• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      合成鈣礬石-水化硅酸鈣復(fù)合晶種的水泥早強(qiáng)效應(yīng)

      2024-09-28 00:00:00李佳全佟鈺冷雨虹王剛趙明宇房延鳳
      中國(guó)粉體技術(shù) 2024年4期
      關(guān)鍵詞:晶種水泥

      摘要:【目的】解析鈣礬石-水化硅酸鈣晶種的協(xié)同效應(yīng),改善普通硅酸鹽水泥的早期力學(xué)強(qiáng)度?!痉椒ā恳匀芤悍ê铣傻某?xì)鈣礬石和納米水化硅酸鈣為復(fù)合晶種,在微觀結(jié)構(gòu)表征基礎(chǔ)上,探究鈣礬石和水化硅酸鈣的摻量以及水灰比對(duì)水泥凈漿試塊1、3d抗壓強(qiáng)度的影響與作用機(jī)制?!窘Y(jié)果】溶液法合成的超細(xì)鈣礬石和納米水化硅酸鈣的純度高,結(jié)晶完整,在水中可長(zhǎng)時(shí)間保持穩(wěn)定懸浮狀態(tài),適合作為復(fù)合晶種使用。當(dāng)納米水化硅酸鈣質(zhì)量分?jǐn)?shù)固定為5%情況下,隨著超細(xì)鈣礬石摻量的增大,水泥凈漿試塊的早期抗壓強(qiáng)度先升高后降低,在鈣礬石摻量(質(zhì)量分?jǐn)?shù),下同)為0.6%時(shí),試塊的1 d抗壓強(qiáng)度提高125%;當(dāng)鈣礬石摻量為0.4%時(shí),水泥凈漿試塊的3d抗壓強(qiáng)度提高57%。在超細(xì)鈣礬石摻量一定情況下,水泥凈漿試塊早期強(qiáng)度隨水化硅酸鈣摻量的提高而明顯增長(zhǎng),但摻量高于5%會(huì)導(dǎo)致泌水現(xiàn)象的發(fā)生?!窘Y(jié)論】超細(xì)鈣礬石與納米水化硅酸鈣作為復(fù)合晶種具有明顯的協(xié)同效應(yīng),可有效提高普通硅酸鹽水泥的早期力學(xué)強(qiáng)度,早強(qiáng)效果明顯優(yōu)于單獨(dú)使用的鈣礬石或水化硅酸鈣晶種。

      關(guān)鍵詞:鈣礬石;水化硅酸鈣;晶種;水泥;早強(qiáng)

      中圖分類號(hào):TU528;TB4文獻(xiàn)標(biāo)志碼:A

      引用格式:

      李佳全,佟鈺,冷雨虹,等.合成鈣礬石-水化硅酸鈣復(fù)合晶種的水泥早強(qiáng)效應(yīng)[J].中國(guó)粉體技術(shù),2024,30(4):62-68.

      LI Jiaquan,TONGYu,LENGYuhong,etal.Early strengthening effect of synthetic ettringite and C-S-H composited crystalseeds in cement[J].China Powder Science and Technology,2024,30(4):62-68.

      晶種型早強(qiáng)劑是水泥基復(fù)合材料實(shí)現(xiàn)早強(qiáng)高強(qiáng)的最有效的技術(shù)手段之一,其工作原理是在水泥水化起始階段引入與水化產(chǎn)物具有相同組成和結(jié)構(gòu)的微小粒子,提供更多成核位點(diǎn),降低水化產(chǎn)物的成核勢(shì)壘,從而加速水泥水化,顯著提升水泥早期強(qiáng)度。對(duì)于工程上最常用的硅酸鹽系列水泥,目前晶種研究主要集中于水化硅酸鈣(calcium silicate hydrates,C-S-H)納米粒子的制備與性能優(yōu)化,作為晶種可明顯提高水泥基復(fù)合材料的力學(xué)性能尤其是早期強(qiáng)度[3-5],即使在低溫環(huán)境中也可以很好發(fā)揮早強(qiáng)作用。

