• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      基于納米WO3半導(dǎo)體材料的H2氣體傳感器的研究現(xiàn)狀

      2024-09-29 00:00:00徐紅燕李根
      中國(guó)粉體技術(shù) 2024年5期

      摘要:【目的】梳理對(duì)氫氣氣體響應(yīng)快、靈敏度高的氣體傳感器研究現(xiàn)狀,為研究高靈敏度、高選擇性、易制備的H2氣體傳感器提供思路?!狙芯楷F(xiàn)狀】納米WO3材料作為N型半導(dǎo)體,具有寬帶隙、熱穩(wěn)定性高、易合成等優(yōu)點(diǎn),廣泛應(yīng)用于氣體傳感器領(lǐng)域;WO3基氫氣傳感器發(fā)展迅速,綜述近年來國(guó)內(nèi)外WO3基氫氣傳感器的研究成果,概括WO3材料氫氣傳感器制備技術(shù)、形貌特征、氣敏性能的研究成果,總結(jié)上述成果的優(yōu)勢(shì)與現(xiàn)階段的局限性;WO3納米材料由于獨(dú)特的結(jié)構(gòu)特性,存在多種提高其性能的方式,包括形貌控制、異質(zhì)結(jié)構(gòu)筑、貴金屬摻雜;重點(diǎn)闡述WO3納米材料不同調(diào)整修飾技術(shù)的基本原理?!菊雇縒O3基氫氣傳感器的發(fā)展勢(shì)頭較好,提升性能的方式靈活多樣,制備出的傳感器氣敏性能優(yōu)異,WO3基氫氣傳感器在未來具有深厚的發(fā)展?jié)摿Α?/p>

      關(guān)鍵詞:氣體傳感器;氧化物半導(dǎo)體;三氧化鎢

      中圖分類號(hào):TB4;TQ324.8文獻(xiàn)標(biāo)志碼:A

      引用格式:

      徐紅燕,李根.基于納米WO3半導(dǎo)體材料的H2氣體傳感器的研究現(xiàn)狀[J].中國(guó)粉體技術(shù),2024,30(5):9-20.

      XU Hongyan,LI Gen.Research status of H2 gas sensors basedonnano WO3 semiconductor materials[J].China Powder Science and Technology,2024,30(5):9?20.

      氫(H)在地球儲(chǔ)量豐富,被廣泛應(yīng)用于化學(xué)和煉油工業(yè)。氫氣(H2)被認(rèn)為是最環(huán)保的能源,H2的使用可有效減少溫室氣體的排放,是全球能源系統(tǒng)過渡的理想選擇。H2是一種無色無味色的還原性氣體,無法被人類感官直接感知,密度比空氣小得多,是高度易燃的氣體。常溫下,H2性質(zhì)穩(wěn)定,不易與其他物質(zhì)發(fā)生反應(yīng),但當(dāng)外部條件發(fā)生變化,如加熱、使用催化劑時(shí),與空氣中的氧氣可以形成爆炸性混合物。在實(shí)際應(yīng)用中,必須考慮爆炸范圍(體積分?jǐn)?shù)為4%~74%)、火焰轉(zhuǎn)播速度(2.1 m/s)、最低點(diǎn)燃能量(0.02 mJ)[1]。制備高效穩(wěn)定的H2傳感器,在H2泄露早期快速檢測(cè)至關(guān)重要。

      金屬氧化物半導(dǎo)體(MOS)作為氣體傳感器的材料,由于氣敏性能優(yōu)秀、使用穩(wěn)定性高、成本較低等特征,滿足了優(yōu)秀傳感器的關(guān)鍵要求,被廣泛應(yīng)用于檢測(cè)各類氣體[2-5]。經(jīng)過長(zhǎng)時(shí)間的發(fā)展,氣敏傳感器已經(jīng)到了成熟期,包括SnO2、ZnO、In2O3、WO3、Fe2O3等[6-10]。WO3作為一種常見的金屬氧化物半導(dǎo)體材料,在氣體傳感器、光催化領(lǐng)域應(yīng)用廣泛。WO3是一種典型的N型半導(dǎo)體,具有寬帶隙(禁帶寬度為2.6~2.8 eV),熱穩(wěn)定高,易于合成等優(yōu)點(diǎn),是傳感器領(lǐng)域最有潛力的材料之一[11]。WO3材料具有靈活的結(jié)構(gòu)特性,可以在多個(gè)方面提高其氣敏性能,如貴金屬催化、構(gòu)建異質(zhì)結(jié)等。

      本文中將近年來國(guó)內(nèi)外報(bào)道的WO3半導(dǎo)體H2氣體傳感器進(jìn)行分類總結(jié),為研究高靈敏度、高選擇性、易制備的H2氣體傳感器提供新思路。

      1 WO3材料的傳感機(jī)制

      1.1耗盡層模型

      半導(dǎo)體材料的電導(dǎo)率介于導(dǎo)體材料與絕緣體材料之間,隨溫度升高,半導(dǎo)體材料內(nèi)部載流子數(shù)目增多,因此其電阻會(huì)隨著溫度的升高而降低[12]。其中N型半導(dǎo)體的載流子為電子,P型半導(dǎo)體的載流子為空穴。由Masetti等[13]提出了計(jì)算載流子遷移率的經(jīng)驗(yàn)公式,半導(dǎo)體材料電阻率與載流子濃度和載流子遷移率滿足以下關(guān)系

      ρ=1/nqv,(1)

