摘要:【目的】解析再生微粉焙燒活化機制,改善廢棄混凝土的綜合利用效果?!痉椒ā糠治霰簾龡l件對再生微粉火山灰反應(yīng)活性的影響規(guī)律,結(jié)合綜合熱分析和X射線衍射技術(shù)對焙燒過程中再生微粉的物相變化進(jìn)行分析討論。【結(jié)果】再生微粉的活性指數(shù)隨焙燒溫度上升或焙燒時間延長而明顯提高,但溫度不宜高于600℃且時間控制在1.0~1.5 h,否則會導(dǎo)致再生微粉的活性指數(shù)下降;微觀結(jié)構(gòu)分析發(fā)現(xiàn),溫度為600℃、焙燒時間為1.5 h可使再生微粉中的高嶺石等黏土礦物以及水化硅酸鈣等水泥水化產(chǎn)物發(fā)生脫水分解,從而改善再生微粉的火山灰反應(yīng)活性,但在更高的溫度800~900℃下則形成鋁硅尖晶石、鈣黃長石等低活性物質(zhì),導(dǎo)致再生微粉火山灰反應(yīng)活性下降?!窘Y(jié)論】焙燒處理對再生微粉具有明顯的活性激發(fā)作用,但焙燒溫度和時間應(yīng)與再生微粉的化學(xué)成分及礦物組成相匹配。
關(guān)鍵詞:混凝土;再生微粉;焙燒;活性指數(shù);微觀結(jié)構(gòu)
中圖分類號:TB44;TU375文獻(xiàn)標(biāo)志碼:A
引用格式:
劉燕妮,吳曉榮,王剛,等.焙燒過程對再生微粉微觀結(jié)構(gòu)和活性指數(shù)的影響[J].中國粉體技術(shù),2024,30(5):113-120.
LIU Yanni,WU Xiaorong,WANG Gang,et al.Influence of calcination processing on microstructural characteristics and activ?ityindexof recycled fine powder[J].China Powder Science and Technology,2024,30(5):113?120.
在城市化進(jìn)程快速推進(jìn)的時代背景下,建筑施工、舊房拆除等產(chǎn)生的固體建筑垃圾增長迅猛,據(jù)不完全統(tǒng)計,我國每年產(chǎn)生的建筑垃圾量達(dá)20億t,其中65%以上為廢棄混凝土[1-3]。廢棄混凝土經(jīng)破碎、篩分后可作為再生骨料重新利用,可大大緩解天然砂石資源不足的問題[4]。再生骨料的制造過程會同時產(chǎn)生質(zhì)量分?jǐn)?shù)為10%~20%的細(xì)粉,通常稱為再生微粉[5-6]。
Duan等[7]指出,再生微粉主要來自混凝土中的硬化水泥漿體,含有硅鋁質(zhì)成分,具有潛在活性。田青等[8]認(rèn)為,再生微粉中含有水化硅酸鈣(C-S-H)凝膠、Ca(OH)2、鈣礬石(AFt)等物相,熱激活可改變原有物質(zhì)的組成結(jié)構(gòu),例如C-S-H凝膠、Ca(OH)2發(fā)生脫水,使微粉具備再水化膠凝的能力。茅寧[9]進(jìn)一步結(jié)合熱重與差熱分析結(jié)果認(rèn)為,廢棄混凝土中Ca(OH)2和C-S-H大量分解的溫度分別為438、572℃,CaCO3則在更高溫度(841℃)發(fā)生分解;類似結(jié)果同樣出現(xiàn)于單一C-S-H礦物或者水泥凈漿的焙燒過程中[10-11]。對于整體的再生微粉來說,由于再生微粉的成分復(fù)雜、來源寬泛,導(dǎo)致其熱激活優(yōu)化參數(shù)及作用效果存在明顯差異,例如,呂雪源等[12]發(fā)現(xiàn),在溫度為600℃時再生微粉活性最好,盡管遇水后仍會生成C-S-H和Ca(OH)2等水化產(chǎn)物[13]。究其原因,仍是與熱激活過程中再生微粉的物相轉(zhuǎn)變機制不明確有直接關(guān)系。