      當(dāng)前,針對(duì)鈣礬石粒子的晶種效應(yīng)研究主要針對(duì)硫鋁酸鹽水泥,如Li等9發(fā)現(xiàn)摻入水泥質(zhì)量4%的超細(xì)鈣礬石可使硫鋁酸鹽水泥的4h抗壓強(qiáng)度提升380%,而初凝時(shí)間縮短55.6%;在Cheng等的實(shí)驗(yàn)中,同一摻量的鈣礬石晶種使硫鋁酸鹽水泥凈漿的3h抗壓強(qiáng)度提高了290%;Garcia-Mate等11發(fā)現(xiàn)硫鋁酸鹽水泥的強(qiáng)度發(fā)展趨勢(shì)與鈣礬石的摻量變化呈正比,隨著鈣礬石摻量的增加,水泥抗壓強(qiáng)度逐漸增長(zhǎng)。我課題組則嘗試將鈣礬石晶種應(yīng)用于硅酸鹽系水泥,采用溶液法合成超細(xì)鈣礬石并將其用于加速普通硅酸鹽水泥的水化進(jìn)程,試樣的1d抗壓、抗折強(qiáng)度分別提高了15%和36%,3 d抗壓、抗折強(qiáng)度也有一定增長(zhǎng)。

      為了進(jìn)一步提高硅酸鹽系水泥的早期強(qiáng)度,本文中將超細(xì)鈣礬石和納米水化硅酸鈣同時(shí)引入至水泥漿體中,考察超細(xì)鈣礬石和納米水化硅酸鈣作為晶種的協(xié)同效應(yīng)及其對(duì)普通水泥早期力學(xué)性能的影響,為提高水泥基復(fù)合材料早強(qiáng)高強(qiáng)性能提供技術(shù)支撐。

      1材料與方法

      1.1試劑材料和儀器設(shè)備

      試劑材料:納米水化硅酸鈣懸浮液,有效物質(zhì)的質(zhì)量分?jǐn)?shù)約為2.4%,采用溶液法合成12-13,原料包括硝酸鈣、硅酸鈉(Na?SiO?·9H?O)和氫氧化鈉(NaOH),均為分析純化學(xué)試劑,國(guó)藥集團(tuán)化學(xué)試劑有限公司生產(chǎn);同時(shí)引入質(zhì)量分?jǐn)?shù)為2%的聚羧酸減水劑(固含量38%,沈陽(yáng)伊利達(dá)外加劑廠生產(chǎn))作為分散穩(wěn)定劑,蠕動(dòng)泵和高速剪切攪拌用于提高納米粒子的分散與穩(wěn)定。

      超細(xì)鈣礬石懸浮液,有效物質(zhì)的質(zhì)量分?jǐn)?shù)約為1.8%,反應(yīng)原料及合成步驟近似于納米水化硅酸鈣懸浮液的制備,只是采用硫酸鋁(分析純,國(guó)藥集團(tuán)化學(xué)試劑有限公司生產(chǎn))取代硅酸鈉。

      其他原料:水泥,P·042.5普通硅酸鹽水泥,遼寧山水工源水泥有限公司生產(chǎn),化學(xué)組成如表1所示;砂,ISO標(biāo)準(zhǔn)砂,廈門艾思?xì)W標(biāo)準(zhǔn)砂有限公司提供;聚羧酸減水劑,沈陽(yáng)伊利達(dá)外加劑廠生產(chǎn),固含量38%,減水率30%;水,自來(lái)水。

      儀器設(shè)備:Nanoplus-3型納米粒度與Zeta電位測(cè)試儀(麥克默瑞提克(上海)儀器有限公司);XRD-700S型X射線衍射儀(日本株式會(huì)社島津制作所);TGL-16型高速離心機(jī)(江蘇科析儀器有限公司);S-4800型掃描電子顯微鏡(日本株式會(huì)社日立高新技術(shù)公司);JEOL-2020M型透射電子顯微鏡(日本電子株式會(huì)社);YAW-300型抗折抗壓試驗(yàn)機(jī)(無(wú)錫建儀儀器機(jī)械有限公司)。