      式中:ρ為電阻率;n為載流子濃度;q為載流子電量;v為載流子的移動(dòng)速度[14]。

      半導(dǎo)體氣敏傳感器的機(jī)制主要以電阻變化來解釋。對(duì)于金屬氧化物半導(dǎo)體,材料表面吸附的氧離子對(duì)氣敏性能有重大影響。以N型半導(dǎo)體WO3為例,當(dāng)WO3氣敏元件暴露在空氣中時(shí),空氣中的氧分子吸附在材料表面,吸附的氧分子會(huì)從材料的導(dǎo)帶中捕獲電子,形成化學(xué)吸附氧離子(O2-(ads)、O-(ads)、O2-(ads)),當(dāng)半導(dǎo)體材料表面溫度在147℃以下時(shí),表面吸附氧離子主要以O(shè)2-形式存在;當(dāng)溫度在147~397℃時(shí),表面吸附氧離子主要以O(shè)-形式存在;當(dāng)溫度大于397℃時(shí),主要以O(shè)2-形式存在,3種吸附氧離子從金屬氧化物表面捕獲電子,在材料表面形成電子耗盡層(EDL),并且在晶界處形成高勢(shì)壘,使材料電阻增大[15-18]。注入H2后,氫原子與化學(xué)吸附氧發(fā)生氧化還原反應(yīng),自由電子釋放回導(dǎo)帶中,導(dǎo)致電子耗盡層變薄,晶界勢(shì)壘降低,電阻變小,重新回到空氣中時(shí),傳感器恢復(fù)到原來高電阻的狀態(tài),耗盡層模型機(jī)制示意圖如圖1所示。

      2基于納米WO3半導(dǎo)體材料的H2氣體傳感器

      1967年,Shaver第一次將WO3材料用于氣敏傳感器,經(jīng)過幾十年的研究發(fā)展其氣敏性能與應(yīng)用范圍取得了巨大的進(jìn)步[20-21]。WO3由于本身在空氣中電阻較其他氧化物半導(dǎo)體材料大,對(duì)于檢測(cè)H2這類還原性氣體電阻變化明顯,但是存在工作溫度高、選擇性差、靈敏度低等問題[22]。一般通過摻雜貴金屬、構(gòu)建異質(zhì)結(jié)等方法提高其氣敏性能。本文中將WO3基H2傳感器分為純相材料、貴金屬摻雜材料、構(gòu)建異質(zhì)結(jié)復(fù)合材料3大類,對(duì)近些年的研究成果進(jìn)行梳理介紹。

      2.1純相材料

      通常情況下,WO3純相材料在較低溫度下對(duì)H2的響應(yīng)低,達(dá)不到實(shí)際應(yīng)用標(biāo)準(zhǔn),但是非化學(xué)計(jì)量物WO2.72因具有較強(qiáng)的近紅外光吸收性能和較高的導(dǎo)電性,在光熱轉(zhuǎn)化、水蒸發(fā)、光催化、氣體傳感器等各個(gè)研究領(lǐng)域受到了極大的重視[23]。它具有W5+和W6+混合價(jià)態(tài),缺陷結(jié)構(gòu)不尋常,在WO3的其他亞氧化物中氧空位數(shù)量最高。這種物質(zhì)是通過WO3煅燒合成的,并且在室溫下具有高效穩(wěn)定的H2傳感性能。Wu等[24]制備了WO2.72納米粒子。將WO3納米顆粒通過離心均勻分散并在溫度為60℃下真空干燥,在升溫速率為10℃/min和氣流量為50 mL/min的條件下,用管式爐在一氧化碳?xì)夥障潞铣蛇€原WO3納米顆粒。在溫度為650℃下煅燒30 min,最終得到深藍(lán)色的WO2.72納米顆粒粉末,通過場(chǎng)發(fā)射掃描電子顯微鏡(field emission scanning electron microscope,F(xiàn)ESEM)、X射線衍射(X?ray diffractometer,XRD)、拉曼光譜(Raman spectroscopy,RAM)對(duì)材料進(jìn)行表征。納米顆粒呈現(xiàn)球形狀,WO2.72高分辨掃描電鏡圖如圖2所示。

      利用異丙醇稀釋合成的WO2.72納米粒子,自旋涂覆在Si-SiO2基板上,然后用多指交叉的Pt電極濺射制備氣體傳感器[25-26]。所制備的WO2.72納米顆?;鶄鞲衅骶哂袃?yōu)異的H2傳感能力,在室溫下對(duì)氣體體積分?jǐn)?shù)為50%的H2響應(yīng)值達(dá)到27,相同條件下WO3的響應(yīng)值僅為4.8。此外,制作方法簡(jiǎn)單、快捷,傳感器還具有優(yōu)秀的長(zhǎng)期穩(wěn)定性和循環(huán)穩(wěn)定性,在相對(duì)濕度較大時(shí)仍能保持20以上的響應(yīng)值,這對(duì)實(shí)際應(yīng)用至關(guān)重要[27]。

      2.2摻雜貴金屬

      貴金屬摻雜是提高氣敏性能常用的手段之一,主要通過化學(xué)敏化與電子敏化提高傳感器的響應(yīng),特定金屬與某種氣體的耦合作用強(qiáng),也會(huì)提高傳感器的選擇性。WO3半導(dǎo)體材料摻雜鈀(Pd)對(duì)H2的檢測(cè)有顯著提高,研究表明,與純相WO3半導(dǎo)體材料相比,摻雜后其工作溫度降低、靈敏度提高、檢測(cè)極限值降低、恢復(fù)、響應(yīng)時(shí)間縮短,這得益于Pd具有吸附H2分子并將解離為H原子的獨(dú)特能力,并且Pd與H原子結(jié)合后,功函數(shù)減小,在較低的肖特基勢(shì)壘的推動(dòng)下,會(huì)有更多的電子注入到金屬氧化物中,導(dǎo)致材料電阻進(jìn)一步降低[28-31]。

