摘要:【目的】為提高粉煤灰和煤研石的利用率、減少天然碎石的開采,研究高摻量粉煤灰對水泥穩(wěn)定煤研石基層性能的增強機制,為高摻量粉煤灰在水泥穩(wěn)定煤研石基層中的應用提供理論依據(jù)?!痉椒ā坑妹貉惺刻娲烊凰槭鳛楣橇稀⒉饺脒m量粉煤灰替代骨料,制備水泥穩(wěn)定煤研石基層混合料;通過無側(cè)限抗壓試驗、劈裂試驗、抗壓回彈模量試驗、水穩(wěn)定性試驗、凍融試驗研究混合料的力學性能和耐久性能;研究不同粉煤灰摻量(質(zhì)量分數(shù))下混合料的強度形成機制。【結(jié)果】粉煤灰質(zhì)量分數(shù)為4%、8%時,水泥與粉煤灰發(fā)生火山灰效應,生成新的水化產(chǎn)物填充膠凝材料內(nèi)部孔隙,提高了混合料的力學性能;粉煤灰質(zhì)量分數(shù)為12%時,混合料的抗壓回彈模量最大,荷載作用下混合料的變形量最??;粉煤灰摻量為16%時,粉煤灰在混合料中的微集料效應充分發(fā)揮,28 d齡期無側(cè)限抗壓強度和劈裂強度有明顯提升,但抗壓回彈模量減小?!窘Y(jié)論】在不同粉煤灰摻量下,隨著粉煤灰摻量的增加,混合料的無側(cè)限抗壓強度、劈裂強度逐漸增大,抗壓回彈模量先增大后減??;粉煤灰摻入后,混合料的水穩(wěn)定性能和抗凍性能略有降低。
關(guān)鍵詞:煤矸石;粉煤灰;力學性能;耐久性
中圖分類號:U414;TB4文獻標志碼:A
引用格式:
張博杰,俞莉,張東生,等.高摻量粉煤灰對水泥穩(wěn)定煤研石基層性能影響[J].中國粉體技術(shù),2024,30(4):43-50.
ZHANG Bojie,YULi,ZHANGDongsheng,etal.Effect of replacing aggregate with fly ash on performance of cement-stabilizedcoal gangue base[J].China Powder Science and Technology,2024,30(4):43-50.
天然碎石的過量開采造成了植被破壞、水體污染和水土流失等環(huán)境問題1。與此同時,煤炭工業(yè)發(fā)展產(chǎn)生的粉煤灰、煤矸石等固廢的利用率較低,導致堆積量逐步增加,其堆放空間已接近飽和,大量土地被固廢所占用[2-3]。
相比于碎石,煤研石作為骨料的力學性能較差,骨料之間的嵌合作用也不如碎石,但在經(jīng)過壓力成型之后集料的密實度優(yōu)于碎石。盡管煤矸石具有易壓碎的特性,但作為骨料應用時在良好級配設計的情況下也能擁有較好的力學性能14-7。對于路面基層材料的性能,集料的級配和膠凝材料都是非常重要的影響因素,粉煤灰的摻入能優(yōu)化集料的級配,促進水泥的水化。研究者對水泥-粉煤灰漿體性能進行了相關(guān)研究,發(fā)現(xiàn)粉煤灰可以作為路面基層中水泥的替代品[8-12]。一些學者研究發(fā)現(xiàn)摻入適量的粉煤灰能增強路面基層抵抗水損傷的能力,降低路面基層的凍脹率[13-15]。一些學者研究了路面基層彈性模量的影響因素,發(fā)現(xiàn)適量的粉煤灰能明顯提高路面基層的彈性模量[16-18]。
基于以上研究,本文中利用工業(yè)固廢粉煤灰和煤研石制備二級公路基層混合料,采用煤矸石全部替代天然碎石作為骨料、并摻入適量粉煤灰替代骨料,通過水泥與粉煤灰的火山灰效應彌補煤研石硬度較低的問題;煤研石骨料的級配采用合成級配的方法,選出5條級配曲線,根據(jù)7 d齡期無側(cè)限強度試驗確定最佳級配曲線;基于最佳級配曲線設計了以質(zhì)量分數(shù)為4%、8%、12%、16%的粉煤灰替代骨料,研究粉煤灰替代骨料對水泥穩(wěn)定煤矸石混合料的力學性能和耐久性能的影響規(guī)律;為高摻量粉煤灰在水泥穩(wěn)定煤矸石基層中的應用提供理論依據(jù)和技術(shù)支撐。