      1.2試塊制備

      水泥凈漿試塊制備時(shí),晶種的摻量控制是以水泥質(zhì)量為基準(zhǔn),按比例準(zhǔn)確稱量懸浮液,其中鈣礬石懸浮液的摻量(質(zhì)量分?jǐn)?shù),下同)分別為水泥質(zhì)量的0、0.2%、0.4%、0.6%、0.8%,水化硅酸鈣懸浮液的摻量(質(zhì)量分?jǐn)?shù),下同)為水泥質(zhì)量的0、3%、5%。充分?jǐn)嚢韬蟮膬魸{澆注在20 mm×20 mm×20 mm(長(zhǎng)度×寬度×高度)的立方體模具中,標(biāo)準(zhǔn)養(yǎng)護(hù)至24h后脫模,測(cè)試樣品抗壓強(qiáng)度,其余樣品繼續(xù)養(yǎng)護(hù)至3d齡期,再測(cè)試其抗壓強(qiáng)度。為保證實(shí)驗(yàn)結(jié)果的可比性,試驗(yàn)中所有試樣的總水灰比控制為0.32,減水劑用量控制為水泥質(zhì)量的0.2%。

      1.3測(cè)試方法

      1)粒度分布:用納米粒徑與表面Zeta電位測(cè)試儀測(cè)定分散液中水化硅酸鈣和鈣礬石的顆粒粒徑分布。

      2)物相分析:懸浮液狀態(tài)下的納米水化硅酸鈣和超細(xì)鈣礬石產(chǎn)物,用高速離心機(jī)離心分離30 min后,采用吸管小心吸出上層清液,再注入適量蒸餾水并重新超聲分散以回復(fù)均勻懸浮狀態(tài);重復(fù)離心、洗滌、超聲各程序3次后,將得到的固體置于真空干燥箱中在60℃的條件下充分烘干并研磨,用X射線衍射儀(X-ray diffraction,XRD)測(cè)定其礦相組成,掃描速度為0.04(°)·s-1。

      3)微觀形貌觀察:經(jīng)充分離心、洗滌后得到的鈣礬石樣品經(jīng)烘干、研磨后得到的固體粉末,置于導(dǎo)電膠上分散固定并噴金,用掃描電子顯微鏡(scanning electron microscopy,SEM)觀察其表觀形貌;納米水化硅酸鈣,銅網(wǎng)自分散液直接撈取、干燥,采用透射電子顯微鏡(transmission electron microscopy,TEM)獲取其納米尺度上的結(jié)構(gòu)信息。

      4)抗壓強(qiáng)度:標(biāo)準(zhǔn)養(yǎng)護(hù)至規(guī)定齡期(1、3 d)的水泥凈漿試塊,使用抗折抗壓試驗(yàn)機(jī)逐步提高外加應(yīng)力直至試件破壞,加載速度控制為0.2 MPa·s-1。

      2結(jié)果與討論

      2.1晶種的微觀結(jié)構(gòu)

      晶種的微觀結(jié)構(gòu)表征手段包括Zeta電位分析、XRD和SEM,分別針對(duì)晶種的粒徑分布、晶相結(jié)構(gòu)和微觀形貌進(jìn)行測(cè)試分析。

      2.1.1粒度分布

      圖1所示為水懸浮液中超細(xì)鈣礬石和納米水化硅酸鈣的粒度分布曲線,由Zeta電位法測(cè)得。圖1數(shù)據(jù)結(jié)果表明,在對(duì)數(shù)坐標(biāo)下,2個(gè)晶種的粒度分布曲線均呈左右對(duì)稱的鐘型分布規(guī)律,大致符合對(duì)數(shù)正態(tài)分布函數(shù)關(guān)系。此類粒徑分布規(guī)律為溶液法合成產(chǎn)物的典型特征,即反應(yīng)形成的原生顆粒細(xì)小、均一,但在一定程度上可能存在粒子聚集成次生顆粒的現(xiàn)象,且顆粒尺寸越小,發(fā)生團(tuán)聚的可能性越大。進(jìn)一步數(shù)據(jù)分析表明,水懸浮液中超細(xì)鈣礬石的中位徑D??為1423 nm,90%以上的顆粒粒徑(D?0)不大于2631 nm;比較而言,納米水化硅酸鈣的D?o和D,分別為117、181nm,粒徑尺寸更為細(xì)小。溶液法合成的晶種懸浮液不僅固體粒子的粒徑分布較集中,而且分散效果好、穩(wěn)定懸浮能力強(qiáng),即使經(jīng)過(guò)長(zhǎng)時(shí)間靜置也不會(huì)出現(xiàn)明顯的沉降分層現(xiàn)象。

