性主動轉(zhuǎn)運進入細胞內(nèi)部,進而被己糖激酶磷酸化為6?磷酸甘露糖。有研究發(fā)現(xiàn)甘露糖通過下調(diào)IL?1β基因表達來抑制脂多糖誘導的巨噬細胞活化,從而改善小鼠結(jié)腸炎。這種作用可能是由抑制葡萄糖代謝和抑制琥珀酸鹽介導的低氧誘導因子(HIF)?1α活化而引起的[50]。

      琥珀酸受體1(SUCNR1)是代謝物琥珀酸酯的受體,可抑制M2巨噬細胞極化。有研究發(fā)現(xiàn)CD患者血清琥珀酸含量增多,腸組織中SUCNR1表達增強,且SUCNR1與M0巨噬細胞的標志物CD206、M1巨噬細胞的標志物CD86共定位,SUCNR1缺陷小鼠的腹膜巨噬細胞中促炎細胞因子(IL?1β、IL?6和TNF?α)表達明顯降低,從而使SUCNR1缺陷小鼠免于發(fā)生結(jié)腸炎[51]。

      磷酸二酯酶4(PDE4)屬于細胞內(nèi)非受體酶,可特異性催化多種細胞(包括炎癥細胞)中的環(huán)磷酸腺苷(cAMP)分解為失活的腺苷一磷酸(AMP),PDE4抑制引起的細胞內(nèi)cAMP水平升高已被證明可下調(diào)促炎細胞因子(如TNF?α、IFN?γ、IL?12、IL?17和IL?23)的釋放,并上調(diào)抗炎細胞因子IL?10的產(chǎn)生[52]。近來有研究證明PDE4抑制劑阿普斯特對巨噬細胞極化有明顯影響,可通過抑制NF?κB轉(zhuǎn)錄活性和NF?κB依賴性基因來下調(diào)炎癥反應(yīng),從而誘導M1與M2表型的轉(zhuǎn)換[6,53]。

      單核細胞趨化蛋白?1誘導蛋白1(MCPIP1)主要表達于巨噬細胞相關(guān)器官,如胸腺、脾臟、肺臟、腸道和脂肪組織。在TLR配體、IL?1β和MCP?1的作用下,MCPIP1可作為內(nèi)切酶降解數(shù)種mRNA,如IL?1β、IL?6[54]。最近有研究[55]發(fā)現(xiàn)巨噬細胞特異性MCPIP1缺乏會使巨噬細胞極化為M1樣表型,阻止巨噬細胞成熟,并以活化轉(zhuǎn)錄因子3(ATF3)?AP1S2依賴性方式加劇腸道炎癥,MCPIP1、ATF3和AP1S2在活動性IBD患者的炎癥黏膜中高表達,阻斷ATF3或AP1S2能顯著抑制CD14+ M1型巨噬細胞極化和促炎細胞因子的產(chǎn)生,并增強M2巨噬細胞的極化。

      F?box蛋白38(FBXO38)在組織和細胞中廣泛表達,最新研究[56]通過體外實驗發(fā)現(xiàn)FBXO38通過MAPK和IRF4信號上調(diào)M2樣基因的表達促進M2樣巨噬細胞極化,并增強巨噬細胞的免疫抑制功能,但不影響M1樣巨噬細胞極化,從而對DSS誘導的結(jié)腸炎具有保護作用。

      Yes相關(guān)蛋白(Yes?associated protein, YAP)是Hippo通路的關(guān)鍵組成部分,盡管YAP可促進上皮再生和緩解IBD,巨噬細胞中YAP缺失可通過增強M2巨噬細胞極化,抑制M1巨噬細胞產(chǎn)生IL?6,改變腸道菌群穩(wěn)態(tài),從而緩解化學誘導的IBD[57?58]。

      甲基轉(zhuǎn)移酶樣3(METTL3)是結(jié)合共底物S?腺苷蛋氨酸(SAM)的催化亞基,METTL3和METTL4形成異二聚體復(fù)合物催化N6?甲基腺苷(m6A)修飾[59]。METTL3在各種病理生理過程中發(fā)揮重要作用,包括細胞周期、細胞凋亡、先天性免疫和炎癥等[60]。有研究[61]發(fā)現(xiàn)將小鼠巨噬細胞極化為M1后,METTL3特異性上調(diào),且通過siRNA轉(zhuǎn)染敲除METTL3可明顯抑制巨噬細胞向M1極化,但會促進巨噬細胞向M2極化。