為了解析廢棄混凝土再生微粉的熱活化機制,優(yōu)化再生微粉的火山灰反應(yīng)活性,本文中研究焙燒過程中再生微粉的活性改善,測試分析焙燒溫度和時間對再生微粉微觀結(jié)構(gòu)和火山灰反應(yīng)活性的影響規(guī)律與作用機制,使再生微粉轉(zhuǎn)換為具有一定價值的膠凝材料,提高再生微粉的經(jīng)濟(jì)效益和使用價值。
1材料與方法
1.1材料和儀器設(shè)備
材料:廢棄混凝土(某建材檢測實驗室,外觀為不規(guī)則塊狀,部分樣品呈現(xiàn)輕骨料混凝土特征,具體表現(xiàn)為存在大量灰黑色橢球形的粗骨料,且破壞裂紋貫穿整個骨料顆粒);水泥(P.O 42.5普通硅酸鹽水泥,冀東水泥有限公司);標(biāo)準(zhǔn)砂(廈門艾思?xì)W標(biāo)準(zhǔn)砂有限公司)。
儀器設(shè)備:SM-500型球磨機(無錫建儀實驗器材有限公司);SX2-8型箱式電阻爐(上海意豐電爐有限公司);101型恒溫鼓風(fēng)干燥箱(北京永光明醫(yī)療儀器有限公司);S2 Ranger型X射線熒光光譜儀(XRF,德國布魯克公司);XRD-700型X射線衍射儀(XRD,日本島津公司);STA4493F3型綜合熱分析儀(TG-DSC,德國耐馳公司)。
1.2再生微粉的制備與焙燒活化
廢棄混凝土試塊經(jīng)初步破碎后,將細(xì)小顆粒體置于球磨機中進(jìn)一步粉磨,時間為20 min,過孔徑為80μm方孔篩得到再生微粉,化學(xué)組成如表1所示。由表可知,再生微粉中所含SiO2、CaO、Al2O3的質(zhì)量分?jǐn)?shù)之和超過80%,但也同時存在Fe2O3含量及含堿量偏高的特點,應(yīng)與廢棄混凝土中陶粒輕骨料的使用有關(guān)。進(jìn)一步采用XRD技術(shù)對再生微粉的礦物組成進(jìn)行測試分析,結(jié)果如圖1所示。由圖可知,再生微粉主要礦物成分為石英、云母、長石和石灰石等,主要源自混凝土所用骨料或摻合料,水泥水化產(chǎn)物主要為Ca(OH)2和C-S-H,對應(yīng)于衍射角為29°、50°等處的衍射峰。
將再生微粉在溫度為500~900℃時焙燒,時間為0.5~3.0 h,為了提高產(chǎn)物反應(yīng)活性,遵循“急燒快冷”原則,即電阻爐到達(dá)設(shè)定溫度并恒溫時放入樣品,待焙燒完畢后立即取出并在空氣中快速冷卻。焙燒后產(chǎn)物仍保持良好的分散狀態(tài),不需進(jìn)行再次磨細(xì)即可進(jìn)行再生微粉火山灰反應(yīng)活性檢測。
1.3火山灰反應(yīng)活性試驗方法
火山灰反應(yīng)活性試驗參照建工行業(yè)標(biāo)準(zhǔn)《混凝土和砂漿用再生微粉》(JG/T 573—2020)進(jìn)行,用質(zhì)量分?jǐn)?shù)為30%的再生微粉取代等質(zhì)量分?jǐn)?shù)水泥,水灰質(zhì)量比為0.5∶1,膠砂質(zhì)量比為1∶3,制作長度×寬度×高度為40 mm×40 mm×160 mm的水泥膠砂試塊,通過測試試塊7、28 d的抗壓強度,并與不摻再生微粉的試樣相同齡期的水泥試塊抗壓強度進(jìn)行對比,得到再生微粉及焙燒產(chǎn)物的7、28 d活性指數(shù),分析焙燒溫度和時間對再生微粉火山灰反應(yīng)活性的影響。
2結(jié)果與分析
再生微粉在一定溫度下焙燒可生成具有水化活性的C2S等物質(zhì),可用于制備具有較高力學(xué)強度的建材制品。本實驗中所采用的再生微粉,在未焙燒的情況下,7、28 d活性指數(shù)分別為33.87%、53.95%,不滿足JG/T 573—2020規(guī)定的技術(shù)指標(biāo)要求(28 d再生微粉的活性指數(shù)不得低于70%)。為了提高再生微粉的火山灰反應(yīng)活性,本實驗中研究焙燒溫度和時間對再生微粉活性指數(shù)的影響,并分析作用機制。