      2.1.2物相結(jié)構(gòu)

      圖2為溶液法合成超細(xì)鈣礬石與納米水化硅酸鈣的XRD圖譜。由圖可見,2個(gè)晶種表現(xiàn)出典型的晶相衍射特征,其中鈣礬石的特征衍射峰形狀尖銳,表明鈣礬石晶相的結(jié)晶度較高,顆粒尺寸相對(duì)較大,但也存在少量的氫氧化鈣雜質(zhì)。比較而言,納米水化硅酸鈣的特征衍射峰主要位于7°、29°、32°以及50°、55°等位置,峰形相對(duì)平緩,半峰寬大,表示水化硅酸鈣晶粒細(xì)小,結(jié)晶度較低。

      2.1.3微觀形貌

      圖3為超細(xì)鈣礬石顆粒的SEM微觀形貌,可以看到,鈣礬石產(chǎn)物典型呈短棒狀晶體,長(zhǎng)度為200~600 nm,直徑為50~80 nm,長(zhǎng)徑比約為5~12;晶體外形完整,輪廓清晰。對(duì)于同為溶液法合成的納米水化硅酸鈣,由于其顆粒過(guò)于細(xì)小,只能在透射電鏡等分辨率更高的形貌表征條件下才能觀察到結(jié)構(gòu)細(xì)節(jié)。圖4為納米水化硅酸鈣的TEM圖像,其中水化硅酸鈣單個(gè)顆粒粒徑約為270 nm,呈現(xiàn)為薄片狀物質(zhì)卷積而成的褶皺狀結(jié)構(gòu)。

      2.2復(fù)合晶種的水泥早強(qiáng)效應(yīng)

      本實(shí)驗(yàn)將2個(gè)晶種懸浮液按不同摻量引入至水泥漿體中,測(cè)試分析其1、3d抗壓強(qiáng)度,考察分析晶種協(xié)同效應(yīng)對(duì)P.042.5水泥力學(xué)強(qiáng)度的影響和作用機(jī)制。

      2.2.1超細(xì)鈣礬石摻量的影響

      前期工作中,F(xiàn)ang等13采用溶液法合成納米水化硅酸鈣為晶種,在水泥水化過(guò)程中有效提高了水泥基復(fù)合材料的力學(xué)性能尤其是早期強(qiáng)度,在最佳摻量為5%的條件下,水泥砂漿的8、16、24h抗壓強(qiáng)度分別提高了176.0%、145.6%和43.9%。在此基礎(chǔ)上,本實(shí)驗(yàn)首先在納米水化硅酸鈣分散液摻量為5%的基礎(chǔ)上,按水泥質(zhì)量的0~0.8%調(diào)整鈣礬石分散液的摻量,測(cè)試水泥漿體的早期力學(xué)強(qiáng)度,實(shí)驗(yàn)結(jié)果如圖5所示。圖5中數(shù)據(jù)結(jié)果表明,隨鈣礬石晶種摻量的增大,水泥漿體的1、3 d抗壓強(qiáng)度均呈先升后降的趨勢(shì),強(qiáng)度最大值對(duì)應(yīng)的鈣礬石摻量分別為0.6%、0.4%,對(duì)應(yīng)抗壓強(qiáng)度為27.1、55.0 MPa,相比空白試樣分別提高了125%、57%。