      金屬氧化物形貌的調(diào)控對(duì)氣敏性能有一定的影響,不同形貌WO3的比表面積,暴露晶面不相同,導(dǎo)致與目標(biāo)氣體的接觸面積、活性位點(diǎn)存在差異。Lv等[32]以鎢酸與正庚烷為原料采用兩步水熱法制備WO3納米片,將WO3與Pd(acac)2按一定比例混合攪拌,將制備好的WO3取質(zhì)量為150 mg和一定量的Pd(acac)2(質(zhì)量分別為1.2、3.6、18、90 mg)混合,加入體積為5 mL苯中磁力攪拌10 min,然后使用旋轉(zhuǎn)蒸煮器在溫度為55℃時(shí)除去溶劑。收集固體,與體積為5 mL苯混合,磁力攪拌10 min,然后在旋轉(zhuǎn)蒸發(fā)器中干燥。重復(fù)這一步驟,得到的固體在溫度為400℃氬氣管式爐中煅燒時(shí)間1h。最終退火得到Pd-WO3復(fù)合材料,并將該納米材料涂覆在氧化鋁陶瓷管上形成薄膜制成氣敏傳感器元件[32]。隨著Pd摻雜量的增加,Pd納米顆粒的密度增加且尺寸增大,通過測(cè)試復(fù)合材料的氣敏性能,復(fù)合材料的最佳工作溫度降至160℃,在溫度160℃下檢測(cè)下限降至氣體體積分?jǐn)?shù)為20%,對(duì)氣體體積分?jǐn)?shù)為50%H2響應(yīng)、恢復(fù)時(shí)間縮短至5、7 s。Pd負(fù)載量對(duì)氣敏性能的影響可以用氧空位理論解釋,適度的粒徑與分散度可獲得最佳性能。

      Wang等[33]采用水熱法利用鎢酸鈉與乙醇為原料,采用鹽酸調(diào)節(jié)溶液pH,pH分別為0.5、1.0、1.5、2.0,成功制備了WO3納米花。在合成的WO3的基礎(chǔ)上,采用浸漬還原法使用氯化鈀(PdCl2)制備Pd-WO3納米材料[34]。將質(zhì)量為100 mg的WO3樣品加入到乙醇溶液中,再加入濃度為0.068 mol/L的PdCl2溶液中,攪拌40 min,得到不同負(fù)載濃度的Pd(原子分?jǐn)?shù)分別為0%,0.25%,0.50%,0.75%,1.00%),然后緩慢攪拌,隨后加入濃度為0.1 mol/L抗壞血酸(C6H8O6)溶液到混合溶液中。接下來,將溶液離心并用無水乙醇洗滌。最后得到銀灰色產(chǎn)物,在溫度為80℃時(shí)干燥,時(shí)間為24 h,得到最終樣品。樣品為直徑1~2μm的層狀球形結(jié)構(gòu),每個(gè)球狀結(jié)構(gòu)由不規(guī)則納米片組成,納米片表面負(fù)載Pd納米顆粒,原子分?jǐn)?shù)為0.50%Pd-WO3的納米片相比純WO3納米片要薄,可能歸因于Pd納米顆粒會(huì)影響WO3納米片的生長(zhǎng)方向。

      經(jīng)過氣敏性能測(cè)試發(fā)現(xiàn),原子分?jǐn)?shù)為0.50%的Pd-WO3納米材料的最佳溫度為150℃,在此溫度下對(duì)氣體體積分?jǐn)?shù)為500%的H2響應(yīng)時(shí)間縮短至3 s,對(duì)氣體體積分?jǐn)?shù)為1 000%的H2響應(yīng)值高達(dá)8 658.98,遠(yuǎn)高于其他還原性氣體,具有優(yōu)秀的選擇性,并且氣敏試件表現(xiàn)出良好的穩(wěn)定性。

      Han等[35]通過溶膠-凝膠法逐層沉積成功制備了多層多孔Pd-WO3納米復(fù)合膜。該傳感器對(duì)氣體體積分?jǐn)?shù)為1 000%H2的響應(yīng)時(shí)間為7 s,靈敏度為956.5,是原始WO3薄膜的346.5倍。此外,Esfandiar等[36]利用受控水熱工藝將帶狀Pd-WO3結(jié)合到部分還原的氧化石墨烯(PRGO)片上,形成具有高表面積的層狀Pd-WO3-PRGO復(fù)合材料。PRGO不僅可以顯著提高復(fù)合材料的導(dǎo)電性,還可以增加復(fù)合材料的孔隙率,獲得更多的活性位點(diǎn),更快的吸附(解吸)。Pd-WO3-PRGO傳感器在低溫下可以檢測(cè)到大范圍(氣體體積分?jǐn)?shù)為20%~10 000%)的H2,且響應(yīng)值大,響應(yīng)、恢復(fù)時(shí)間快。

      Zhou等[37]開發(fā)了一種由納米棒組裝而成的三維海膽狀Pd-W18O49分層納米結(jié)構(gòu)。新型的納米結(jié)構(gòu)具有較大的表面積、豐富的氧空位以及Pd納米顆粒的催化活性,使得Pd-W18O49傳感器具有優(yōu)異的H2傳感性能,在溫度為100℃下對(duì)氣體體積分?jǐn)?shù)為1 000%H2的響應(yīng)值為1 600,響應(yīng)、恢復(fù)時(shí)間分別為60、4 s。

      Mobtakeri等[38]采用射頻磁控濺射技術(shù),在生長(zhǎng)壓力分別為0.6、3.3、6.6、13.3 Pa等4種條件時(shí)生長(zhǎng)WS2薄膜。隨著生長(zhǎng)壓力從0.6 Pa增加到13.3 Pa,薄膜從相對(duì)金屬變?yōu)榻咏瘜W(xué)計(jì)量的WS2薄膜。研究了沉積態(tài)WS2薄膜在O2存在下的熱氧化過程[39]。研究表明,在溫度為400℃時(shí),WS2膜轉(zhuǎn)變?yōu)閃O3膜[40]。在生長(zhǎng)壓力為6.6 Pa時(shí),傳感器在溫度200℃、氣體體積分?jǐn)?shù)為1 000%H2氣體條件下的響應(yīng)速度提高了586倍,恢復(fù)、響應(yīng)時(shí)間分別為360、90 s。此外,傳感器的檢測(cè)極限為氣體體積分?jǐn)?shù)為10%。研究表明,硫完全轉(zhuǎn)化為氧化物材料,不同生長(zhǎng)壓力的WO3的FESEM圖像如圖3所示。由圖可知,經(jīng)過氧化后,樣品出現(xiàn)球形結(jié)構(gòu),隨著生長(zhǎng)壓力增大,納米結(jié)構(gòu)的尺寸增大,與S100相比,S50樣品中可以看到更彎曲的納米壁。樣品都出現(xiàn)均勻致密的球狀結(jié)構(gòu)。

