摘要:【目的】研究調(diào)整井固井時因地層水侵入水泥漿的問題,通過加入抗分散聚合物提高油井水泥凝固前抗水侵能力?!痉椒ā坎捎?-丙烯酰胺-2-甲基丙磺酸、丙烯酰胺、α-甲基丙烯酸、甲基丙烯酸十八酯為主要原料,十二烷基硫酸鈉為穩(wěn)定劑,過硫酸胺為引發(fā)劑,以水溶液自由基聚合法制備聚合物KSQ-Z;評價聚合物KSQ-Z的抗分散效果,并借助X射線衍射儀、掃描電子顯微鏡對摻入聚合物材料的水泥石進(jìn)行微觀測試,探究KSQ-Z抗分散機(jī)制。【結(jié)果】KSQ-Z是一種含酯基的聚合物;KSQ-Z摻量(質(zhì)量分?jǐn)?shù),下同)的增加可明顯提高水泥漿的抗分散性,其中摻量為1.2%時效果最好;同未水侵組相比,水灰質(zhì)量比分別為0.46、0.48、0.50的實驗組摻入質(zhì)量分?jǐn)?shù)為1.2%的KSQ-Z的水泥漿養(yǎng)護(hù)7 d后的抗壓強(qiáng)度分別提高41.1%、26.2%和21.8%;聚合物KSQ-Z通過形成的網(wǎng)狀結(jié)構(gòu)增加水泥石穩(wěn)定性,使水泥石更加致密?!窘Y(jié)論】聚合物KSQ-Z可增強(qiáng)水泥漿的內(nèi)聚力,避免地層水對水泥漿的稀釋和離子流失的影響,從而顯著提高固井用水泥的抗水侵性能。
關(guān)鍵詞:油井水泥;水侵;抗分散;濁度
中圖分類號:TE256;TB4文獻(xiàn)標(biāo)志碼:A
引用格式:
楊鸝,張春梅,梅開元,等.油井水泥用抗分散聚合物的制備及其性能評價[J].中國粉體技術(shù),2024,30(5):132-145.
YANG Li,ZHANG Chunmei,MEI Kaiyuan,et al.Preparation and performance evaluation of anti-dispersion polymer for oil well cement[J].China Powder Science and Technology,2024,30(5):132?145.
針對油藏儲層成熟后地層能量不足,自然開采不能夠繼續(xù)采集原油的問題,我國開始大面積采用增大油田壓力的注水驅(qū)動技術(shù)來提高采油效率和油田開發(fā)速度[1-2]。隨著油田勘探的發(fā)展,我國大多數(shù)油田都進(jìn)入中后期(此階段仍有較多的可采資源)。為了實現(xiàn)油田穩(wěn)產(chǎn)和增加油田開采程度,對老油田進(jìn)行調(diào)整鉆井[3-4]。長期的注水開采和分層布井使老油區(qū)的地層壓力紊亂,地層水活躍,平面與層內(nèi)間的矛盾加劇,形成高壓層和低壓層共存的多壓力體系[5-6],使固井作業(yè)時易出現(xiàn)水侵和局部竄槽。在固井候凝過程中,由于環(huán)空液柱與地層的壓力不平衡,導(dǎo)致地層水以溶解遷移和質(zhì)量互換的形式侵入水泥漿,使水泥漿結(jié)構(gòu)稀釋和分散[3,7–9]。水侵的影響比氣竄更嚴(yán)重,水侵不僅會造成油氣資源的浪費(fèi),而且會破壞水泥環(huán)的結(jié)構(gòu),嚴(yán)重影響固井膠結(jié)質(zhì)量,從而導(dǎo)致地面環(huán)境污染、井噴以及井眼坍塌等惡性事故的發(fā)生。
關(guān)于治理油藏水侵的問題,研究者多采用以下方法提高水泥抗水侵能力:一種是通過外加劑和功能性外摻料復(fù)配來優(yōu)化常規(guī)水泥漿體系[10–14],比如使用膨脹劑、抗?jié)B劑、促凝劑、乳膠和纖維等提高水泥環(huán)膠結(jié)強(qiáng)度,以達(dá)到防漏防竄的目的;另一種是在水泥漿中加入不同種類的聚合物,如加入聚合物型的降濾失劑,再加入交聯(lián)劑進(jìn)行反應(yīng),生成的產(chǎn)物起到抗水侵的功效[15–17]。前者多針對不同油田各自的地層特點(diǎn),側(cè)重于促進(jìn)水泥漿在凝固后的抗竄性,不具備普適性,且水泥漿凝固前被水稀釋,存在凝固困難、強(qiáng)度下降等問題。后者面臨井底變化的高溫高壓環(huán)境,控制抗水侵劑生成的聚合物的反應(yīng)速率困難,且加入的降濾失劑和交聯(lián)劑也存在與外加劑配伍性的問題。近年來越來越多的學(xué)者研究使用疏水締合聚合物[18-19]來改善水泥漿抗水侵能力,疏水締合聚合物在臨界濃度通過疏水締合作用形成具有可逆性的超分子網(wǎng)絡(luò)狀結(jié)構(gòu)[20],可使水泥漿具有良好的抗剪切性,并且失水量和體積收縮較?。?1–23]。疏水締合聚合物是一種具有良好應(yīng)用前景的防地層水侵能力的油井水泥外摻料。