      對(duì)于P.042.5水泥,在其水化進(jìn)程初期,石膏緩凝劑與鋁酸三鈣(C?A)相的水化產(chǎn)物相作用而形成鈣礬石,從形態(tài)上是由不規(guī)則顆粒逐漸轉(zhuǎn)變?yōu)獒槹魻罹w,包裹于水泥顆粒表面,延阻水泥的快速水化,使水泥漿體在一定時(shí)間內(nèi)保持塑性變形能力,直至石膏耗盡,水化重新加速,進(jìn)入硅酸三鈣(C?S)的大量水化階段。結(jié)合硅酸鹽水泥水化機(jī)制分析認(rèn)為,超細(xì)鈣礬石作為晶種的引入,在加速C?A水化、促進(jìn)鈣礬石形成的同時(shí),還會(huì)改變水化產(chǎn)物鈣礬石的形貌,特別是增大鈣礬石晶體的尺寸,導(dǎo)致包裹層的孔隙率提高[12],有利于水及水溶性物質(zhì)的遷移與滲透,加速后續(xù)C?S水化進(jìn)程,促進(jìn)水化硅酸鈣和氫氧化鈣的形成,從而起到顯著提高水泥早期強(qiáng)度的作用。復(fù)合晶種的協(xié)同效應(yīng)進(jìn)一步提高了水泥的早期強(qiáng)度,但實(shí)驗(yàn)結(jié)果也表明,晶種摻量過(guò)高會(huì)導(dǎo)致結(jié)晶內(nèi)應(yīng)力的產(chǎn)生,樣品強(qiáng)度隨之下降;齡期越長(zhǎng),硬化水泥漿體的密實(shí)度越高,引起的結(jié)晶內(nèi)應(yīng)力也越大,相對(duì)要求鈣礬石晶種的最佳摻量會(huì)有所下降。

      2.2.2納米水化硅酸鈣摻量的影響

      圖6為摻入質(zhì)量分?jǐn)?shù)為0.4%超細(xì)鈣礬石的情況下,納米水化硅酸鈣懸浮液摻量對(duì)水泥凈漿試樣早期抗壓強(qiáng)度的影響。由圖6數(shù)據(jù)結(jié)果可知,凈漿試樣的1、3 d抗壓強(qiáng)度均隨C-S-H晶種摻量的增大而提高。但在制備過(guò)程中發(fā)現(xiàn),當(dāng)水化硅酸鈣晶種質(zhì)量分?jǐn)?shù)高于5%時(shí)會(huì)導(dǎo)致水泥凈漿發(fā)生明顯的泌水現(xiàn)象,這與懸浮液中聚羧酸減水劑的大量存在有關(guān)。

      與單獨(dú)使用的納米水化硅酸鈣相比,晶種復(fù)合狀態(tài)下納米水化硅酸鈣質(zhì)量分?jǐn)?shù)為5%時(shí)的3d強(qiáng)度仍高于質(zhì)量分?jǐn)?shù)為3%的,并未出現(xiàn)強(qiáng)度降低現(xiàn)象。這是因?yàn)?,由于超?xì)鈣礬石晶種的使用,顆粒表面形成的鈣礬石包裹層形成速度更快但結(jié)晶相對(duì)粗大、結(jié)構(gòu)疏松,有利于后續(xù)水化硅酸鈣產(chǎn)物的形成和充填,可在一定程度上避免結(jié)晶內(nèi)應(yīng)力的形成和累積,相應(yīng)硬化水泥漿體的力學(xué)強(qiáng)度也就越高。總體而言,根據(jù)已有實(shí)驗(yàn)結(jié)果,對(duì)于水灰比為0.32的P.042.5山水水泥漿體,質(zhì)量分?jǐn)?shù)為0.4%的鈣礬石懸浮液與質(zhì)量分?jǐn)?shù)為5%的納米水化硅酸鈣復(fù)合情況下的晶種增強(qiáng)效果最佳。

      3結(jié)論

      1)采用溶液法得到結(jié)晶度高、純度大的超細(xì)鈣礬石和納米水化硅酸鈣,其D??分別為1423、117 nm,在水分散液中可長(zhǎng)時(shí)間保持穩(wěn)定懸浮狀態(tài)。