1材料與方法
1.1原材料
水泥采用寧夏賽馬牌P·042.5普通硅酸鹽水泥,物理力學性能指標見表1,化學組分含量見表2;粉煤灰采用寧東基地產(chǎn)Ⅱ級粉煤灰,粉煤灰化學成分含量見表2;骨料選用寧夏地區(qū)煤礦所洗選煤研石,經(jīng)過廠家破碎篩分得到粒徑0~10、≥10.0~20.0、≥20.0~31.5 mm3種級配粒徑,物理力學性能指標見表3;試驗中使用的煤矸石骨料通過優(yōu)化粗集料選取的方法,解決煤研石針片狀含量過大的問題;水采用自來水。
1.2試驗方案
根據(jù)JTG/T F20—2015《公路路面基層施工技術(shù)細則》19的推薦范圍中,水泥穩(wěn)定級配碎石CF-B-1S級配范圍,通過合成級配的方法調(diào)整3種級配粒徑煤研石骨料的比例,并進行7d無側(cè)限抗壓強度試驗,煤矸石骨料的比例及7d齡期無側(cè)限抗壓強度見表4。由表可見,J?組的7 d齡期無側(cè)限抗壓強度最大,因此煤研石骨料的比例選擇表4中J?組;經(jīng)過前期試驗得出水泥的摻量(質(zhì)量分數(shù),下同)為4%較為合適;在確保水泥摻量不變的情況下,以質(zhì)量分數(shù)為4%、8%、12%、16%的粉煤灰替代煤矸石骨料。水泥穩(wěn)定類為基準組,記為P組;水泥粉煤灰穩(wěn)定類為對照組,記為F組,F(xiàn)1、F2、F3、F4分別表示粉煤灰摻量(質(zhì)量分數(shù),下同)為4%、8%、12%、16%下的混合料。混合料中各組分的質(zhì)量分數(shù)見表5。根據(jù)JTG 3441—2024《公路工程無機結(jié)合料穩(wěn)定材料試驗規(guī)程》20共成型5組試件,每組9個試件,圓柱形試件尺寸為150 mm×150 mm(直徑×高度);試件成型后放入標準養(yǎng)護室養(yǎng)護7、28 d,進行無側(cè)限抗壓、劈裂、抗壓回彈模量、水穩(wěn)定性及凍融試驗。
1.3火山灰效應
粉煤灰中含有大量的SiO?,SiO?在堿性環(huán)境在能生成SiO?2-,與H+和金屬離子生成硅酸和硅酸鹽產(chǎn)生膠凝性作用。水泥水化之后生成的Ca(OH)?屬于強堿性物質(zhì),能與粉煤灰中SiO?發(fā)生中和反應生成CaSiO?2。為了從理論上分析粉煤灰在水泥漿體中的作用,計算膠凝材料中Ca元素和Si元素的物質(zhì)的量;根據(jù)表2中的成分含量以及表5中的質(zhì)量占比,單個試件質(zhì)量以6kg計算,膠凝材料中各化學元素的物質(zhì)的量見表6。由表可知,未摻入粉煤灰時Ca元素的含量遠高于Si元素的,水化產(chǎn)物中有大量的Ca(OH)?,摻入粉煤灰后Si元素的含量大幅度增加。在理想狀態(tài)下,水泥、粉煤灰中成分能夠全部轉(zhuǎn)化為離子形態(tài),即水泥與粉煤灰質(zhì)量比達到1:1時Ca元素將全部轉(zhuǎn)化為CaSiO?。
2結(jié)果與討論
2.1粉煤灰替代骨料對混合料力學性能的影響
2.1.1無側(cè)限抗壓試驗結(jié)果分析
P、F組煤矸石混合料的7、28d無側(cè)限抗壓強度如圖1所示,F(xiàn)組相對于P組的抗壓強度均有一定程度的增大。在不同粉煤灰摻量(4%、8%、12%、16%)下,隨著粉煤灰摻量的增加,抗壓強度呈現(xiàn)不斷增大的趨勢,顯示粉煤灰摻入有利于煤矸石基層混合5.5料強度的提升。F1、F2、F3、F4組試件相較于P組,7d7 d5.028 d4.454.5無側(cè)限抗壓強度的提升幅度分別為3.4%、10.1%、無側(cè)限抗壓強度/MPa4.113.874.03.793.5118.7%、28.8%,28 d無側(cè)線抗壓強度的提升幅度分別3.373.53.26為8%、17.1%、26.8%、45%。粉煤灰的摻入能夠促進2.5混合料無側(cè)限抗壓強度的提升,主要是因為其增加了2.01.5膠凝材料在混合料中的占比;粉煤灰的微集料效應使1.0