本文中以2-丙烯酰胺-2-甲基丙磺酸、丙烯酰胺、α-甲基丙烯酸、甲基丙烯酸十八酯為主要原料,十二烷基硫酸鈉為穩(wěn)定劑,過硫酸胺為引發(fā)劑,制備一種含疏水基團(tuán)的單一聚合物KSQ-Z,評價了摻入KSQ-Z的油井水泥漿體系的抗水分散性能,并探究KSQ-Z的抗分散作用機(jī)制。
1材料與方法
1.1試劑材料和儀器設(shè)備
試劑材料:合成抗分散聚合物使用的試劑和材料包括2-丙烯酰胺-2-甲基丙磺酸(AMPS)、丙烯酰胺(AM)、α-甲基丙烯酸(α-MA)、甲基丙烯酸十八酯(SMA)、十二烷基硫酸鈉(SDS)和過硫酸胺(APS)(均為分析純,成都科隆化學(xué)試劑有限公司);G級油井水泥(嘉華特種水泥股份有限公司);分散劑(USZ,成都川鋒化學(xué)工程有限責(zé)任公司);降失水劑(G33S,衛(wèi)輝市化工有限公司)。
儀器設(shè)備:Nicolet-6700型傅里葉紅外光譜儀(美國熱電公司),TGA-SDTA85-e型熱重分析儀(瑞士梅特勒-托利多公司),ZEISS EV0 MA15型掃描電子顯微鏡(卡爾蔡司顯微圖像有限公司),DX-2700X型射線衍射儀(XRD,丹東浩元儀器有限公司),AA-7020型原子吸收分光光度計(北京東西分析儀器有限公司),WGZ1B型濁度儀(杭州齊威儀器有限公司),TYE-300B型壓力試驗機(jī)(無錫建儀儀器機(jī)械有限公司)。
1.2抗分散聚合物KSQ-Z的合成
依次稱取10 g的AMPS和12.5 g的AM溶于去離子水中,使用飽和NaOH溶液將pH調(diào)節(jié)至8,再加入5 g的α-MA,均勻混合后將其轉(zhuǎn)移到三頸燒瓶,并固定在60℃的水浴鍋中。另取一個燒杯分別稱取5 g的SMA和SDS,充分混合后倒入三頸燒瓶內(nèi),攪拌6 h。在混合溶液反應(yīng)過程中稱量0.375 g過硫酸胺作為引發(fā)劑,用20 mL去離子水溶解,把溶解后的溶液緩慢滴定到三頸燒瓶中。反應(yīng)完后使用無水乙醇洗滌樣品,除去未反應(yīng)的單體和其他雜質(zhì),提高樣品純度。最后冷凍干燥48 h,研磨后即可得到高分子聚合物KSQ-Z粉末。KSQ-Z的制備流程如圖1所示。
1.3 KSQ-Z樣品的測試表征
1.3.1紅外光譜分析
為了探究合成樣品KSQ-Z的官能團(tuán)結(jié)構(gòu),使用紅外光譜儀對合成的聚合物進(jìn)行測試。將合成出來的樣品研磨干燥,采用傳統(tǒng)的鹵化物壓片法,以溴化鉀作為稀釋劑,樣品和溴化鉀按照質(zhì)量比為1∶100混合后進(jìn)行充分的研磨,加壓制成透明或半透明的薄片進(jìn)行紅外分析,每個樣品的測試波數(shù)為4 000~400 cm-1,分辨率為4 cm-1。
1.3.2熱重分析
為了測試合成樣品KSQ-Z的熱穩(wěn)定性,使用熱重分析儀對樣品進(jìn)行測試。選取6~8 mg的樣品,在熱重分析儀上以10℃/min的升溫速率,在溫度為40~700℃的范圍內(nèi)進(jìn)行熱重分析。
1.3.3聚合物形貌分析
為了觀察樣品KSQ-Z在水溶液中的形貌,使用掃描電子顯微鏡對其進(jìn)行形貌觀察。配制出質(zhì)量濃度為2、20 g/L的聚合物KSQ-Z水溶液,隨后采用真空冷凍法干燥24 h,將樣品真空環(huán)境下噴金處理后,再用掃描電子顯微鏡觀察其微觀形貌。
1.4油井水泥試樣的制備及性能測試
1.4.1水泥漿制備
為了研究聚合物KSQ-Z對油井水泥漿體性能及力學(xué)性能的影響,以確定聚合物的摻量。根據(jù)GB/T 10238-2015《油井水泥》的方法配制并養(yǎng)護(hù)水泥漿,采用張興國等[24]的方法測試水侵后界面處水泥漿的力學(xué)性能,水泥漿配方見表1所示。
1.4.2抗分散性能評價及微觀分析
1)水泥漿漿體性能測試
按照表1配制不同KSQ-Z摻量的水泥漿并測試水泥漿的流動度。
2)靜水作用下水泥漿抗分散性測試
將配制好的水泥漿攪拌均勻后緩慢滴入裝有清水的杯中,采用目測法觀察其在靜水作用下不同時間的浸潤和分散狀態(tài)。
3)振蕩作用下水泥漿抗分散性測試
通過測試水泥漿在振蕩條件下不同時間(0、5、15、30 min)分別被稀釋10倍的上層水樣的濁度來對其抗分散性進(jìn)行表征。使用濁度儀對上層水樣進(jìn)行濁度測試,取2次數(shù)據(jù)的平均值,示值誤差為±8%。
4)水泥石力學(xué)性能測試
按照表1配制不同KSQ-Z摻量及水灰比(質(zhì)量比,下同)的水泥漿,倒入邊長為50.8 mm的正方體模具中,在60℃恒溫水浴鍋中分別養(yǎng)護(hù)1、3、7 d齡期后,采用壓力試驗機(jī)測試其抗壓強(qiáng)度。為了消除誤差,取4個有效試樣并求平均值。