2.1焙燒條件對再生微粉活性指數(shù)的影響
實驗室條件下,對再生微粉的焙燒活化主要是控制焙燒過程的溫度和時間。焙燒溫度對再生微粉活性指數(shù)的影響如圖2所示。由圖2(a)可知,焙燒過程可有效改善再生微粉的火山灰反應(yīng)活性,各溫度條件下所焙燒樣品的活性指數(shù)均明顯高于原樣的。進(jìn)一步量化分析發(fā)現(xiàn),在焙燒時間為1 h的情況下,隨著焙燒溫度的提高,再生微粉的7、28 d活性指數(shù)呈現(xiàn)先升后降的趨勢,且都在溫度為600℃時達(dá)到峰值,其中7 d活性指數(shù)為64.11%,28 d活性指數(shù)為77.35%。
由圖2(b)可知,在溫度為600℃條件下,隨著焙燒時間的延長,再生微粉的活性指數(shù)同樣呈先增后降的趨勢,在焙燒時間為1.5 h時達(dá)到峰值,其中7 d活性指數(shù)為82.47%,28 d活性指數(shù)為90.19%,遠(yuǎn)遠(yuǎn)超過建工行業(yè)標(biāo)準(zhǔn)JG/T 573—2020的技術(shù)要求。與未經(jīng)焙燒的再生微粉原樣相比,經(jīng)溫度為600℃、時間為1 h焙燒的再生微粉在7、28 d齡期的活性指數(shù)分別提高了143%、67%,焙燒處理對再生微粉在水化早期的活化效果更為顯著。
焙燒過程對再生微粉的火山灰反應(yīng)活性有明顯的改善作用,對7 d活性指數(shù)的改善效果更高于28 d活性指數(shù),原因應(yīng)與再生微粉原料水化較為完全、自身活性偏低有關(guān)。更高的焙燒溫度(gt;600℃)或更長的焙燒時間(gt;1.5 h)對再生微粉活性指數(shù)的提高卻是不利的,作用機制需結(jié)合進(jìn)一步的微觀結(jié)構(gòu)檢測結(jié)果加以說明。
2.2再生微粉的熱分析
圖3為再生微粉原料的綜合熱分析TG-DSC曲線。由圖可知,在溫度升高的過程中,再生微粉的熱重(TG)曲線保持下降趨勢,尤其是焙燒溫度為20~150、720~780℃時的失質(zhì)量較為明顯。結(jié)合再生微粉的礦物組成,溫度為20~150℃時失質(zhì)量的主要原因是樣品中黏土礦物的自由水分蒸發(fā)所致,Ca(OH)2、C-S-H等水化產(chǎn)物的失水分解主要發(fā)生在溫度為200~600℃時;由于水化產(chǎn)物尤其是C-S-H凝膠的組成、結(jié)構(gòu)并不固定,因此失質(zhì)量過程并未伴隨有明顯的吸熱峰。溫度為750℃附近TG曲線出現(xiàn)明顯下降,應(yīng)為石灰石大量分解的結(jié)果,明顯證據(jù)就是同溫條件下DSC曲線出現(xiàn)明顯的吸熱峰,計算出的熔融焓為-11.5 J/kg。此外,DSC曲線在溫度為850℃處出現(xiàn)一個較弱的放熱峰,而對應(yīng)的熱重曲線上卻沒有明顯改變,結(jié)合微觀分析,認(rèn)為此處發(fā)生放熱性的固相反應(yīng)為鈣鋁黃長石(C2AS)的形成等。
2.3焙燒過程中再生微粉的物相變化
采用XRD技術(shù)對焙燒過程中再生微粉的物相變化進(jìn)行測試,分析對溫度較為敏感的石灰石、高嶺石、Ca(OH)2、C-S-H等礦物組分以及新形成的物相。不同焙燒條件所得再生微粉的XRD圖譜如圖4所示。由圖4(a)可知,高嶺石礦物存在于溫度為105℃的烘干樣品和溫度為500℃的焙燒試樣中,最顯著證據(jù)是衍射角為12.44°處的特征衍射峰,但當(dāng)焙燒溫度提高為600℃時,該特征衍射峰則基本消失,表明高嶺石礦物吸熱發(fā)生脫羥基反應(yīng),晶格被破壞[14]。