      除了Pd摻雜,Pt摻雜材料也廣泛應(yīng)用于H2的檢測(cè)[41]。Pt可以在室溫下有效解離H原子,Horprathum等[42]通過掠角沉積方法成功制備了WO3納米棒。Pt-WO3納米微帶SEM圖像如圖4所示。在溫度200℃時(shí),負(fù)載Pt的WO3納米棒傳感器對(duì)氣體體積分?jǐn)?shù)為3 000%H2的高響應(yīng)值為2.2×105,而原始WO3納米棒傳感器幾乎沒有響應(yīng),說明Pt修飾是促進(jìn)H2檢測(cè)的有效方法。此外,最佳負(fù)載量的Pt-WO3傳感器在溫度150℃時(shí)對(duì)氣體體積分?jǐn)?shù)為150%H2具有高靈敏度,并且在多種還原性氣體中對(duì)H2具有高選擇性。Pt的化學(xué)敏化作用使H2分子解離成H原子,并通過電子敏化(溢出效應(yīng))與WO3發(fā)生反應(yīng),降低了耗盡層寬度和電阻。Fan等[43]通過蒸發(fā)法和濺射工藝開發(fā)了一種Pt修飾的WO3納米棒傳感器。Pt修飾的WO3傳感器對(duì)H2的響應(yīng)速度非???,在溫度110℃時(shí)響應(yīng)速度為80 ms/min。Nishijima等[44]利用納秒脈沖激光燒蝕技術(shù)在二氧化硅玻璃襯底上沉積了Pt-WO3納米微粉末薄膜。對(duì)H2檢測(cè)的檢測(cè)下限達(dá)到氣體體積分?jǐn)?shù)為10%。

      2.3構(gòu)建異質(zhì)結(jié)構(gòu)

      異質(zhì)結(jié)是2種不同金屬氧化物界面處形成的結(jié)構(gòu),包含同型異質(zhì)結(jié)和異型異質(zhì)結(jié)兩種,是提高材料氣敏性能常用的手段之一。由于不同金屬氧化物的功函數(shù)不同,接觸后為平衡二者費(fèi)米能級(jí),發(fā)生了電荷轉(zhuǎn)移與形成勢(shì)壘(耗盡)層,這是提高氣敏性能的積極因素。

      Wan等[34]采用簡(jiǎn)單水熱法合成WS2,將合成的WS2樣品通過控制退火溫度,在溫度400、350、300℃時(shí)發(fā)生不同程度氧化,得到WO3-WS2復(fù)合材料,將合成的WO3-WS2納米復(fù)合材料分別命名為400℃-WO3-WS2、350℃-WO3-WS2和300℃-WO3-WS2。然后在溫度300℃時(shí)將WO3-WS2復(fù)合材料浸漬在不同濃度的PdCl2溶液中,得到了Pd-WO3-WS2三元復(fù)合材料,不同生長(zhǎng)條件WO3-WS2、Pd-WO3-WS2納米復(fù)合材料FESEM顯微圖如圖5所示。由圖可知,在溫度為300、350℃較低煅燒溫度下,WO3納米顆粒緊密附著在WS2-WO3納米花結(jié)構(gòu)上,圖中使用橙色虛線框標(biāo)記,復(fù)合后增大了材料的比表面積,可以提供更多的活性位點(diǎn),促進(jìn)H2的吸附與脫附。隨著煅燒溫度升高至400℃,如圖7(d)所示,WO3納米顆粒含量顯著增加,并且由于氧化加劇,納米花結(jié)構(gòu)逐漸退化。由圖7(e)、(f)可知,原子分?jǐn)?shù)為2%的Pd-WO3-WS2表面Pd密度小于原子分?jǐn)?shù)為5%Pd-WO3-WS2,這可能成為影響氣敏性能的因素。

      WO3-WS2復(fù)合材料形成p-n異質(zhì)結(jié),由于Pd與WO3-WS2之間形成肖特基勢(shì)壘,促進(jìn)了Pd與半導(dǎo)體之間的電子流動(dòng),補(bǔ)充了被氧分子捕獲的電子。在測(cè)試階段,Pd與空氣接觸導(dǎo)致部分被氧化為PdO,由于WS2(功函數(shù)Ф=4.95 eV)、WO3(功函數(shù)Ф=4.40 eV)和PdO(功函數(shù)Ф=7.90 eV)具有不同的功函數(shù),形成了類似三明治的p-n-p異質(zhì)結(jié),有效地在界面和處積累了更多的自由電子。測(cè)試發(fā)現(xiàn),原子分?jǐn)?shù)為2%的Pd-WO3-WS2三元傳感材料,在最佳工作溫度為125℃時(shí)的響應(yīng)率為4 227.35,對(duì)氣體體積分?jǐn)?shù)為1 000%的H2響應(yīng)、恢復(fù)時(shí)間分別為1、25 s,此外,傳感器具有良好的重復(fù)性、長(zhǎng)期性能穩(wěn)定性和優(yōu)秀的選擇性。