5)聚合物KSQ-Z對水泥石微觀影響分析
采用X射線衍射儀和掃描電子顯微鏡對未摻KSQ-Z的純水泥與摻KSQ-Z的水泥石進(jìn)行物相和微觀形貌分析。使用原子吸收分光光度計對水侵影響下流失Ca2+含量進(jìn)行測試。
2結(jié)果與討論
2.1抗分散聚合物KSQ-Z的表征
2.1.1紅外光譜分析
為了表征KSQ-Z的分子結(jié)構(gòu),對樣品進(jìn)行紅外光譜分析,結(jié)果如圖2所示。由圖可見:KSQ-Z的紅外圖譜上波數(shù)為3 472、3 151 cm-1處分別為酰胺基的—NH的伸縮振動吸收峰和反對稱振動吸收峰[25];波數(shù)為2 923、2 856 cm-1處分別是—CH2—的反對稱伸縮振動峰和對稱伸縮振動峰;波數(shù)為1 668 cm-1處為酰胺基的—C=O的伸縮振動峰;波數(shù)為1 454 cm-1處是酰胺基的—NH2的彎曲振動[26];波數(shù)為1 403 cm-1處為酰胺鍵上的—CN伸縮振動峰;波數(shù)為1 214、1 041和626 cm-1附近為磺酸基(—SO3H)特征吸收峰[27-28];波數(shù)為1 174 cm-1處為SMA結(jié)構(gòu)中碳氧鍵(—C—O—C)的對稱伸縮振動特征峰[29-30]。同時,波數(shù)為1 620~1 635 cm-1范圍內(nèi)未出現(xiàn)C=C雙鍵的特征峰,所以可以斷定單體之間已經(jīng)充分反應(yīng),并且根據(jù)紅外光譜發(fā)現(xiàn)具有酯基的特征峰,可以判斷合成了目標(biāo)產(chǎn)物。
2.1.2熱重分析
為了測試合成樣品KSQ-Z的熱穩(wěn)定性對其進(jìn)行熱重分析,得到熱重曲線如圖3所示。由圖可知,當(dāng)溫度從40℃增加到700℃時,KSQ-Z的TG曲線分為4個階段:第1階段為40~164℃,有4.9%的質(zhì)量損失,可能是由于KSQ-Z中磺酸基、酰胺基具有較高的親水性,使樣品吸水受潮,樣品所帶的水分以及反應(yīng)體系中殘留的溶劑分解所致[31];第2階段為gt;164~268℃,質(zhì)量損失為33.2%,最大質(zhì)量損失速率出現(xiàn)在240℃,為-0.8 mg/min,此時可能是因為在高溫條件下聚合物中的酰胺基發(fā)生了消除反應(yīng)[32];第3階段為gt;268~470℃,質(zhì)量損失為34.2%,該階段樣品失質(zhì)量的主要原因分別是KSQ-Z的疏水單體SMA的酯基側(cè)鏈和C—C主鏈斷裂[33-34]。KSQ-Z試樣的熱重分析結(jié)果表明其在溫度低于164℃時擁有優(yōu)異的熱穩(wěn)定性,可在164℃以下的服役環(huán)境中使用。
2.1.3 KSQ-Z微觀形貌
聚合物KSQ-Z在水溶液中的結(jié)構(gòu)與其抗分散性能有重要的關(guān)系。對聚合物KSQ-Z溶于水后的微觀形貌進(jìn)行分析,如圖4所示。由圖可知,該聚合物在水中形成了一種三維空間網(wǎng)狀結(jié)構(gòu),并隨著KSQ-Z濃度的升高,網(wǎng)絡(luò)結(jié)構(gòu)更密集,更有利于提高水泥漿的內(nèi)聚力。
2.2 KSQ-Z抗分散效果評價
2.2.1水泥漿漿體性能測試
圖5所示為不同摻量的KSQ-Z對水泥漿流動度的影響。由圖可知,未摻KSQ-Z的水泥漿的流動度最大,為23 cm。但隨著KSQ-Z摻量的增加,水泥漿流動度減小,當(dāng)摻入KSQ-Z的質(zhì)量分?jǐn)?shù)為1.2%時,水泥漿流動度最小,為17.5 cm,這可能因為聚合物KSQ-Z在水溶液中形成的網(wǎng)狀結(jié)構(gòu)和極性基團(tuán)與Ca2+發(fā)生絡(luò)合,隨著聚合物含量的增加,該網(wǎng)狀結(jié)構(gòu)與極性基團(tuán)吸附共同作用使水泥漿流動性變差[35-36]。
2.2.2靜水作用下水泥漿抗分散性測試
為了直觀地觀察摻入KSQ-Z的水泥漿體在靜水作用下的分散效果,實驗按照表1配制水泥漿,將水泥漿勻速加入水中,并觀察加入時的實驗現(xiàn)象,如圖6所示。圖6中(a)—(e)分別是摻入KSQ-Z的質(zhì)量分?jǐn)?shù)為0、0.3%、0.6%、0.9%、1.2%的水泥漿入水時的實驗現(xiàn)象。