      因此,通過干預(yù)巨噬細胞極化的靶點來抑制M1巨噬細胞極化、促進M2巨噬細胞極化或誘導M1巨噬細胞向M2巨噬細胞轉(zhuǎn)變,或許是未來IBD治療的新思路之一。

      四、總結(jié)與展望

      綜上所述,巨噬細胞極化狀態(tài)可能是決定腸道炎癥和疾病消退或進展的關(guān)鍵因素,調(diào)節(jié)M1/M2巨噬細胞平衡可能是未來治療IBD的潛在方向。在一定條件下,M1向M2的轉(zhuǎn)換介導了巨噬細胞在協(xié)調(diào)炎癥發(fā)生以及促進愈合和修復(fù)中的雙重作用。因此更好了解腸道巨噬細胞的發(fā)育和功能有助于提出新的治療策略,進而改善IBD患者的預(yù)后。

      參考文獻

      [ 1 ] TORRES J, MEHANDRU S, COLOMBEL J F, et al. Crohn's disease[J]. Lancet, 2017, 389 (10080): 1741?1755.

      [ 2 ] NG S C, SHI H Y, HAMIDI N, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population?based studies[J]. Lancet, 2017, 390 (10114): 2769?2778.

      [ 3 ] SARTOR R B. Mechanisms of disease: pathogenesis of Crohn's disease and ulcerative colitis[J]. Nat Clin Pract Gastroenterol Hepatol, 2006, 3 (7): 390?407.

      [ 4 ] ZAIATZ BITTENCOURT V, JONES F, DOHERTY G, et al. Targeting immune cell metabolism in the treatment of inflammatory bowel disease[J]. Inflamm Bowel Dis, 2021, 27 (10): 1684?1693.

      [ 5 ] MILLS C D, KINCAID K, ALT J M, et al. M?1/M?2 macrophages and the Th1/Th2 paradigm[J]. J Immunol, 2000, 164 (12): 6166?6173.

      [ 6 ] MOHR A, BESSER M, BROICHHAUSEN S, et al. The influence of apremilast?induced macrophage polarization on intestinal wound healing[J]. J Clin Med, 2023, 12 (10): 3359.

      [ 7 ] SICA A, MANTOVANI A. Macrophage plasticity and polarization: in vivo veritas[J]. J Clin Invest, 2012, 122 (3): 787?795.

      [ 8 ] SAEZ A, HERRERO?FERNANDEZ B, GOMEZ?BRIS R, et al. Pathophysiology of inflammatory bowel disease: innate immune system[J]. Int J Mol Sci, 2023, 24 (2): 1526.

      [ 9 ] GOMEZ PERDIGUERO E, KLAPPROTH K, SCHULZ C, et al. Tissue?resident macrophages originate from yolk?sac?derived erythro?myeloid progenitors[J]. Nature, 2015, 518 (7540): 547?551.

      [10] GUILLIAMS M, SCOTT C L. Does niche competition determine the origin of tissue?resident macrophages? [J]. Nat Rev Immunol, 2017, 17 (7): 451?460.

      [11] BAIN C C, BRAVO?BLAS A, SCOTT C L, et al. Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice[J]. Nat Immunol, 2014, 15 (10): 929?937.

      [12] MARTINEZ F O, GORDON S. The M1 and M2 para?digm of macrophage activation: time for reassessment[J]. F1000Prime Rep, 2014, 6: 13.

      [13] ANDERS C B, LAWTON T M W, SMITH H L, et al. Use of integrated metabolomics, transcriptomics, and signal protein profile to characterize the effector function and associated metabotype of polarized macrophage pheno?types[J]. J Leukoc Biol, 2022, 111 (3): 667?693.

      [14] GORDON S. Alternative activation of macrophages[J]. Nat Rev Immunol, 2003, 3 (1): 23?35.

      [15] BERNSHTEIN B, CURATO C, IOANNOU M, et al. IL?23?producing IL?10Rα?deficient gut macrophages elicit an IL?22?driven proinflammatory epithelial cell response[J]. Sci Immunol, 2019, 4 (36): eaau6571.