      2)采用超細(xì)鈣礬石和納米水化硅酸鈣作為復(fù)合晶種,可有效提高硅酸鹽系水泥的早期力學(xué)強(qiáng)度,效果優(yōu)于單獨(dú)使用超細(xì)鈣礬石或納米水化硅酸鈣的情況。

      3)在納米水化硅酸鈣摻量一定情況下,隨著超細(xì)鈣礬石摻量的增加,水泥凈漿早期強(qiáng)度先上升后下降;在超細(xì)鈣礬石摻量一定情況下,水泥凈漿早期強(qiáng)度隨納米水化硅酸鈣摻量的增大而提高,但水化硅酸鈣摻量超過(guò)5%會(huì)導(dǎo)致水泥凈漿發(fā)生明顯泌水現(xiàn)象。

      4)當(dāng)納米水化硅酸鈣質(zhì)量分?jǐn)?shù)為5%、鈣礬石質(zhì)量分?jǐn)?shù)為0.6%時(shí),水泥凈漿試塊的1d抗壓強(qiáng)度提高125%;納米水化硅酸鈣質(zhì)量分?jǐn)?shù)相同、鈣礬石摻量為0.4%時(shí),水泥凈漿試塊的3d抗壓強(qiáng)度提高57%。

      利益沖突聲明(Conflict of Interests)

      所有作者聲明不存在利益沖突。

      All authors disclose no relevant conflict of interests.

      作者貢獻(xiàn)(Author's Contributions)

      李佳全、佟鈺、冷雨虹和房延鳳進(jìn)行了方案設(shè)計(jì),李佳全、佟鈺、王剛、趙明宇和房延鳳參與了論文的寫作和修改。所有作者均閱讀并同意了最終稿件的提交。

      The study was designed by LI Jiaquan,TONGYu,LENG Yuhong and FANG Yanfeng.The manuscript waswritten and revised by LI Jiaquan,TONGYu,WANGGang,ZHAO Mingyu and FANG Yanfeng.Allauthorshave read the last version ofpaper and consented for submission.

      參考文獻(xiàn)(References)

      [1]姜梅芬,呂憲俊.混凝土早強(qiáng)劑的研究與應(yīng)用進(jìn)展[J].硅酸鹽通報(bào),2014,33(10):2527-2533.

      JIANG MF,LVXJ.Research and application progresses of concrete early strgenth agent[J].Bulletin of the Chinese CeramicSociety,2014,33(10):2527-2533.

      [2]鄭新國(guó),郁培云,謝永江,等.C-S-H早強(qiáng)劑研究現(xiàn)狀綜述[J].混凝土,2021(10):119-123.

      ZHENGXG,YUPY,XIE YJ,etal.Research status of hydrated calcium silicate early strength[J].Concrete,2021(10):119-123.

      [3]HE W,LIAO G.Effects of nano-C-S-H seed crystal on early-age hydration process of Portland cement [J].Fullerenes,Nanotubes,and Carbon Nanostructures,2022,30(3):365-372.

      [4]PLANKJ,SCHOENLEIN M,KANCHANASON V.Study on the early crystallization of calcium silicate hydrate(C-S-H)inthe presence of polycarboxylate superplasticizers[J].Journal of Organometallic Chemistry,2018,869:227-232.

      [5]wANGF,KONG XM,WANG DM,etal.The effects of nano-C-S-H with different polymer stabilizers on early cementhydration[J].Journal of the American Ceramic Society,2019,102(9):5103-5116.

      [6]FENGQ,MAO YH,PENGZG,etal.Properties of low-temperature early strength material for nano-C-S-H gel seed[J].Arabian Journal for Science and Engineering,2021,47(5):1-9.

      [7]馮燕芳,王偉山,鄭柏存.晶核型早強(qiáng)劑在低溫條件下的水化促進(jìn)作用[J].混凝土與水泥制品,2022(5):17-20,25.