由圖可見,未摻以及摻入KSQ-Z的質(zhì)量分?jǐn)?shù)為0.3%的水泥漿加入水后,在入水或沉底過程中被沖散成霧狀,杯中液體變渾濁;隨著KSQ-Z摻量的增多,當(dāng)摻入KSQ-Z的質(zhì)量分?jǐn)?shù)為1.2%的水泥漿加入水,杯中液體清澈并保持較高的可見度,水泥漿在清水中無分散現(xiàn)象。這是由于KSQ-Z疏水締合作用所形成的網(wǎng)狀結(jié)構(gòu)包裹了水泥顆粒,使其不易受到水沖刷。上述結(jié)果說明,隨著KSQ-Z摻量的增加,水泥漿遇水后表現(xiàn)出優(yōu)異的抗分散性能,可減少漿體的流失,即確保水泥漿的成型度不受水侵影響[37]。
2.2.3振蕩作用下水泥漿的抗分散性測試
為了模擬動態(tài)作用下地層水波動干擾、稀釋水泥漿的情況[7],并探究摻KSQ-Z的水泥漿抗分散性效果,將配制好的水泥漿分別加入裝有清水的試管中,之后移入溫度為60℃的超聲清洗儀中。分別振蕩0、5、15和30 min,再取出部分上層液體并對其進(jìn)行濁度測試。試樣測試時需避免雜光,由于水樣中顆粒物質(zhì)會浮動,需等數(shù)值穩(wěn)定后讀數(shù)。圖7、8分別為振蕩作用下向水泥漿中加入不同摻量KSQ-Z的水泥漿上層液體測試現(xiàn)象和時間與不同摻量KSQ-Z的濁度關(guān)系圖(稀釋10倍)。
由圖7可知,振蕩后水泥漿上層液體明顯變渾濁,而隨著聚合物KSQ-Z摻量的增加,水的渾濁度減??;由圖8可知,未摻KSQ-Z的水泥漿在剛?cè)胨畷r,上層液體測得濁度為145.8 NTU。振蕩5 min后,濁度為172 NTU且后續(xù)不隨時間增加而出現(xiàn)較大的變化,上層液體均處于非常渾濁的狀態(tài)。濁度值越大說明水泥漿在入水后的懸浮物固體顆粒含量越多,抗分散性能越差。加入KSQ-Z后上層液體的濁度變化敏感,并隨著聚合物KSQ-Z摻量的增加,上層清液濁度減小,漿體黏稠沉底,抗分散性較好。摻入KSQ-Z的質(zhì)量分?jǐn)?shù)為1.2%的水泥漿剛?cè)胨鬂岫茸钚。瑸?.4 NTU,相比于未添加KSQ-Z組減小了94.2%。隨著時間的增加,振蕩作用30 min后濁度達(dá)到17.1 NTU,相比于未添加KSQ-Z組減小了90.1%。隨著時間的增加其影響逐漸變小,在15 min后逐漸趨于平穩(wěn)。該實驗結(jié)果表明,適當(dāng)?shù)靥岣逰SQ-Z的摻量可以使水泥漿擁有較好的抗水分散性,改善水侵對水泥漿的影響。
2.2.4聚合物KSQ-Z對水泥石抗壓強(qiáng)度的影響
由于水泥漿凝固前,水侵會導(dǎo)致界面處的水泥漿的水灰比增大,因此為了模擬水侵環(huán)境下改變界面處水泥漿含水量的情況,分別測試了不同KSQ-Z摻量的水泥石抗壓強(qiáng)度和在不同水灰比(0.44、0.46、0.48和0.50)的水泥石抗壓強(qiáng)度。在溫度為60℃下分別養(yǎng)護(hù)1、3、7 d齡期后測量水泥石抗壓強(qiáng)度,結(jié)果如圖9所示。
由圖9(a)可知,KSQ-Z對水泥石早期強(qiáng)度影響不大,隨著KSQ-Z摻量的增加,養(yǎng)護(hù)3、7 d齡期后水泥石抗壓強(qiáng)度會有所減小,但是摻入KSQ-Z的質(zhì)量分?jǐn)?shù)為0.6%的水泥石抗壓強(qiáng)度相比于其他組更高,分別為(17.53±0.81)、(24.35±0.69)和(25.90±1.80)MPa。這說明高摻量的KSQ-Z會降低水泥石強(qiáng)度[38];由圖9(b)和(c)可知,水侵會影響水泥石的力學(xué)性能,隨著水侵入量的增加水泥石力學(xué)性能降低。水泥中摻入KSQ-Z的質(zhì)量分?jǐn)?shù)為1.2%時,隨著水灰比的增加,水泥石抗壓強(qiáng)度有升高的趨勢。當(dāng)水灰比為0.46時,C5組養(yǎng)護(hù)3、7 d齡期的抗壓強(qiáng)度比未摻KSQ-Z的空白組提高了10.5%和41.1%;當(dāng)水灰比為0.48時,C6組養(yǎng)護(hù)3、7 d齡期的抗壓強(qiáng)度比未摻KSQ-Z的空白組提高了18.3%和29.2%;當(dāng)水灰比為0.50時,摻入KSQ-Z的質(zhì)量分?jǐn)?shù)為1.2%的C7組養(yǎng)護(hù)3、7 d齡期的抗壓強(qiáng)度比未摻KSQ-Z的空白組提高了19.0%和27.6%。
水侵入水泥漿后稀釋水泥漿的同時也改變了聚合物KSQ-Z的濃度,進(jìn)而調(diào)整了水泥漿的性能,證明KSQ-Z可提高水泥石的力學(xué)性能,使油井水泥具有一定抗水侵的能力,減緩了水泥環(huán)層間密封性能劣化的問題。
2.3水泥石的微觀分析
2.3.1 XRD分析