      Li等[45]研究制備了WO3-TiO2復(fù)合材料作為H2傳感元件,并將WO3與TiO2結(jié)合產(chǎn)生的異質(zhì)結(jié)效應(yīng)應(yīng)用于室溫下的H2傳感。采用溶膠-凝膠法制備了WO3-TiO2復(fù)合材料,TiO2與不同生長(zhǎng)條件WO3-TiO2的高分辨透射電子顯微鏡(transmission electron microscope,TEM)圖像如圖6所示。由圖6(a)可知,TiO2納米顆粒堆疊形成2種類型的孔,分別為煅燒后表面活性劑蒸發(fā)形成的大孔,以及自組裝產(chǎn)生的TiO2堆疊形成的小孔。隨著WO3含量的增加,納米顆粒發(fā)生團(tuán)聚,特別是當(dāng)WO3原子分?jǐn)?shù)為20%時(shí),發(fā)生嚴(yán)重團(tuán)聚,復(fù)合材料中的小孔幾乎消失。并用XRD、能量色散光譜儀(energy disperse spectrometer,EDS)和TEM進(jìn)行了表征[46]。得到了一個(gè)中孔WO3-TiO2異質(zhì)結(jié),比表面積高達(dá)109.8 m2/g。質(zhì)量分?jǐn)?shù)為4.0%WO3-TiO2傳感器具有高選擇性、快速響應(yīng)和恢復(fù)、穩(wěn)定性好、重復(fù)性好、室溫下高響應(yīng)(響應(yīng)值高達(dá)5.62)等良好的氫傳感性能。在低工作溫度下具有良好的傳感性能,使質(zhì)量分?jǐn)?shù)為4.0%WO3-TiO2在H2傳感器在室溫下有應(yīng)用的可能性。

      Ding等[47]制備WO3-CoO P-N異質(zhì)結(jié)用于H2傳感。利用二水鎢酸鈉(Na2WO4·2H2O)與油酸、甘油水熱法制備WO3納米板,純WO3與不同生長(zhǎng)條件的WO3-CoO的SEM圖像如圖7所示。由圖可知,純WO3納米材料表面光滑,在保持WO3納米顆粒質(zhì)量恒定下,將不同物質(zhì)的量比的CoO納米結(jié)構(gòu)沉積到WO3表面,由圖7(b)—(f)可知,低物質(zhì)的量比情況下,復(fù)合材料保持原始WO3的結(jié)構(gòu)形態(tài),但光滑表面開始變得粗糙,這與Co的濃度成正比,隨著CoO物質(zhì)的量比繼續(xù)上升,復(fù)合材料的厚度與粗糙度進(jìn)一步提升,但WO3的整體形貌保持不變。使用W原子o與Co原子不同物質(zhì)的量比(分別為5:0、5:1、5:2、5:3、5:4、5:5),使用WO3納米板與CoCl2·6H2O等原料攪拌后2次水熱,得到WO3-Co復(fù)合材料。結(jié)果表明,WO3-CO傳感器(物質(zhì)的量比為5:4)在溫度為250℃下對(duì)氣體體積分?jǐn)?shù)為100%的H2的響應(yīng)值為39,比對(duì)WO3-CoO傳感器(物質(zhì)的量比為5:0)的效率和靈敏度提高8倍。這些結(jié)果可以歸結(jié)為2個(gè)方面。一方面,WO3-CoO異質(zhì)結(jié)結(jié)構(gòu)的形貌特征提供了相當(dāng)大的比表面積,從而提高了有效的吸收和反應(yīng)過程[48-51];另一方面,典型的異質(zhì)結(jié)結(jié)構(gòu)在提高WO3-CoO傳感材料的響應(yīng)和選擇性方面起著主要作用,通過異質(zhì)結(jié)-勢(shì)壘耗盡模型和能帶彎曲提高了載流子傳輸效率,實(shí)現(xiàn)了提高固有電阻(Ra)和降低測(cè)試電阻(Rg)的目標(biāo)[52-55]。此外,WO3-CoO異質(zhì)結(jié)的制備具有相當(dāng)大的潛力,是未來實(shí)現(xiàn)高傳感性能氫傳感器實(shí)際應(yīng)用的一種簡(jiǎn)便技術(shù)。

      3結(jié)論

      WO3材料是傳感器領(lǐng)域最有潛力的材料之一,也是近些年的傳感器研究熱點(diǎn)。本文中系統(tǒng)的綜述了WO3納米材料及復(fù)合材料的制備,對(duì)H2氣體檢測(cè)等的研究。WO3材料具有靈活的結(jié)構(gòu)特性,可以在多個(gè)方面提高氣敏性能,如形貌控制、晶面調(diào)整、貴金屬催化、構(gòu)建異質(zhì)結(jié)等。本文中著重闡述了貴金屬摻雜、構(gòu)建異質(zhì)結(jié)來制備WO3復(fù)合材料的方法,降低了傳感器的工作溫度,對(duì)H2濃度的檢測(cè)下限不斷降低,響應(yīng)時(shí)間縮短,復(fù)合材料對(duì)H2的氣敏性能有著顯著提升。WO3基納米材料在氣體傳感領(lǐng)域還存在著一些問題,如工作溫度還是偏高,氣體選擇性有待提高,穩(wěn)定性、功耗、創(chuàng)新設(shè)計(jì)等方面還有很大的研究空間。

      利益沖突聲明(Conflict of Interests)

      所有作者聲明不存在利益沖突。

      All authors disclose no relevant conflict of interests.

      作者貢獻(xiàn)(Authors’Contributions)

      徐紅燕和李根進(jìn)行了方案設(shè)計(jì),并參與了論文的寫作與修改。所有作者均閱讀并同意了最終稿件的提交。

      The study was designed by XU Hongyan and LI Gen.The manuscript was written and revised by XU Hongyan and LI Gen.Both authors have read the final version of paper and consented to its submission.

      參考文獻(xiàn)(References)

      [1]HAN S I,KUMAR M,DUY L T,et al.Effect of structural changes of Pd/WO3 thin films on response direction and rate in hydrogen detection[J].Sensors and Actuators B:Chemical,2024,404:135259.