2.1.2劈裂試驗結(jié)果分析
P、F組煤矸石混合料的7、28 d劈裂強度如圖2所示。與無側(cè)限抗壓強度發(fā)展規(guī)律相同,在不同粉煤灰摻量(4%、8%、12%、16%)下,隨著粉煤灰摻量的增加,劈裂強度也呈現(xiàn)不斷增大的趨勢。F1、F2、F3、F4組試件相較于P組,7 d劈裂強度提升的幅度分別為35%、78.5%、124.9%、174.3%,28d劈裂強度提升的幅度分別為31.3%、70.2%、106.7%、141%。這是因為,粉煤灰的摻入除了能夠帶來大量的活性二氧化硅促進火山灰效應速率,還能提供少量的氧化鈣成分。由表6可知,粉煤灰摻入后Ca元素物質(zhì)的量分別提升了10.2%、20.3%、30.5%、40.7%?;旌狭系呐褟姸戎饕Q于膠凝材料,Ca元素含量增加時,促進了CaSiO?等水化產(chǎn)物生成,因此粉煤灰摻量增大時混合料的劈裂強度也隨之增大。
2.1.3抗壓回彈模量試驗結(jié)果分析
P、F組煤矸石混合料的7、28d抗壓回彈模量如圖3所示。由圖可見,F(xiàn)1、F2、F3、F4組試件相較于P組,7 d抗壓回彈模量提升的幅度分別為58.8%、85.2%、195.7%、127.2%,28 d抗壓回彈模量提升的幅度分別為44.8%、68.9%、88.9%、33.5%。由此可見,隨著粉煤灰摻量的增加,抗壓回彈模量呈現(xiàn)為先增大后減小的趨勢。這是因為,混合料的彈性模量取決于膠凝材料;粉煤灰摻量較低時,水泥-粉煤灰漿體的含量增加,漿體的粘結(jié)作用使混合料的彈性模量逐漸增加;粉煤灰摻量超過某個臨界值(12%)時,過量的粉煤灰會弱化水泥-粉煤灰漿體的強度,漿體強度的降低成為主導因素,導致試件的彈性模量降低。
2.1.4破壞荷載作用下變形量
根據(jù)JTG 3441—2024《公路工程無機結(jié)合料穩(wěn)定材料試驗規(guī)程》20中無機結(jié)合料抗壓回彈模量試驗方法中公式,計算破壞荷載作用下變形量
式中:E.為抗壓回彈模量;p為壓強;h為試件高度;l為荷載作用下變形量。
本文中試件高度為150 mm,抗壓回彈模量和壓強均由試驗結(jié)果得到,根據(jù)公式(1)計算破壞荷載作用下變形量理論值,荷載作用下變形量詳見表7。
材料的變形分為塑性變形和彈性變形,通過公式(1)計算得到的變形量,主要反映了材料在荷載作用下的彈性變形部分。這種方法避免了因?qū)嶒炇抑兄苽湓嚰膲簩嵍炔蛔憧赡墚a(chǎn)生的塑性變形,因此更能真實地反映煤矸石基層在實際荷載作用下的變形情況。
粉煤灰含有許多小尺寸的碎屑和玻璃珠,這些微小顆粒能夠有效地填充骨料之間的空隙,優(yōu)化混合料的級配;對于洗選后的煤矸石合成骨料,其粒徑小于1.18 mm的含量較低。在不摻入粉煤灰的情況下,骨料的結(jié)構(gòu)主要呈現(xiàn)為骨架空隙型結(jié)構(gòu);隨著粉煤灰摻量的增加和煤矸石用量的減少,骨架的結(jié)構(gòu)逐漸由骨架空隙型結(jié)構(gòu)轉(zhuǎn)變?yōu)楣羌苊軐嵭徒Y(jié)構(gòu),基層變形量逐漸減?。辉贔3組時,基層28d的變形量已經(jīng)接近于F2組的水平,表明此時水泥和粉煤灰之間的反應已經(jīng)接近飽和;在F4組時基層變形量增大,這是因為過量的粉煤灰破壞了原有的骨架密實型結(jié)構(gòu),變?yōu)閼腋∶軐嵭徒Y(jié)構(gòu),混合料仍保持一定的強度,但其整體性卻會顯著下降。