使用XRD分析水侵條件對水泥石樣品的水化產(chǎn)物的影響,圖10所示為未水侵空白組、未水侵KSQ-Z組、水侵空白組和水侵KSQ-Z組的水泥石XRD測試結(jié)果。
由圖10可知,4組水泥石的物相組成基本相同,主要包括氫氧化鈣(CH)、少量未水化的硅酸二鈣(C2S)和硅酸三鈣(C3S),但物相的衍射峰強(qiáng)度存在明顯差異。水侵后的空白水泥石CH、C3S和C2S衍射峰強(qiáng)度均比未水侵空白組和水侵KSQ-Z組衍射強(qiáng)度低,而水侵KSQ-Z組的CH峰值明顯增高。這可能是因為水泥漿在凝固前受水侵的影響,導(dǎo)致水泥漿中的部分離子流失,影響了水泥水化的正常進(jìn)行[11]。而聚合物KSQ-Z可促進(jìn)水侵環(huán)境下水泥水化過程,從而保證水泥漿水化的正常進(jìn)行,減緩了水侵產(chǎn)生的影響。
2.3.2水侵后鈣離子流失量分析
通過測定水侵環(huán)境中未添加KSQ-Z和摻入質(zhì)量分?jǐn)?shù)為1.2%的KSQ-Z水泥漿上層清液中的Ca2+質(zhì)量濃度,分析不同水侵時間對水化離子流失程度的影響,結(jié)果如表2所示。
由表2所示,水侵時會導(dǎo)致水泥漿中Ca2+大量流失,水侵環(huán)境中的Ca2+質(zhì)量濃度增加,相比于未添加KSQ-Z組,0、30、60 min時摻入質(zhì)量分?jǐn)?shù)為1.2%的KSQ-Z時水侵環(huán)境中的Ca2+質(zhì)量濃度分別下降了78.68%、73.58%和58.73%,原因可能是聚合物KSQ-Z形成的網(wǎng)絡(luò)結(jié)構(gòu)增加了水泥漿的內(nèi)聚力和穩(wěn)定性[25,39],提高水泥漿抗水遷移和抗分散性能,從而緩解水泥漿中Ca2+流失,保證了主要的水化離子在水泥漿中的含量。
2.3.3水泥石形貌分析
圖11所示為水侵后水泥石微觀形貌圖。由圖11(a)可知,水泥漿受水沖刷與侵蝕后,水泥石表面疏松多孔,而圖11(b)的水泥試樣表面相對致密并出現(xiàn)細(xì)纖維狀物質(zhì)形成網(wǎng)絡(luò)狀結(jié)構(gòu),與前期實驗結(jié)果一致,聚合物KSQ-Z使水侵環(huán)境下界面處水泥石更加致密,提高水泥石的力學(xué)性能。
通過分析KSQ-Z對水泥石的微觀影響可知,KSQ-Z提高水泥漿的抗分散的能力與含酯基的聚合物KSQ-Z能夠在水中形成特定的三維網(wǎng)絡(luò)狀結(jié)構(gòu)有關(guān),其作用機(jī)制如圖12所示。因疏水基團(tuán)的相互作用[40]使聚合物在水中連接成網(wǎng)絡(luò),該網(wǎng)狀結(jié)構(gòu)可以束縛水分子,強(qiáng)化水泥漿內(nèi)聚力。同時,聚合物KSQ-Z大分子鏈也存在—COOH和—SO3H等極性基團(tuán),這些極性基團(tuán)會與Ca2+絡(luò)合,對水泥顆粒也有較好的吸附效果,可防止Ca2+流失和增強(qiáng)水泥漿穩(wěn)定性,改善油井水泥抵抗地層水侵能力和整體性能。
3結(jié)論
1)通過紅外光譜分析和熱重分析得知,合成出了目標(biāo)產(chǎn)物含酯基的聚合物KSQ-Z,在溫度為164℃下?lián)碛袃?yōu)異的熱穩(wěn)定性,KSQ-Z在水中形成網(wǎng)狀結(jié)構(gòu)。
2)聚合物KSQ-Z抗分散性能評價結(jié)果表明,聚合物KSQ-Z會使水泥漿流動度和流變性降低;隨著KSQ-Z摻量的增加,水泥漿加入水后的上層清液濁度越小,證明其在清水中具有較好的抗分散效果;摻KSQ-Z對水泥石早期抗壓強(qiáng)度影響較小,而摻入KSQ-Z的質(zhì)量分?jǐn)?shù)為1.2%并模擬水侵后界面處水泥漿水灰比增加的情況(水灰比為0.46、0.48、0.50)時,其3、7 d齡期的抗壓強(qiáng)度比相同水灰比水侵后且未摻KSQ-Z的水泥石抗壓強(qiáng)度分別提高了10.5%和41.1%、18.3%和29.2%、19.0%和27.6%。
3)微觀結(jié)構(gòu)分析表明,聚合物KSQ-Z通過疏水締合作用產(chǎn)生的三維網(wǎng)絡(luò)狀疏水保護(hù)膜,可減少水化離子流失,提高水泥漿內(nèi)聚力和穩(wěn)定性,使水泥石的結(jié)構(gòu)更加致密,緩解水侵環(huán)境下水泥漿遭到稀釋和結(jié)構(gòu)破壞,提高油井水泥的抗水侵性能。
利益沖突聲明(Conflict of Interests)
所有作者聲明不存在利益沖突。
All authors disclose no relevant conflict of interests.