焙燒溫度繼續(xù)提高至800℃及以上,樣品中出現(xiàn)歸屬于鋁硅尖晶石的特征衍射峰,應(yīng)為高嶺石發(fā)生高溫相轉(zhuǎn)變的結(jié)果。圖4(a)中各焙燒樣品的XRD圖譜中,對應(yīng)于石灰石的特征衍射峰主要存在于溫度不高于700℃的焙燒樣品中,當(dāng)溫度提高至800℃,石灰石衍射峰強度顯著下降,表明石灰石發(fā)生分解,但并未出現(xiàn)相應(yīng)的分解產(chǎn)物CaO,而是在溫度為900℃條件下,進(jìn)一步反應(yīng)生成C2AS。作為最主要的水泥水化產(chǎn)物,再生微粉的XRD圖譜中對應(yīng)于C-S-H和Ca(OH)2的特征衍射峰并不顯著,應(yīng)與C-S-H結(jié)晶度較差或二次水化消耗Ca(OH)2有關(guān)。隨著焙燒溫度的提高(≥600℃),C-S-H和Ca(OH)2的特征衍射峰有所減弱,說明這些水化產(chǎn)物脫水分解,在更高溫度(900℃)時則可能參與了C2AS的形成。此外,隨著溫度升高,石英相的特征衍射峰強度略呈增強趨勢,直接影響再生微粉活性[15]。
由圖4(b)可知,在時間為0~1.0 h時,樣品內(nèi)對應(yīng)于高嶺石和C-S-H的特征衍射峰逐漸減弱,表明黏土礦物和水泥水化產(chǎn)物發(fā)生脫水分解過程;在時間為1.5~3.0 h時,所得樣品的XRD圖譜并未出現(xiàn)顯著改變,表明溫度為600℃條件下的長時間焙燒并未導(dǎo)致再生微粉發(fā)生更多的物相變化,并未出現(xiàn)硅鈣石或硅酸二鈣(C2S)等晶相的形成與生長。
結(jié)合圖2(a)、(b)分析可知,焙燒溫度達(dá)到600℃,高嶺石等黏土礦物發(fā)生脫羥基反應(yīng)并形成沒有明顯特征衍射峰的偏高嶺土等物相,而水泥水化產(chǎn)物也開始分解,有利于提高再生微粉的火山灰反應(yīng)活性,但溫度提高至一定程度,溫度為800℃時焙燒會導(dǎo)致脫水高嶺石進(jìn)一步吸熱轉(zhuǎn)化成鋁硅尖晶石,溫度為900℃時則通過固相反應(yīng)形成C2AS。由于鋁硅尖晶石和C2AS的水化活性弱,反而導(dǎo)致再生微粉火山灰反應(yīng)活性的下降。
為了驗證上述推斷,采用P·O 42.5強度等級的普通硅酸鹽水泥凈漿充分水化后,在溫度為900℃、焙燒時間為1 h時所得樣品進(jìn)行XRD物相測試分析。相同條件下焙燒的再生水泥和再生混凝土微粉的XRD圖譜對比如圖5所示。由圖可知,水泥凈漿在溫度為900℃時焙燒后會形成C2S,而C2AS和鋁硅尖晶石的特征衍射峰則明顯低弱,而同條件焙燒的再生微粉則主要形成C2AS。二者在水化活性上存在顯著差異,進(jìn)一步影響了焙燒樣品的火山灰反應(yīng)活性。
3結(jié)論
1)焙燒過程可明顯改善再生微粉的火山灰反應(yīng)活性,具體表現(xiàn)為樣品的活性指數(shù)隨焙燒溫度的升高或焙燒時間的延長呈現(xiàn)出先上升后降低的趨勢。
2)再生微粉焙燒活化的最佳條件為溫度600℃、時間1.0~1.5 h,焙燒產(chǎn)物的7 d活性指數(shù)改善幅度明顯優(yōu)于28 d活性指數(shù)。
3)綜合TG-DSC和XRD分析表明,再生微粉在溫度為600℃、時間為1.0~1.5 h的焙燒條件下,發(fā)生高嶺石等黏土礦物的脫羥基反應(yīng),水泥水化產(chǎn)物Ca(OH)2、C-S-H等受熱分解,同時避免了在更高溫度下生成鋁硅尖晶石、C2AS等低活性晶相,對再生微粉的火山灰反應(yīng)活性最為有利。
利益沖突聲明(Conflict of Interests)
所有作者聲明不存在利益沖突。
All authors disclose no relevant conflict of interests.