2.2粉煤灰替代骨料對混合料耐久性能的影響
2.2.1水穩(wěn)定性試驗結(jié)果分析
煤矸石混合料的7、28 d水穩(wěn)定性試驗結(jié)果詳見表8。由表可知,F(xiàn)1、F2、F3、F4組試件相較于P組,7d未浸水抗壓強度分別提升了4.7%、13%、23.5%、35.5%,28d未浸水抗壓強度分別提升了10.5%、22%、33.5%、54.2%。粉煤灰摻入后能顯著提高混合料浸水前的力學性能,試件在浸水后的抗壓強度普遍出現(xiàn)了一定程度的降低。水穩(wěn)定系數(shù)為浸水試件抗壓強度與未浸水試件抗壓強度的比值,結(jié)果如表8所示。由表可知,隨著粉煤灰摻量的增加,煤研石混合料的7、28 d水穩(wěn)定性系數(shù)逐漸減小,混合料的水穩(wěn)定性降低,說明水泥與粉煤灰的火山灰效應不足以將粉煤灰完全消耗。綜上,粉煤灰在水中浸泡時,會出現(xiàn)較小顆粒的離散現(xiàn)象,導致混合料的抗壓強度降低。
2.2.2凍融試驗結(jié)果分析
根據(jù)JTG 3441—2024《公路工程無機結(jié)合料穩(wěn)定材料試驗規(guī)程》20中無機結(jié)合料穩(wěn)定材料凍融試驗方法,得到28 d試件凍融循環(huán)后的無側(cè)限抗壓強度如圖4所示。
F1、F2、F3、F4組試件相較于P組,28d試件凍融后無側(cè)限抗壓強度別提升了7.7%、16.1%、24.5%、41.8%;P、F組試件凍融后無側(cè)限抗壓強度損失分別為8%、8.2%、8.8%、9.7%、10%。凍融破壞的機制為水的液相固化所帶來的物理損害,在低溫作用下試件中的水變成冰,水結(jié)冰后體積的膨脹會在材料內(nèi)部施加壓力;在多次凍融循環(huán)過程中,隨著內(nèi)部壓力的增大,混合料內(nèi)部的細小裂縫會逐漸擴展,導致材料從內(nèi)部破壞。粉煤灰的摻入能夠填充混合料內(nèi)部的空隙,在一定程度上提高混合料的密實性和強度;在凍融過程中離散的粉煤灰可能會移動或重新排列,使得原有的空隙結(jié)構(gòu)發(fā)生變化;空隙的增大會使更多的水進入,其結(jié)冰時產(chǎn)生更大的內(nèi)部壓力,加速裂縫的擴展和材料的破壞,導致煤矸石基層的抗凍性能降低。
3結(jié)論
本文研究了在水泥質(zhì)量分數(shù)為4%情況下,粉煤灰替代骨料對水泥穩(wěn)定煤研石基層力學性能和耐久性能的影響,并計算了混合料中化學元素的物質(zhì)的量。研究得出以下結(jié)論:
1)將水泥、粉煤灰中的化學成分轉(zhuǎn)換為物質(zhì)的量進行分析,并利用水泥與粉煤灰之間的火山灰效應來提升基層性能,是一種具有較高可行性的方法;這種方法可以通過精確控制原材料的配比和反應條件,來優(yōu)化基層的性能。
2)粉煤灰的摻入有利于提高煤矸石基層的力學性能,隨著粉煤灰的摻量增大,混合料的無側(cè)限抗壓強度、劈裂強度呈不斷增大的趨勢,抗壓回彈模量呈先增大后減小的趨勢。粉煤灰摻量為4%、8%時,水泥與粉煤灰的火山灰效應使混合料強度提升;粉煤灰摻量為12%時,火山灰效應接近飽和狀態(tài),混合料的抗壓回彈模量最大,荷載作用下變形量最??;粉煤灰摻量為16%時,過量的粉煤灰起到微集料的作用,混合料后期力學性能明顯提升,但抗壓回彈模量降低。
3)粉煤灰的摻入對煤矸石基層的耐久性能有輕微影響。7、28d養(yǎng)護時間較短,水泥與粉煤灰的火山灰反應可能并不完全;粉煤灰中不溶性顆粒在水中的離散現(xiàn)象導致混合料的水穩(wěn)定性和抗凍性能略有降低。