      FENG YF,WANG WS,ZHENG B C.Hydration process on crystal nucleus based accelerator under low temperature envir-onments[J].China Concrete and Cement Products,2022(5):17-20,25.

      [8]劉華東,韓躍偉,吳鑫.C-S-H晶種早強(qiáng)劑的制備及低溫性能研究[J].新型建筑材料,2022,49(1):68-71.

      LIUHD,HAN Y W,WUX.Preparation of C-S-H seed early strengthening agent and rsearch on low temperature perform-ance[J].New Building Materials,2022,49(1):68-71.

      [9]LIHY,GUANXM,ZHANGXY,etal.Influence of superfine ettringite on the properties of sulphoaluminate cement-basedgrouting materials[J].Construction and Building Materials,2018,166:723-731.

      [10]CHENG JC,QIAN JS,TANGJY,etal.Effect of ettringite seed crystals on the properties of calcium sulphoaluminatecement[J].Construction and Building Materials,2019,207:249-257.

      [11]GARCIA-MATE M,ANGELES G,LEON-REINA L,etal.Effect of calcium sulfate source on the hydration of calcium sul-foaluminate eco-cement[J].Cement and Concrete Composites,2015,55:53-61.

      [12]FANG YF,ZHANG L M,LI L,etal.Preparation of nano-sized C-S-H and its acceleration mechanism on Portalndcement hydration at different temperatures[J].Materials,2023,16(9):16093484.

      [13]房延鳳,惠一心,張麗敏,等.10℃條件下納米C-S-H摻量對(duì)水泥早期水化的影響研究[J].沈陽(yáng)建筑大學(xué)學(xué)報(bào)(自然科學(xué)版),2024,40(3):505-512.

      FANG YF,HUIYX,ZHANG LM,etal.Effects of nano C-S-H content on early hydration of cement at 10 ℃[J].Journalof Shenyang Jianzhu University,2024,40(3):505-512.

      Early strengthening effect of synthetic ettringite and C-S-Hcomposited crystal seeds in cement

      LI Jiaquan1,TONG Yu1,LENG Yuhong1,WANG Gang2,ZHAO Mingyu1,F(xiàn)ANG Yanfeng1

      1.School of Materials Science and Engineering,ShenyangJianzhuUniversity,Shenyang 110168,China;

      2.The 2nd Construction Limited Company of China Construction Eighth Engineering Division,Jinan 250022,China

      Abstract

      Objective Utilizing crystal seeds is one of the most effective means to accelerate the hydration of cementitious materials,whichcan subsequently shorten the setting time of a certain cement or upgrade the mechanical strength of cement-based composites atan early age.With regard to Portland cement,calcium silicate hydrate(C-S-H)at the nanoscale is widely employed as a seed-ingcrystal,and some encouraging results have been obtained.Although hydrated calcium sulphoaluminate,i.e.,etringite(Al?O?-Fe?O?-tri,AFt),is also a major early-stage product of Portland cement,fewer studies have explored the seeding effect ofsuperfineetringite in the hydration of Portland cement,especially with the incorporation of nano C-S-H seeds.In this study,superfine ettringite and nanoscale C-S-H,prepared by the through-solution method,were mixed into the paste of ordinary Port-land cement to investigate the synergistic effect of these two kinds of crystal seeds on the cement hydration.

      Methods Superfine ettringite and nanoscale C-S-H,synthesized by a similar through-solution method but with different startingreactants,were characterized microstructurally using Zeta-potential analysis,X-ray diffraction(XRD),scanning electronmicroscopy(SEM),transmission electron microseopy(TEM),etc.Thereafter,superfine ettringite and nanoscale C-S-H in anaqueous system were employed as combined seeds in the preparation of paste blocks using ordinary Portland cement (ShanshuiP.042.5)as the cementitious material.The ettringite content varied within the range of 0~0.8%relative to the weight of P.042.5.The content of nanoscale C-S-H increased incrementally from O to 5%.Cubic blocks in the size of 20 mm×20 mm×20 mmwere cured under standard conditions(20±2)℃ in temperature and at least 90%in relative humidity).The compressivestrength of the cement paste at 1 and 3 d were investigated and discussed in details to reveal the synergistic effect between thesetwo kinds of crystal seeds and their influence on the mechanical properties of cement paste.