      [16] FRIEDRICH M, POHIN M, POWRIE F. Cytokine networks in the pathophysiology of inflammatory bowel disease[J]. Immunity, 2019, 50 (4): 992?1006.

      [17] EDWARDS J P, ZHANG X, FRAUWIRTH K A, et al. Biochemical and functional characterization of three activated macrophage populations[J]. J Leukoc Biol, 2006, 80 (6): 1298?1307.

      [18] JETTEN N, VERBRUGGEN S, GIJBELS M J, et al. Anti?inflammatory M2, but not pro?inflammatory M1 macrophages promote angiogenesis in vivo[J]. Angiogenesis, 2014, 17 (1): 109?118.

      [19] AMBARUS C A, SANTEGOETS K C, VAN BON L, et al. Soluble immune complexes shift the TLR?induced cytokine production of distinct polarized human macrophage subsets towards IL?10[J]. PLoS One, 2012, 7 (4): e35994.

      [20] LURIER E B, DALTON D, DAMPIER W, et al. Trans?criptome analysis of IL?10?stimulated (M2c) macrophages by next?generation sequencing[J]. Immunobiology, 2017, 222 (7): 847?856.

      [21] SHAPOURI?MOGHADDAM A, MOHAMMADIAN S, VAZINI H, et al. Macrophage plasticity, polarization, and function in health and disease[J]. J Cell Physiol, 2018, 233 (9): 6425?6440.

      [22] DULUC D, DELNESTE Y, TAN F, et al. Tumor?associated leukemia inhibitory factor and IL?6 skew monocyte differentiation into tumor?associated macrophage?like cells[J]. Blood, 2007, 110 (13): 4319?4330.

      [23] SEHGAL A, DONALDSON D S, PRIDANS C, et al. The role of CSF1R?dependent macrophages in control of the intestinal stem?cell niche[J]. Nat Commun, 2018, 9 (1): 1272.

      [24] LIU Z X, CHEN W J, WANG Y, et al. Interleukin?34 deficiency aggravates development of colitis and colitis?associated cancer in mice[J]. World J Gastroenterol, 2022, 28 (47): 6752?6768.

      [25] ZWICKER S, BUREIK D, BOSMA M, et al. Receptor?type protein?tyrosine phosphatase ζ and colony stimulat?ing factor?1 receptor in the intestine: cellular expression and cytokine? and chemokine responses by interleukin?34 and colony stimulating factor?1[J]. PLoS One, 2016, 11 (11): e0167324.

      [26] BOULAKIRBA S, PFEIFER A, MHAIDLY R, et al. IL?34 and CSF?1 display an equivalent macrophage differentiation ability but a different polarization potential[J]. Sci Rep, 2018, 8 (1): 256.

      [27] MU?OZ?GARCIA J, COCHONNEAU D, TéLéTCHéA S, et al. The twin cytokines interleukin?34 and CSF?1: masterful conductors of macrophage homeostasis[J]. Thera?nostics, 2021, 11 (4): 1568?1593.

      [28] SHOUVAL D S, OUAHED J, BISWAS A, et al. Inter?leukin 10 receptor signaling: master regulator of intestinal mucosal homeostasis in mice and humans[J]. Adv Immunol, 2014, 122: 177?210.

      [29] ZIGMOND E, BERNSHTEIN B, FRIEDLANDER G, et al. Macrophage?restricted interleukin?10 receptor defi?ciency, but not IL?10 deficiency, causes severe sponta?neous colitis[J]. Immunity, 2014, 40 (5): 720?733.

      [30] TAKEDA K, CLAUSEN B E, KAISHO T, et al. Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils[J]. Immunity, 1999, 10 (1): 39?49.

      [31] ACKERMANN M, MUCCI A, MCCABE A, et al. Restored macrophage function ameliorates disease pathophysiology in a mouse model for IL10 receptor?deficient very early onset inflammatory bowel disease[J]. J Crohns Colitis, 2021, 15 (9): 1588?1595.

      [32] IP W K E, HOSHI N, SHOUVAL D S, et al. Anti?inflammatory effect of IL?10 mediated by metabolic reprogramming of macrophages[J]. Science, 2017, 356 (6337): 513?519.