利益沖突聲明(Conflict of Interests)
所有作者聲明不存在利益沖突。
All authors disclose no relevant conflict of interests.
作者貢獻(Authors'Contributions)
張博杰、俞莉、張東生、張文博、楊秋寧參與了方案設計、論文的寫作和修改,所有作者均閱讀并同意了最終稿件的提交。
ZHANG Bojie,YULi,ZHANGDongsheng,ZHANGWenbo,and YANG Qiuning participated in the scheme design,writing,andrevision of the paper.All authors have read the last version of the paper and consented to its submission.
參考文獻(References)
[1]DONRAKJ.Environmental assessment of cement stabilized marginal lateritic soil/melamine debris blends for pavement app-lications [J].Environmental Geotechnics,2019:1-7.
[2]韓偉.半剛性基層在公路工程中的應用[J].交通世界,2021(24):120-121.
HAN W.Application of semi-rigid base in highway engineering [J].Traffic World,2021(24):120-121.
[3]MARKOVICJB,MARINKOVIC AD,SAVIJZ,etal.Risk evaluation of pollutants emission from coal and coal waste com-bustion plants and environmental impact of fly ash landfilling [J].Toxics,2023,11(4):396.
[4]李啟輝.煤矸石的性質(zhì)及綜合利用研究進展[J].應用化工,2023,52(5):1576-1581.
LIQH.Research progress on properties and comprehensive utilization of coal gangue [J].Applied Chemical Industry,2023,52(5):1576-1581.
[5]ZHENGQw,ZHOU Y,LIU X,etal.Environmental hazards and comprehensive utilization of solid waste coal gangue [J].Progress in Natural Science:Materials International,2024,34(2):223-239.
[6]wANGH,CHENZW,ZHAOM,etal.Integrated utilization of coal gangue for synthesis of β-Sialon multiphase ceramicmaterials [J].Ceramics International,2023,49(7):11275-11284.
[7]LI JY,WANG J M.Comprehensive utilization and environmental risks of coal gangue:a review [J].Journal of CleanerProduction,2019,239:117946.