作者貢獻(xiàn)(Authors’Contributions)
楊鸝、張春梅進(jìn)行了方案設(shè)計,梅開元、李尚東、程小偉、鐘紫芩、李心雨、吳琦美參與了論文的寫作和修改。所有作者均閱讀并同意了最終稿件的提交。
The study was designed by YANG Li and ZHANG Chunmei.The manuscript was drafted and revised by MEI Kaiyuan,LI Sangdong,CHENG Xiaowei,ZHONG Ziqin,LI Xinyu and WU Qimei.All authors have read the last version of the paper and consented to its submission.
參考文獻(xiàn)(References)
[1]SONG P.Research on new mining technology based on oilfield reservoir water injection[J].IOP Conference Series:Materials Science and Engineering,2020,782(4):042060.
[2]XUE L,LIU P,ZHANG Y.Status and prospect of improved oil recovery technology of high water cut reservoirs[J].Water,2023,15(7):1342.
[3]王建瑤,曾建國,孫富全,等.一種油井水泥用抗分散絮凝劑[J].鉆井液與完井液,2018,35(5):90-93.
WANG J Y,ZENG J G,SUN F Q,et al.Study on a dispersion resistant flocculant used in oil well cement slurry[J].Drilling Fluidamp;Completion Fluid,2018,35(5):90-93.
[4]王金山.調(diào)整井固井抗水侵水泥漿體系研究[D].成都:西南石油大學(xué),2018.
WANG J S.Research on adjusting well cementing water intrusion cement slurry system[D].Chengdu:Southwest Petroleum University,2018.
[5]劉小利.長慶油田超前注水區(qū)塊固井技術(shù)難點(diǎn)分析及配套工藝技術(shù)研究[J].鉆采工藝,2016,39(2):16-18.
LIU X L.Research on cementing difficulties and matching technologies in advanced water injection zone of changing oilfield.[J].Drillingamp;Production Technology,2016,39(2):16-18.
[6]沈元波,和鵬飛,徐彤,等.調(diào)整井固井難點(diǎn)分析及水泥漿體系優(yōu)化研究[J].石油化工應(yīng)用,2018,37(12):7-10.
SHENG Y B,HE P F,XU T,et al.Analysis of cementing difficulties in adjusting well and study on optimization of cement slurry system[J].Petrochemical Industry Application,2018,37(12):7-10.
[7]李小林,信婧敏,許藝馨,等.水不分散水泥漿體系在大港油田高含水區(qū)塊的應(yīng)用[J].石油地質(zhì)與工程,2023,37(6):114-117.
LI X L,XIN J M,XU Y X,et al.Application of water non-dispersed cement slurry system in high water cut blocks of Dagang Oilfield[J].Petroleum Geology and Engineering,2023,37(6):114-117.
[8]羅云龍,夏歡,薛寶慶,等.水侵和布井方式對水平井開發(fā)效果影響及作用機(jī)制分析[J].當(dāng)代化工,2021,50(4):885-891.
LUO Y L,XIA H,XUE B Q,et al.Analysis on the influence of water invasion and well pattern on the development effect of horizontal well and the action mechanism[J].Contemporary Chemical Industry,2021,50(4):885-891.
[9]盧海川,趙岳,宋偉賓,等.新型固井用防水竄材料的研究與性能評價[J].鉆井液與完井液,2017,34(4):75-79,84.
LU H C,ZHAO Y,SONG W B,et al.Study and evaluation of a new anti-water channeling material for well cementing[J].Drilling Fluidamp;Completion Fluid,2017,34(4):75-79,84.
[10]劉歡.動態(tài)壓力下防竄水泥漿體系研究[D].成都:西南石油大學(xué),2020.
LIU H.Study on anti-channeling cement slurry system under dynamic pressure[D].Chengdu:Southwest Petroleum University,2020.
[11]MOBEEN M,TARIQ Z,RAHMANM K,et al.Novel expandable cement system for prevention of sustained casing pressure and minimization of lost circulation[J].ACS Omega,2021,6(7):4950-4957
[12]唐凱,潘宇強(qiáng),沈明華.防水竄水泥漿體系的研究與應(yīng)用[J].鉆采工藝,2023,46(2):27-34.
TANG K,PAN Y Q,SHEN M H,et al.Application of anti-channeling cement slurry in block TAMBOCOCHA in ecuador[J].Drillingamp;Production Technology,2023,46(2):27-34.
[13]王云川.抑制油井層間水竄的固井技術(shù)探析[J].鉆采工藝,2021,44(5):118-121.
WANG Y C.Cementing technology to prevent fluid channeling of production well[J].Drilling and Production Technology,2021,44(5):118-121.
[14]孫翀,幸雪松,武治強(qiáng),等.一種低黏韌性雙防低密度水泥漿的室內(nèi)性能研究[J].當(dāng)代化工,2023,52(3):588-592.
SUN C,XING X S,WU Z Q,et al.Indoor study on the performance of a low viscosity and toughness double-proof lowdensity cement slurry[J].Contemporary Chemical Industry,2023,52(03):588-592.
[15]KEISUKE T,SHINGO A,MAKOTO B,et al.Microstructural properties and water penetration resistance of cementitious binder combined with water-dispersible polyurethane[J].Cement and Concrete Composites,2022,125:104326.
[16]GAMAGE P,DEVILLE J P,SHERMAN J.et al.Solids-free fluid-loss pill for high-temperature reservoirs[J].SPE Drillingamp;Completion,2014,29(1):125-130.