      [33] SCHRIDDE A, BAIN C C, MAYER J U, et al. Tissue?specific differentiation of colonic macrophages requires TGFβ receptor?mediated signaling[J]. Mucosal Immunol, 2017, 10 (6): 1387?1399.

      [34] SCHENK M, BOUCHON A, BIRRER S, et al. Macrophages expressing triggering receptor expressed on myeloid cells?1 are underrepresented in the human intes?tine[J]. J Immunol, 2005, 174 (1): 517?524.

      [35] MEDINA?CONTRERAS O, GEEM D, LAUR O, et al. CX3CR1 regulates intestinal macrophage homeostasis, bacterial translocation, and colitogenic Th17 responses in mice[J]. J Clin Invest, 2011, 121 (12): 4787?4795.

      [36] KUBOI Y, NISHIMURA M, IKEDA W, et al. Blockade of the fractalkine?CX3CR1 axis ameliorates experimental colitis by dislodging venous crawling monocytes[J]. Int Immunol, 2019, 31 (5): 287?302.

      [37] SHAW T N, HOUSTON S A, WEMYSS K, et al. Tissue?resident macrophages in the intestine are long lived and defined by Tim?4 and CD4 expression[J]. J Exp Med, 2018, 215 (6): 1507?1518.

      [38] CHEN Q, NAIR S, RUEDL C. Microbiota regulates the turnover kinetics of gut macrophages in health and inflam?mation[J]. Life Sci Alliance, 2021, 5 (1): e202101178.

      [39] LAVELLE A, SOKOL H. Gut microbiota?derived metabolites as key actors in inflammatory bowel disease[J]. Nat Rev Gastroenterol Hepatol, 2020, 17 (4): 223?237.

      [40] HONDA M, SUREWAARD B G J, WATANABE M, et al. Perivascular localization of macrophages in the intestinal mucosa is regulated by Nr4a1 and the microbiome[J]. Nat Commun, 2020, 11 (1): 1329.

      [41] KIM J E, LI B, FEI L, et al. Gut microbiota promotes stem cell differentiation through macrophage and mesenchymal niches in early postnatal development[J]. Immunity, 2022, 55 (12): 2300?2317. e6.

      [42] CHANG P V, HAO L, OFFERMANNS S, et al. The microbial metabolite butyrate regulates intestinal macro?phage function via histone deacetylase inhibition[J]. Proc Natl Acad Sci U S A, 2014, 111 (6): 2247?2252.

      [43] LIANG L, LIU L, ZHOU W, et al. Gut microbiota?derived butyrate regulates gut mucus barrier repair by activating the macrophage/WNT/ERK signaling pathway[J]. Clin Sci (Lond), 2022, 136 (4): 291?307.

      [44] ISIDRO R A, APPLEYARD C B. Colonic macrophage polarization in homeostasis, inflammation, and cancer[J]. Am J Physiol Gastrointest Liver Physiol, 2016, 311 (1): G59?G73.

      [45] YIP J L K, BALASURIYA G K, SPENCER S J, et al. The role of intestinal macrophages in gastrointestinal homeo?stasis: heterogeneity and implications in disease[J]. Cell Mol Gastroenterol Hepatol, 2021, 12 (5): 1701?1718.

      [46] BERNARDO D, MARIN A C, FERNáNDEZ?TOMé S, et al. Human intestinal pro?inflammatory CD11chighCCR2+

      CX3CR1+ macrophages, but not their tolerogenic CD11c?CCR2?CX3CR1? counterparts, are expanded in inflammatory bowel disease[J]. Mucosal Immunol, 2018, 11 (4): 1114?1126.

      [47] NAKANISHI Y, SATO T, TAKAHASHI K, et al. IFN?γ?dependent epigenetic regulation instructs colitogenic monocyte/macrophage lineage differentiation in vivo[J]. Mucosal Immunol, 2018, 11 (3): 871?880.

      [48] CASTRO?DOPICO T, FLEMING A, DENNISON T W, et al. GM?CSF calibrates macrophage defense and wound healing programs during intestinal infection and inflamma?tion[J]. Cell Rep, 2020, 32 (1): 107857.

      [49] BAIN C C, MOWAT A M. Macrophages in intestinal homeostasis and inflammation[J]. Immunol Rev, 2014, 260 (1): 102?117.