      Results and Discussion Both superfine ettringite and nanoscale C-S-H showed excellent dispersibility and long-term suspen-sion stability in water.Zeta-potential analysis showed that the mean diameters of ettringite and C-S-H in the aqueous systemwere 1423 nm and 117 nm.SEM revealed that ettringite particles,typicall separated from the suspension,showed a short rod-shaped crystalline morphology(Fig3).The length of these crystals was in the range of 200~600 nm and 50~80 nm in diameter,resulting in an aspect ratio(length-to-diameter ratio)of around 5~12.TEM revealed the microscopic morphologies of nanoscaleC-S-H with a diameter of about 270 nm,which was made up of flake-like nanostructures but with poor crystallinity.Superfineettringite and nanoscale C-S-H in aqueous suspension were employed as the combined seeds for the hydration of ordinary Port-land cement,Grade P.042.5,which was prepared with a water/cement weight ratio of 0.32,as shown in Fig.4.The C-S-Hsuspension maintained a consistent content of 5%relative to the weight of P.042.5.The compressive strength of the cementpaste at early ages increased and then decreased apparently as the superfine etringite content rose incrementally from O to0.8%.The maximum strength of the cement paste at I and 3 d was obtained with ettringite contents of 0.6%and 0.4%,respec-tively,which were 125%and 57%higher than those of the reference specimens.Inaddition,with the etringite content fixed at0.4%in weight,the l and 3 d compressive strength of the cement paste increased evidently with the increase in C-S-H content.However,further increases in C-S-H content beyond 5%resulted in poor workability,i.e.,serious bleeding in the cementpaste prepared with a waterlcement ratio of 0.32,thus discouraging the use of higher C-S-H content in the combined seeds forP.042.5.

      Conclusion The combined use of superfine ettringite and nanoscale C-S-H evidently improves the mechanical strength of P.042.5 cement at early ages,which is apparently higher than using either superfine etringite or nanoscaled C-S-H as the crystalseedalone.The experimental results suggest a strong synergistic effect between superfine etringite and nanoscale C-S-H,whichimproves the compressive strength of ordinary Portland cement at early ages.

      Keywords:ettringite;calcium silicate hydrate(C-S-H);crystal seeds;portlandcement;early strength

      (責(zé)任編輯:孫媛媛)

      猜你喜歡
      晶種水泥
      水泥封心
      晶種制備的在線表征及鈦液水解動(dòng)力學(xué)研究
      晶種對(duì)合成小晶粒SAPO-34分子篩的影響
      鈦白粉生產(chǎn)中晶種制備工藝文獻(xiàn)綜述及機(jī)理分析
      四川化工(2021年6期)2022-01-12 13:41:06
      水泥像被踢死事件
      微波輔助加熱法制備晶種用于高濃度硫酸氧鈦溶液水解制鈦白研究
      水泥攪拌樁在城市道路軟基處理應(yīng)用中的思考
      化腐朽為神奇—本土創(chuàng)造—水泥環(huán)保燈
      水泥刨花板
      蒸汽相轉(zhuǎn)化和晶種二次生長(zhǎng)法制備不對(duì)稱NaA分子篩膜層
      富锦市| 泰州市| 洪江市| 海晏县| 林甸县| 嫩江县| 洛阳市| 错那县| 红安县| 牡丹江市| 镇安县| 商洛市| 洪湖市| 即墨市| 吴忠市| 五常市| 内乡县| 清涧县| 容城县| 华亭县| 隆尧县| 岳西县| 玉林市| 宝鸡市| 敦煌市| 湾仔区| 沙湾县| 乌鲁木齐县| 锡林浩特市| 台安县| 巴彦淖尔市| 抚松县| 阳高县| 敦煌市| 章丘市| 阜南县| 巴彦县| 关岭| 迭部县| 廉江市| 布尔津县|