作者貢獻(xiàn)(Author’s Contributions)
劉燕妮、吳曉榮、和佟鈺進(jìn)行了方案設(shè)計,劉燕妮、吳曉榮、王剛、趙明宇和佟鈺參與了論文的寫作和修改。所有作者均閱讀并同意了最終稿件的提交。
The study was designed by LIU Yanni,WU Xiaorong and TONG Yu.The manuscript was written and revised by LIU Yanni,WU Xiaorong,WANG Gang,ZHAO Mingyu and TONG Yu.All authors have read the last version of paper and consented for submission.
參考文獻(xiàn)(References)
[1]楊宏天,李北星,易浩,等.再生微粉代粉煤灰對再生混凝土性能的影響[J].水利水電技術(shù),2023,54(8):197-207.
YANG H T,LI B X,YI H,et al.Effect of replacement of fly ash with recycled powder on properties of recycled concrete[J].Water Resources and Hydropower Engineering,2023,54(8):197-207.
[2]陳璋,陳徐東,白銀,等.粉煤灰對低膠材自密實混凝土強度及孔結(jié)構(gòu)的影響[J].水利水電技術(shù),2023,54(2):179-189.
CHEN Z,CHEN X D,BAI Y,et al.Influence of flyash on strength and pore structure of self-compacting concrete[J].Water Resources and Hydropower Engineering,2023,54(2):179-189.
[3]王炳監(jiān),胥民堯,沈俊宇,等.改性再生粗骨料對混凝土力學(xué)性能和滲透性能的影響[J].水利水電技術(shù),2023,54(1):199-206.
WANG B J,XU M Y,SHEN J Y,et al.Influence of the reconstruction of recycled coarse aggregate on mechanical perfor-mance and permeability of concrete[J].Water Resources and Hydropower Engineering,2023,54(1):199-206.
[4]王盤龍,楊光.廢棄混凝土粉體活化試驗研究[J].山西建筑,2016,42(15):114-116.
WANG P L,YANG G.On activation test of waste concrete powder[J].Shanxi Architecture,2016,42(15):114-116
[5]張奕,陸飛,毛江鴻,等.復(fù)摻礦物摻合料對混凝土收縮徐變的影響規(guī)律及應(yīng)用[J].混凝土,2021(3):90-95.
ZHANG Y,LU F,MAO J H,et al.Effect of compound mineral admixture on shrinkage and creep properties of concrete and its application[J].Concrete,2021(3):90-95.
[6]劉大慶,陳亮亮,宮經(jīng)偉,等.硫酸鹽干濕循環(huán)作用下再生混凝土抗壓與劈拉強度的關(guān)系研究[J].水利水電技術(shù),2018,49(4):188-194.
LIU D Q,CHEN L L,GONG J W,et al.Study on relationship between compressive strength and splitting tensile strength of recycled concrete under effect of sulfate dry-wet circulation[J].Water Resources and Hydropower Engineering,2018,49(4):188-194.
[7]DUAN Z,HOU S,XIAO J.Study on the essential properties of recycled powders from construction and demolition waste[J].Journal of Cleaner Production,2023,253:119865.
[8]田青,屈孟嬌,張苗,等.廢棄混凝土再生微粉激活方式研究進(jìn)展[J].硅酸鹽通報,2020,39(8):2476-2485.
TIAN Q,QU M J,ZHANG M,et al.Research progress on activation way of recycled powder of waste concrete[J].Bulletin of the Chinese Ceramic Society,2020,39(8):2476-2485.