[17]WANG L,WANG D,SHEN Y D,et al.Study on properties of hydrophobic associating polymer as drag reduction agent for fracturing fluid[J].Journal of Polymer Research,2016,23(11):235.
[18]MASSARWEH O,ABUSHAIKHA A S.The use of surfactants in enhanced oil recovery:a review of recent advances[J].Energy Reports,2020,6:3150-3178.
[19]張弘文.主客體包合超分子凝膠的構(gòu)筑及封堵性能研究[D].青島:中國石油大學(xué)(華東),2021.
ZHANG H W.Construction of inclusion complex supramolecular geland its plugging performance[D].Qindao:China University of Petroleum(East China),2021.
[20]RAN Q,SONG F,WANG T,et al.Effect of the different hydrophobic groups of polycarboxylate superplasticizers on the properties in cement mortars[J].Polymer Composites,2017,38(9):1783-1791.
[21]YANG B,ZHAO J Z,MAO JC,et al.Review of friction reducers used in slickwater fracturing fluids for shale gas reservoirs[J].Journal of Natural Gas Science and Engineering,2019,62:302-313.
[22]FENG Q,JIA F J,PENG Z G,et al.Development of temperature-responsive suspension stabilizer and its application incementing slurry system[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2023,658:130734.
[23]JING X W,LIU Y Q,ZAO W W,et al.Synthesis and drag reduction properties of a hydrophobically associative polymer containing ultra-long side chains[J].BMC Chemistry,2023,17(1):48.
[24]張興國,袁中濤,李永剛,等.水侵壓力對調(diào)整井固井二界面性能的影響[J].硅酸鹽通報,2018,37(11):3678-3683.
ZHANG X G,YUAN Z T,LI Y G,et al.Effect of the water intrusion pressure on two interface of adjusting the well cementing[J].Bulletin of the Chinese Ceramic Society,2018,37(11):3678-3683.
[25]ZHENG Q F,ZHAO L Y,WANG J,et al.High-strength and high-toughness sodium alginate/polyacrylamide double phys-ically crosslinked network hydrogel with superior self-healing and self-recovery properties prepared by a one-pot method[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2020,589:124402.
[26]李曉嵐,鄭志軍,郭鵬.高溫油井水泥降失水劑ZFA-1的合成及性能[J].鉆井液與完井液,2020,37(2):209-213,220.
LI X L,ZHEN Z J,GUO P.Synthesis and performance of high temperature filter loss reducer ZFA-1 for oil well cement slurries[J].Drilling Fluidamp;Completion Fluid,2020,37(2):209-213,220.
[27]林凌,蘇歡,董宏偉.鉆井液抗高溫降濾失劑CQ-1的合成與性能評價[J].精細(xì)石油化工,2023,40(5):36-41.
LIN L,SHU H,DONG H W.Synthesis and performance evaluation of high temperature resistant filtration reducer CQ-1 for drilling fluid[J].Specialty Petrochemicals,2023,40(5):36-41.
[28]趙文,熊穎,戴元梅,等.體積壓裂用疏水締合聚合物PAAD-18的合成及性能研究[J].石油與天然氣化工,2023,52(2):70-75.
ZHAO W,XIONG Y,DAI Y M,et al.Synthesis and performance study of a hydrophobic association polymer PAAD-18 for volume fracturing[J].Chemical Engineering of Oilamp;Gas,2023,52(2):70-75.
[29]WAN T,ZOU C Z,CHEN L Y,et al.Synthesis and solution properties of hydrophobically associative polyacrylamides by microemulsion polymerization[J].Journal of Solution Chemistry,2014,43(11):1947-1962.
[30]MA X P,MU H L,HU Y Y,et al.Synthesis and properties of hydrophobically associating polymer fracturing fluid[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2021,626:127013.
[31]吳偉,劉平平,孫昊.AAMS-1疏水締合聚合物壓裂液稠化劑合成與應(yīng)用[J].鉆井液與完井液,2016,33(5):114-118.
WU W,LIU P P,SHUN H.Synthesis and application of a hydrophobically associating polymer viscosifier for fracturing fluids[J].Drilling Fluidamp;Completion Fluid,2016,33(5):114-118.
[32]李昭瀅,楊旭,楊杰,等.壓裂液稠化劑兩性聚丙烯酰胺的合成與性能評價[J].石油鉆探技術(shù),2023,51(2):109-115.
LI Z Y,YANG X,YANG J,et al.Synthesis and property evaluation of an amphoteric polymer fracturing fluid thickener[J].Petroleum Drilling Techniques,2023,51(2):109-115.
[33]WANG C,SUN J S,L Y F,et al.A re-crosslinkable composite gel based on curdlan for lost circulation control[J].Journalof Molecular Liquids,2023,371:121010.
[34]ZANG X T,LI G,CHEN Y H,et al.The synthesis of associative copolymers with both amphoteric and hydrophobic groups and the effect of the degree of association on the instability of emulsions[J].Polymers,2021,13(22):4041.
[35]FANG Y H,CHEN Z H,YAN D M,et al.Study on the effect of main chain molecular structure on adsorption,dispersion,and hydration of polycarboxylate superplasticizers[J].Materials(Basel,Switzerland),2023,16(13):4823.
[36]YAN S M.Synthesis and mechanism study of temperature-resistant fluid loss reducer for oil well cement[J].Advances in Cement Research,2017,29(5):183-193.
[37]高禮雄,崔皓.鋁酸鹽水泥基砂漿水下不分散性研究[J].混凝土,2020(11):105-107,111.