      [50] TORRETTA S, SCAGLIOLA A, RICCI L, et al. D?mannose suppresses macrophage IL?1β production[J]. Nat Commun, 2020, 11 (1): 6343.

      [51] MACIAS?CEJA D C, ORTIZ?MASIá D, SALVADOR P, et al. Succinate receptor mediates intestinal inflammation and fibrosis[J]. Mucosal Immunol, 2019, 12 (1): 178?187.

      [52] SAKKAS L I, MAVROPOULOS A, BOGDANOS D P. Phosphodiesterase 4 inhibitors in immune?mediated diseases: mode of action, clinical applications, current and future perspectives[J]. Curr Med Chem, 2017, 24 (28): 3054?3067.

      [53] LI H, FAN C, FENG C, et al. Inhibition of phospho?diesterase?4 attenuates murine ulcerative colitis through interference with mucosal immunity[J]. Br J Pharmacol, 2019, 176 (13): 2209?2226.

      [54] UEHATA T, AKIRA S. mRNA degradation by the endoribonuclease Regnase?1/ZC3H12a/MCPIP?1[J]. Biochim Biophys Acta, 2013, 1829 (6?7): 708?713.

      [55] LU H, ZHANG C, WU W, et al. MCPIP1 restrains mucosal inflammation by orchestrating the intestinal monocyte to macrophage maturation via an ATF3?AP1S2 axis[J]. Gut, 2023, 72 (5): 882?895.

      [56] ZHENG X, JIANG Q, HAN M, et al. FBXO38 regulates macrophage polarization to control the development of cancer and colitis[J]. Cell Mol Immunol, 2023, 20 (11): 1367?1378.

      [57] TANIGUCHI K, WU L W, GRIVENNIKOV S I, et al. A gp130?Src?YAP module links inflammation to epithelial regeneration[J]. Nature, 2015, 519 (7541): 57?62.

      [58] ZHOU X, LI W, WANG S, et al. YAP aggravates inflammatory bowel disease by regulating M1/M2 macro?phage polarization and gut microbial homeostasis[J]. Cell Rep, 2019, 27 (4): 1176?1189. e5.

      [59] WANG X, FENG J, XUE Y, et al. Structural basis of N6?adenosine methylation by the METTL3?METTL14 complex[J]. Nature, 2016, 534 (7608): 575?578.

      [60] LIU S, ZHUO L, WANG J, et al. METTL3 plays multiple functions in biological processes[J]. Am J Cancer Res, 2020, 10 (6): 1631?1646.

      [61] LIU Y, LIU Z, TANG H, et al. The N6?methyladenosine (m6A)?forming enzyme METTL3 facilitates M1 macrophage polarization through the methylation of STAT1 mRNA[J]. Am J Physiol Cell Physiol, 2019, 317 (4): C762?C775.

      (本文編輯:袁春英)

      猜你喜歡
      巨噬細胞炎癥性腸病極化
      認知能力、技術(shù)進步與就業(yè)極化
      CD47與胃癌相關(guān)性的研究進展
      抑瘤素M在心肌再生中的功能機理
      雙頻帶隔板極化器
      電子測試(2017年15期)2017-12-18 07:18:51
      腎纖維化的細胞和分子基礎(chǔ)
      血清抗體檢測在炎癥性腸病中的臨床應(yīng)用研究
      益生菌治療炎癥性腸病的臨床療效分析
      360例炎癥性腸病及缺血性腸炎臨床與病理診斷分析
      免疫抑制劑在炎癥性腸病治療中的應(yīng)用
      基于PWM控制的新型極化電源設(shè)計與實現(xiàn)
      迁安市| 阳曲县| 大悟县| 大洼县| 平罗县| 江陵县| 朔州市| 宁乡县| 大安市| 镶黄旗| 绥滨县| 原平市| 普安县| 肥西县| 大名县| 龙南县| 乐陵市| 浦北县| 宁河县| 和田市| 高邑县| 景德镇市| 冀州市| 贞丰县| 株洲县| 昌黎县| 承德县| 宁海县| 丹江口市| 柳河县| 甘德县| 扬中市| 江城| 清流县| 泸水县| 龙游县| 曲麻莱县| 腾冲县| 顺义区| 微山县| 高台县|