      [2]YAN S H,CHEN Z R,WANG Y,et al.The ammonia modified ZIF-8@SnO2 core-shell nanosheets for improved the sensiti-vity and selectivity of NO2[J].Sensors and Actuators B:Chemical,2024,409:135613.

      [3]ZHANG M,LV X T,WANG T Q,et al.CuO-based gas sensor decorated by polyoxometalates electron acceptors:From constructing heterostructure to improved sensitivity and fast response for ethanol detection[J].Sensors and Actuators B:Chemical,2024,136016.

      [4]張玉嬌.三氧化鎢基納米材料的制備與NO2敏感性能研究[D].哈爾濱:黑龍江大學(xué),2020.

      ZHANG Y J.Preparation of tungsten trioxide-based nanomaterials and study on NO2 sensitivity[D].Harbin:Helongjiang University,2020.

      [5]李成龍.氧化鎢基納米材料的合成、表征及氣敏性能研究[D].長(zhǎng)春:長(zhǎng)春理工大學(xué),2021.

      LI C L.Synthesis、characterization and gas sensitive properties of tungsten trioxide nanomaterials[D].Changchun:Changc-hun University of Science and Technology,2021.

      [6]陳政潤(rùn).ZIF-8/ZIF-7@SnO2氣敏材料的合成及其性能研究[D].濟(jì)南:濟(jì)南大學(xué),2020.

      CHEN Z R.Study on synthesis and properties of ZIF-8/ZIF-7@SnO2 gas sensing materials[D].Jinan:University of Jinan,2020.

      [7]JI P,HU X F,TIAN R B,et al.Atom-economical synthesis of ZnO@ZIF-8 core-shell heterostructure by dry gel conversion(DGC)method for enhanced H2 sensing selectivity[J].Journal of Materials Chemistry C,2020,8(8):2927-2936.

      [8]李繼男,顏士航,李根,等.核殼結(jié)構(gòu)ZIF-8@In2O3納米棒的制備及其對(duì)NO2選擇性的提升作用[J].中國(guó)粉體技術(shù),2023,29(3):101-109.

      LI J N,YAN S H,LI G,et al.Synthesis of core-shell ZIF-8@In2O3 nanorods and enhancement of selectivity to NO2[J].China Powder Science and Technology,2023,29(3):101-109.

      [9]朱鵬升,鄧宗明,湯云揚(yáng),等.WO3基的氣敏傳感器的研究現(xiàn)狀及氣敏性能提升的機(jī)理分析[J].云南大學(xué)學(xué)報(bào)(自然科學(xué)版),2023,45(2):456-464.

      ZHU P S,DENG Z M,TANG Y Y,et al.Research status of WO3-based gas sensor and mechanism analysis of gas-sensitiveperformance improvement[J].Journal of Yunnan University(Natural Sciences Edition),2023,45(2):456-464.

      [10]葉琴.ZIF-8/ZIF-71@α-Fe2O3材料的合成及其氣敏特性研究[D].濟(jì)南:濟(jì)南大學(xué),2022.

      YE Q.Study on synthesis and gas-sensitive properties of ZIF-8/ZIF-71@α-Fe2O3 materials[D].Jinan:University of Jinan,2022.

      [11]暴力文.基于WO3納米結(jié)構(gòu)的氣體傳感器研究[D].??冢汉D洗髮W(xué),2022.

      BAO L W.Research on gas sensor based on WO3 nanostructure[D].Haikou:Hainan University,2022.

      [12]劉彩云.ZIF-8/ZIF-71@α-MoO3材料的合成及其氣敏特性研究[D].濟(jì)南:濟(jì)南大學(xué),2021.

      LIU C Y.Study on synthesis and gas-sensitive properties of ZIF-8/ZIF-71@α-MoO3 materials[D].Jinan:University ofJinan,2021.

      [13]MASETTI G,SEVERI M,SOLMI S.Modeling of carrier mobility against carrier concentration in arsenicphosphorus,and born-doped silicon[J].Electron devices IEEE transactions on,1983,30(7):764-769.

      [14]SHI Y,LI X,SUN X F,et al.Strategies for improving the sensing performance of In2O3-based gas sensors for ethanol detec?tion[J].Journal of alloys and compounds,2023,963:171190.

      [15]LINCY H,JOBE PRABAKAR P C,JOSHUA GNANAMUTHU S,et al.Ammonia sensing performance of Ni doped-WO3 nano particles prepared by simple hydrothermal method at room temperature[J].Materials Today:Proceedings,2023,80:958-964.

      [16]SUN C X,LIU H Y,SHAO J K,et al.PdO-modified ZnSnO3 hollow rounded cubes for high-performance TEA gas sensors at low temperature[J].Sensors and Actuators B:Chemical,2023,393:134339.

      [17]JIANG B,ZHOU T T,ZHANG L,et al.Separated detection of ethanol and acetone based on SnO2-ZnO gas sensor with improved humidity tolerance[J].Sensors and Actuators B:Chemical,2023,393:134257.

      [18]ZHAO R,MA T T,ZHAO S,et al.Uniform and stable immobilization of metal-organic frameworks intochitosan matrix for enhanced tetracycline removal from water[J].Chemical Engineering Journal,2020,382:122893.

      [19]ALAGHMANDFARD A,F(xiàn)ARDINDOOST S,F(xiàn)RENCKEN A L,et al.The next generation of hydrogen gas sensors based on transition metal dichalcogenide-metal oxide semiconductor hybrid structures[J].Ceramics International,2024,37:100532.

      [20]FANG H R,SHANG E Y,WANG D,et al.Achemiresistive ppt level NO2 gas sensor based on CeO2 nanoparticles modified CuO nanosheets operated at 100℃[J].Sensors and Actuators B:Chemical,2023,393:134277.

      [21]LIN M H,HUANG Y,LIU Y B,et al.A durable gas sensor based on AgVO3/TiO2 nanoheterostructures to ethanol gas[J].Journal of Alloys and Compounds,2023,961:171103.