[8]YUYG,GUNASEKARAC,ELAKNESWARANY,etal.Unified hydration model for multi-blend fly ash cementitious sys-tems of wide-range replacement rates [J].Cement and Concrete Research,2024,180:107487.
[9]wANGLL,XUXB,ZHANGQS,etal.Performance optimization of cement-fly ash grouting material based on responsesurface methodology [J].Materials Science Forum,2021,6187:337-344.
[10]程銀銀,李宏波,康鑫睿,等.水泥和粉煤灰穩(wěn)定鋼渣-砼再生碎石路基混合料的制備及其性能[J].中國粉體技術(shù),2023,29(4):11-21.
CHENG YY,LIHB,KANGXR,etal.Preparation and properties of cement and fly ash stabilized steel slag-concreterecycled macadam subgrade mixture [J].China Powder Science and Technology,2023,29(4):11-21.
[11]KUMAR S,SINGH D.Transforming waste into sustainable solution:physicochemical and geotechnical evaluation ofcement stabilized municipal solid waste incinerator bottom ash for geoenvironmental applications [J].Process Safety andEnvironmental Protection,2023,176:685-695.
[12]韓俊俊.基于路用性能的煤研石混合料力學特性試驗研究[D].阜新:遼寧工程技術(shù)大學,2016.
HAN JJ.Experimental study on mechanical properties of coal gangue mixture based on road performance[D].Fuxin:Lia-oning University of Engineering Technology,2016.
[13]DING YF,LIH B,ZHANGHB,etal.Shrinkage and durability of waste brick and recycled concrete aggregate stabilizedby cement and fly ash[J].Materials,2022,15(10):3684-3684.
[14]SHIX,YANG P,LIL,etal.Strength and microscopic pore structure characterization of cement-fly ash stabilized organicsoil under freeze-thaw cycles [J].Construction and Building Materials,2024,420:135635.
[15]NISRINE EF,HASSAN E,OMARS,etal.Rheology,calorimetry and electrical conductivity related-properties for moni-toring the dissolution and precipitation process of cement-fly ash mixtures LJ].Powder Technology,2022,411:117937.
[16]JOSE A,MURALI K J,ROBINSON R G.Mechanical response of cement-stabilized pond ash during repeated loadingbased on shakedown concept [J].International Journal of Geomechanics,2024,24(3):04024010.
[17]AHMED ZA,HASSAN A.Prediction model of elastic modulus for granular road bases [J].Sustainable DevelopmentResearch,2020,2(1):35.
[18]HAN BY,LING JM,XIANG S,etal.Resilient interface shear modulus for characterizing shear properties of pavementbase materials [J].Journal of Materials in Civil Engineering,2018,30(12):04018333.
[19]交通運輸部公路科學研究院.公路路面基層施工技術(shù)細則:JTG/T F20—2015[S].北京:人民交通出版社,2015.
Institute of Highway Science,Ministry of Transport.Technical specification for highway pavement base construction:JTG/TF20—2015[S].Beijing:People's Communications Press,2015.
[20]交通運輸部公路科學研究院.公路工程無機結(jié)合料穩(wěn)定材料試驗規(guī)程:JTG3441—2024[S].北京:人民交通出版社,2024.
Institute of Highway Science,Ministry of Transport.Test specification for inorganic binder stabilized materials in highwayengineering:JTG 3441—2024[S].Beijing:People's Communications Press,2024.
[21]何蓓,張吾渝,童國慶,等.粉煤灰地聚物的抗壓強度及微觀結(jié)構(gòu)[J].中國粉體技術(shù),2023,29(2):38-46.
HE B,ZHANG W Y,TONG GQ,etal.Compressive strength and microstructure of fly ash geopolymer [J].China PowderScience and Technology,2023,29(2):38-46.