GAO L X,CUI H.Study on underwater dispersibility of aluminate cement based mortar[J].Concrete,2020(11):105-107,111.
[38]XIA X J,GUO J T,CHEN D,et al.Hydrophobic associated copolymer as a wide temperature range synthetic cement retar-der and its effect on cement hydration[J].Journal of Applied Polymer Science,2017,134(35):0021-8995.
[39]BU Y H,XU M R,LIU HJ,et al.A novel hydrophobically associating water-soluble polymer used as constant rheology agent for cement slurry[J].Royal Society Open Science,2022,9(2):211170.
[40]TIAN H Y,QUAN H P,HUANG Z Y.Investigation on rheological properties and thickening mechanism of a novel thickener based on hydrophobically associating water-soluble polymer during the acid rock reaction[J].Journal of Petroleum Scienceamp;Engineering,2020,188:106895.
Preparation and performance evaluation of anti-dispersion polymer for oil well cement
YANG Lia,b,ZHANG Chunmeia,b,MEI Kaiyuana,b,LI Shangdonga,b,CHENG Xiaoweia,b,ZHONG Ziqina,LIXinyua,WU Qimeia
a.School of New Energy and Materials,b.State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Southwest Petroleum University,Chengdu 610500,China
Abstract
Objective Due to the continued deepening of oilfield exploration and development,most of China′s oilfields have entered the late stage of high water cut development.Long-term water injection and layered well distribution in these oilfield areas cause problems such as formation pressure disorder,active formation water,and the formation of multi-pressure systems where high-pressure layers and low-pressure layers coexist.These issues may result in water infiltration during cementing operations in older oilfields.Currently,various admixtures are used in China to enhance conventional cement slurry systems,providing early strength and rapid solidification characteristics.The primary focus is on improving the anti-channeling performance of the cement slurry after solidification.However,during the cementing process,unbalanced pressure between the annular liquid col?umn and the formation causes formation water to invade the cement slurry through′dissolution migration′and′mass exchange′.This dilutes and disperses the cement slurry structure,making it difficult to cure and reducing its strength.This paper evaluated the water dispersion resistance and mechanism of a single polymer containing hydrophobic groups in the oil well cement slurry system.It was found that water invasion has a more significant impact than gas channeling.Water invasion can lead to waste of oil and gas resources and damage the cement sheath structure,causing serious consequences on cementing quality.Addition?ally,this can result in severe accidents such as ground environmental pollution,blowouts,and wellbore collapse.
Methods The polymer KSQ-Z was synthesized via aqueous solution free radical polymerization using 2-acrylamido-2-methylpro?panesulfonic acid,acrylamide,α-methacrylic acid,and stearyl methacrylate as the primary raw materials.Sodium dodecyl sul?fate was used as the stabilizer,and ammonium persulfate was used as the initiator.The polymer KSQ-Z was characterized using infrared spectroscopy(FTIR),thermal analysis(TG),and scanning electron microscopy(SEM).The study evaluated the anti-water dispersion effect of polymer KSQ-Z through hydrostatic and shock action.It also analyzed the impact of different dosages of KSQ-Z on the performance of slurry and the compressive strength of cement slurry.The anti-dispersion mechanism of KSQ-Zwas explored through comparative analysis and microscopic testing of cement stone mixed with polymer materials using XRD and SEM.
Results and Discussion The polymer synthesized through aqueous solution free radical polymerization,which contains an ester group,can be used in service environments below 164℃.Different dosages of polymer KSQ-Z were added to cement,and the anti-dispersion of the cement slurry was evaluated using shock and hydrostatic forces.Increasing the dosage of KSQ-Z had a negative impact on the rheological properties of the cement slurry,but significantly improved its anti-dispersion properties.After 7 dof curing,the compressive strength of the 1.2%KSQ-Z cement slurry was(33.96±1.37)MPa,(28.99±1.11)MPa and(26.98±1.07)MPa,which were 41.1%,26.2%,and 21.8%higher than that of pure cement,respectively.XRD data indicated,that polymer KSQ-Z could expedite the cement hydration process in the presence of water intrusion,ensuring normal hydration of the cement slurry and reducing the impact of water invasion.Calcium ion loss data,following water invasion,con?firmed that polymer KSQ-Z could mitigate calcium ion loss and ensure the presence of key hydration ions in the cement slurry.SEM data revealed,that the polymer KSQ-Z enhanced the compactness of the cement stone and improved its stability by creating a network structure.
Conclusion In recent years,researchers have extensively studied water invasion in cementing,focusing on the formation charac?teristics of different oilfields and the use of various admixtures to modify cement slurry performance.This improves the setting speed of the cement slurry and reduces the duration of water invasion.Recently,there has been a surge in studies aimed at enhancing the ability of conventional cement slurry to resist water invasion by improving the microstructure of the cement itself.This paper presented the preparation and performance evaluation of a single hydrophobic group anti-dispersion polymer,KSQ-Z.The properties of cement slurry were improved by using hydrophobically associating polymer.The hydrophobically associat?ingpolymer created a reversible supramolecular network structure by associating hydrophobic groups at a critical concentration.This resulted in the cement slurry having good shear resistance,low water loss,and low volume shrinkage.The results indicated that the polymer KSQ-Z can significantly enhance the water invasion resistance of cement slurry prior to solidification by improv?ing the cohesion of the slurry and preventing the impact of formation water on the dilution and ion loss of the cement slurry.
Keywords:oil well cement;water intrusion;anti-dispersion;turbidity
(責(zé)任編輯:王雅靜)