      [22]CHANG X T,XU S,LIU S,et al.Highly sensitive acetone sensor based on WO3 nanosheets derived from WS2 nanopar?ticles with inorganic fullerene-like structures[J].Sensors and Actuators B:Chemical,2021,343:130135.

      [23]LI X X,F(xiàn)U L,CHEN F,et al.Innovations in WO3 gas sensors:Nanostructure engineering,functionalization,and future perspectives[J].Heliyon,2024,10(6):e27740.

      [24]SHRISHA,WU C M,MOTORA K G,et al.Highly efficient reduced tungsten oxide-based hydrogen gas sensor at room temperature[J].Materials Science and Engineering:B,2023,289:116285.

      [25]HAN Y T,LIU Y,SU C,et al.Sonochemical synthesis of hierarchical WO3 flower-like spheres for highly efficient triethyl-amine detection[J].Sensors and Actuators B:Chemical,2020,306:127536.

      [26]XIANG Q,MENG G F,ZHAO H B,et al.Au nanoparticle modified WO3 nanorods with their enhanced properties for pho-tocatalysis and gas sensing[J].The Journal of Physical Chemistry C,2010,114(5):2049-2055.

      [27]BAI J H,WANG C C,LIU K P,et al.Enhanced gas sensing performance based on the PtCu octahedral alloy nanocrystals decorated SnO2 nanoclusters[J].Sensors and Actuators B:Chemical,2021,330:129375.

      [28]JIANG H L,LIU B,AKITA T,et al.Au@ZIF-8:CO oxidation over gold nanoparticles deposited to metal-organic frame-work[J].Journal of the American Chemical Society,2009,131(32):11302-11303.

      [29]MARIKUTSA A,YANG L L,RUMYANTSEVA M,et al.Sensitivity of nanocrystalline tungsten oxide to CO and ammonia gas determined by surface catalysts[J].Sensors and Actuators B:Chemical,2018,277:336-346.

      [30]DUAN P Y,XIAO H H,WANG Z Y,et al.Hydrogen sensing properties of Pd/SnO2 nano-spherical composites under UV enhancement[J].Sensors and Actuators B:Chemical,2021,346:130557.

      [31]ZHU L Y,OU L X,MAO L W,et al.Advances in noble metal-decorated metal oxide nanomaterials for chemiresistive gas sensors:overview[J].Nano-Micro Letters,2023,15(1):89.

      [32]LV J,ZHANG L,SI L,et al.Rapid and stable hydrogen detection based on Pd-modified WO nanosheets[J].Dalton Tran-sactions,2023,52(13):4200-4206.

      [33]WANG X H,MENG X N,ZHU Y,et al.Design of ultrahigh-response gas sensor based on Pd-WO3/WS2 ternary nanocom?posites for ultrafast hydrogen detection[J].Sensors and Actuators B:Chemical,2024,401:134991.

      [34]WANG X H,MENG X N,GAO W.Ultrahigh-response sensor based on hierarchical Pd-WO3 nanoflowers for rapid hydro?gen detection[J].Sensors and Actuators B:Chemical,2023,387:133790.

      [35]HAN Z J,REN J,ZHOU J J,et al.Multilayer porous Pd-WO3 composite thin films prepared by sol-gel process for hydro?gen sensing[J].International Journal of Hydrogen Energy,2020,45(11):7223-7233.

      [36]ESFANDIAR A,IRAJIZAD A,AKHAVAN O,et al.Pd-WO3/reduced graphene oxide hierarchical nanostructures as effi-cient hydrogen gas sensors[J].International Journal of Hydrogen Energy,2014,39(15):8169-8179.

      [37]ZHOU R,LIN X P,XUE D Y,et al.Enhanced H2 gas sensing properties by Pd-loaded urchin-like W18O49 hierarchical nanostructures[J].Sensors and Actuators B:Chemical,2018,260:900-907.

      [38]MOBTAKERI S,HABASHYANI S,?OBAN?,etal.Effect of growth pressure on sulfur content of RF-magnetron sput?tered WS2 films and thermal oxidation properties of them toward using Pd decorated WO3 based H2 gas sensor[J].Sensors and Actuators B:Chemical,2023,381:133485.

      [39]KO?AK Y,GüR E.Growth control of WS2:from 2D layer by layer to 3D vertical standing nanowalls[J].ACS Applied Materialsamp;Interfaces,2020,12(13):15785-15792.

      [40]MOBTAKERI S,HABASHYANI S,GüR E.Highly responsive Pd-decorated MoO3 nanowall H2 gas sensors obtained from In-situ-controlled thermal oxidation of sputtered MoS2 films[J].ACS Applied Materialsamp;Interfaces,2022,14(22):25741-25752.

      [41]DINCER I,AYDIN M I.New paradigms in sustainable energy systems with hydrogen[J].Energy Conversion and Manage-ment,2023,283:116950.

      [42]HORPRATHUM M,SRICHAIYAPERK T,SAMRANSUKSAMER B,et al.Ultrasensitive hydrogen sensor based on Pt-decorated WO?nanorods prepared by glancing-angledc magnetron sputtering[J].ACS Applied Materialsamp;Interfaces,2014,6(24):22051-22060.

      [43]FAN L,XU N S,CHEN H J,et al.A millisecond response and microwatt power-consumption gas sensor:Realization based on cross-stacked individual Pt-coated WO3 nanorods[J].Sensors and Actuators B:Chemical,2021,346:130545.

      [44]NISHIJIMA Y,ENOMONOTO K,OKAZAKI S,et al.Pulsed laser deposition of Pt-WO3 of hydrogen sensors under atmo?spheric conditions[J].Applied Surface Science,2020,534:147568.

      [45]LI H,WU C H,LIU Y C,et al.Mesoporous WO3-TiO2 heterojunction for a hydrogen gas sensor[J].Sensors and Actuators B:Chemical,2021,341:130035.