Effect of replacing aggregate with fly ash on performance ofcement-stabilized coal gangue base
ZHANG Bojie1,YU Li1,ZHANG Dongsheng2,ZHANG Wenbo1,YANG Qiuning1
1.School of Civil and Hydraulic Engineering,NingxiaUniversity,Yinchuan 750021,China;
2.Department of Civil Engineering,KULeuven,Bruges 8200,Belgium
Abstract
Objective With the global emphasis on environmental protection and resource conservation,improving the utilization rate ofindustrial waste and reducing the exploitation of natural resources have become research hotspots.Fly ash and coal gangue arethe major wastes from thermal power generation and coal mining processes.Their large-scale accumulation not only occupiesvaluable land resources,but also pollutes the environment.Therefore,this study aims to explore the enhancement mechanism ofhigh-content fly ash on the performance of cement-stabilized coal gangue base.It provides a new way for the effective utilizationof industrial waste while reducing the exploitation of natural gravel,thereby achieving the dual goals of environmental protectionand resource conservation.
Method In this study,high-quality coal gangue was selected as the aggregate to replace traditional natural gravel.Appropriateamounts of cement were selected as the bonding material,and different proportions of fly ash(4%,8%,12%,16%)weremixed.Through accurate calculations and optimized design,the composition of the mixture with different proportions was deter-mined.To evaluate the mechanical properties of the mixture,unconfined compressive strength tests,splitingtests,and com-pressive rebound modulus tests were carried out.These tests comprehensively reflected the key mechanical indicators of the mix-ture such as compressive strength,splitingstrength,and elastic modulus.To evaluate the durability of the mixture,watersta-bility tests and freeze-thaw tests were carried out.The water stability tests simulated the performance changes of the mixtureunder water immersion,while the freeze-thaw test simulated the performance changes after freeze-thaw cycles in cold areas.Thestudy also discussed the strength formation mechanisms of mixture with different fly ash content.
Result When fly ash was added to the cement at a content of 4%and 8%,a pozzolanic reaction occured between the cementand fly ash,producing new hydration products.These newly generated hydration products were very fine and could effectivelypenetrate into the internal pores of the binding materials,serving to fll and reinforce them.Thisflling not only enhanced thecompactness of the mixture,but also significantly improved its overall trength,providing a more stable foundation for construc-tion.As the fly ash content further increased to 12%,the properties of the mixture changed significantly.Under external loads,the mixture showed excllent deformation resistance,with the deformation amount reaching its minimum.This indicated that ata specific fly ash content,the stability of the mixture was significantly improved,enabling it to withstand greater external pres-sure and changes.When the fly ash content increased to 16%,the micro-aggregate effect of fly ash began to show its uniqueadvantages.This effect ensured that the fly ash particles were more evenly distributed in the mixture,enhancing their cohesionand thereby greatly improving the mechanical properties of the mixture.Experimental data showed that at this content level,theunconfined compressive strength and splitting strength of the mixture were significantly improved after 28 days of curing.Conclusion This study showed that with the increase of fly ash content,the unconfined compressive strength and splitingstrength of the cement-stabilized coal gangue base mixture gradually increased,while the compressive rebound modulus firstincreased and then decreased.This indicated that an appropriate amount of fly ash can improve the mechanical properties of themixture,but an excessive content may lead to a decline in its performance.Inaddition,although the incorporation of fly ashslightly reduced the water stability and frost resistance of the mixture,it still met the overall engineering requirements.By ana-lyzing the hydration reactions and microstructural changes of the mixture,it was found that the addition of fly ash promoted thehydration reaction of the cement,generating more hydration products.These hydration products flled the gaps between aggre-gates and improved the compactness and strength of the mixture.Moreover,the addition of fly ash also improved the pore struc-ture of the mixture and reduced the number of large and interconnected pores.Therefore,the application of high-content fly ashin cement-stabilized coal gangue base has broad prospects.It not only increases the utilization rate of industrial waste andreduces the exploitation of natural resources,but also provides high-performance building materials for road engineering andother fields.
Keywords:coalgangue;flyash;mechanicalproperty;durability
(責任編輯:孫媛媛)