      [46]MOON J,HEDMAN H P,KEMELL M,et al.Hydrogen sensor of Pd-decorated tubular TiO2 layer prepared by anodization with patterned electrodes on SiO2/Si substrate[J].Sensors and Actuators B:Chemical,2016,222:190-197.

      [47]DING W,ANSARI N,YANG Y H,et al.Superiorly sensitive and selective H2 sensor based on p-n heterojunction of WO3-CoO nanohybrids and its sensing mechanism[J].International Journal of Hydrogen Energy,2021,46(56):28823-28837.

      [48]CAI L B,ZHU S,WU G G,et al.Highly sensitive H2 sensor based on PdO-decorated WO3 nanospindle p-n heterostruc-ture[J].International Journal of Hydrogen Energy,2020,45(55):31327-31340.

      [49]DING W J,LIU D D,LIU JJ,et al.Oxygen defects in nanostructured metal-oxide gas sensors:recent advances and chal-lenges[J].Chinese Journal of Chemistry,2020,38(12):1832-1846.

      [50]XIAO S H,LIU B,ZHOU R,et al.Room-temperature H2 sensing interfered by CO based on interfacial effects in palladium-tungsten oxide nanoparticles[J].Sensors and Actuators B:Chemical,2018,254:966-972.

      [51]TIMMER B,OLTHUIS W,VAN DEN BERG A.Ammonia sensors and their applications—a review[J].Sensors and Actuators B:Chemical,2005,107(2):666-677.

      [52]LI Z,YI J X.Drastically enhanced ammonia sensing of Pt/ZnO ordered porous ultra-thin films[J].Sensors and Actuators B:Chemical,2020,317:128217.

      [53]PARGOLETTI E,CAPPELLETTI G.Breakthroughs in the design of novel carbon-based metal oxides nanocomposites for VOCs gas sensing[J].Nanomaterials,2020,10(8):1485.

      [54]REN H Q,SUN S D,CUI J,et al.Synthesis,functional modifications,and diversified applications of molybdenum oxides micro-/nanocrystals:a review[J].Crystal Growthamp;Design,2018,18(10):6326-6369.

      [55]BARZEGAR M,IRAJI ZAD A,TIWARI A.On the performance of vertical MoS2 nanoflakes asa gas sensor[J].Vacuum,2019,167:90-97.

      Research status of H2 gas sensors based onnano WO3 semiconductor materials

      XU Hongyan,LI Gen

      School of Materials Science and Engineering,University of Jinan,Jinan 250022,China

      Abstract

      Significance As ann-type semiconductor,WO3 is widely used in the field of gas sensors due to its wide band gap,high thermal stability,and easy synthesis.Given the importance of monitoring hydrogen concentration in ensuring the safety of industrial pro?duction and daily life,it is crucial to develop gas sensors that achieve both rapid response and high sensitivity to hydrogen.

      Progress WO3 materials are known for their flexible structural properties,which can improve gas sensing performance through various approaches,such as noble metal catalysis and heterostructure construction.Doping WO3 with noble metals such as palla?dium and platinum and constructing heterojunctions with other semiconductors are strategies that have been proved to signifi?cantly enhance hydrogen selectivity and sensitivity.This paper reviews the current research and future prospects of hydrogen sen?sors,focusing on four areas:preparation methods,morphological characteristics,gas-sensing performance,and mechanisms.Sensor materials are prepared using methods such as hydrothermal synthesis,sol-gel processes,radio frequency magnetron sput?tering(RFMS),and glancing angle deposition(GLAD).These materials are then characterized using scanning electron micros?copy(SEM),transmission electron microscopy(TEM),and X-ray diffraction(XRD),and their gas-sensitive properties are evaluated using various instruments.Consequently,the underlying mechanisms are explained scientifically and precisely.

      Conclusion and Prospects WO3 is one of the most promising materials in the field of sensing technology and has become a focal point of research in recent years.This paper reviews the preparation methods of WO3 nanomaterials and their composites,as well as the current research advancements in H2 gas detection.The morphology of metal oxides has a significant impact on gas-sensing performance.The specific surface areas and exposed crystal surfaces of WO3 vary with different morphologies,resulting in differences in contact areas and active sites for target gases.Thus,the preparation of WO3 materials with distinct morpholo?gies has become a crucial area of research.One of the most common methods for improving gas-sensing performance is the intro?duction of noble metal doping.This can be achieved through chemical and electronic sensitization,which enhances sensor response.The strong coupling effect between specific metals and certain gases also improves sensor selectivity and reduces oper?atingtemperature.The dissociation of hydrogen atoms by platinum at room temperature greatly reduces the operating tempera?ture of the sensor.Also,doping palladium into tungsten trioxide,a semiconductor,significantly enhances hydrogen detection.Studies have demonstrated that compared to pure WO3,palladium doping significantly improves hydrogen detection.Overall,the doping of noble metals and the construction of heterojunctions can reduce operating temperature,enhance sensitivity,reduce the detection limit,and shorten the recovery and response times,making these strategies highly effective compared to using only pure phase WO3 semiconductor materials.

      Keywords:gas sensor;oxide semiconductor;tungsten trioxide

      (責(zé)任編輯:武秀娟)

      息烽县| 沧州市| 灵武市| 冀州市| 铜川市| 新密市| 乐安县| 南开区| 平乐县| 嵊泗县| 东阿县| 九龙坡区| 离岛区| 桐乡市| 黎川县| 邳州市| 开化县| 奇台县| 翁牛特旗| 荆州市| 江北区| 宣威市| 秀山| 大名县| 军事| 南皮县| 叙永县| 三河市| 安庆市| 永仁县| 金沙县| 楚雄市| 当雄县| 中卫市| 岐山县| 大厂| 镇雄县| 沙坪坝区| 贵德县| 仙桃市| 慈溪市|