[9]茅寧.廢棄混凝土低溫煅燒-水熱合成硅鈣制品[D].大連:大連理工大學(xué),2020.
MAO N.Silica calcium products using waste concrete by hydrothermal synthesis at low calcined temperature[D].Dalian:Dalian University of Technology,2020.
[10]鐘白茜,楊南如.用(29)Si-NMR和TMS-GC研究由水熱合成CSH脫水形成β-C2S[J].硅酸鹽學(xué)報,1994,22(6):566-572.
ZHONG B Q,YANG N R.An investigation on the formatiom process ofβ-C2S from hydrothermally synthesized CSH by(29)Si-NMR and TMS-GC[J].Journal of the Chinese Ceramic Society,1994,22(6):566-572.
[11]鄭芳宇.水泥混凝土材料過程工程學(xué)研究[D].大連:大連理工大學(xué),2006.
ZHENG F Y.Study on the process engineering of cement concrete material[D].Dalian:Dalian University of Technology,2006.
[12]呂雪源,王樂生,陳雪,等.混凝土再生微粉活性試驗研究[J].青島理工大學(xué)學(xué)報,2009,30(4):137-139,179.
LV X Y,WANG L S,CHEN X,et al.Experimental study on the activity of concrete recycled powder[J].Journal of Qing?dao Technological University,2009,30(4):137-139,179.
[13]SARSHAR R,KHOURY G A.Materials and environmental factors influencing the compressive strength of unsealedcement paste and concrete at high temperatures[J].Magazine of Concrete Research,1993,45(102):51-61.
[14]張濤.超聲波輔助改性煅燒煤系高嶺土及其吸油性能研究[D].太原:太原理工大學(xué),2022.
ZHANG T.Study on ultrasonic assisted modification of calcined coal series kaolin and itsoil adsorption performance[D].Taiyuan:Taiyuan University of Technology,2022.
[15]于媛,胡慧敏,裴巧玲,等.再生微粉-再生骨料混凝土力學(xué)性能及微觀結(jié)構(gòu)研究[J].功能材料,2022,53(8):8147-8152,8175.
YU Y,HU H M,PEI Q L,et al.Study on mechanical properties and microstructure of recycled aggregate-mixed powder concrete[J].Journal of Functional Materials,2022,53(8):8147-8152.
Influence of calcination processing on microstructural characteristics and activity index of recycled fine powder
LIU Yanni1,WU Xiaorong1,WANG Gang2,ZHAO Mingyu1,TONG Yu1
1.School of Materials Science and Engineering,Shenyang Jianzhu University,Shenyang 110168,China;
2.The 2nd Construction Limited Company of China Construction Eighth Engineering Division,Jinan 250022,China
Abstract
Objective Recycled fine powder(RFP)is microscaled granules generated in the preparation of recycled aggregates by a process of crushing of construction or demolition wastes.Some feasible ways have been developed to realize the resourced utilization of RFP,of which with the most adaptable one being as the active admixture for the production of Portland cement or commercial concrete.The higher the pozzolanic activity of RFP is,the greater the utilization rate that can be achieved.The process of calci?nation at a temperature not exceeding 1 000℃is generally esteemed as one of the most effective ways to enhance the economic and technological results of RFP as concrete admixture.However,the activation mechanism of RFP in the process of high temperature calcination may not consistently explain the experimental results in any cases,since the the efficiency of calcination is apparently depending on the source of RFP material and the temperature regime of the calcination.A strong requirement arises subsequently to clarify the activization mechanism of RFP in the process of high temperature calcination.
Methods In this paper,RFP specimens were calcinedat a certain temperature ranging from 600 to 900℃,while the calcination time was adjusted in the range of 0.5 to 3.0 hours.The as-prepared RFP specimens were used to partly replace the Port?land cement at a weight ratio of 30%for the preparation of standard mortar with a water-to-cement(W-C)ratio of 0.5 by weight and a weight ratio of 3∶1 for the standard sand to Portland cement.Changes in the compressive strength of such mortar blocks after the standard curing of 7 d and 28 d were investigated in details to reveal the effect of high temperature calcination on the pozzolanic activity of RFP,followed by the measurements and discussion of the microstructural characteristics of RFP by means of comprehensive thermal analysis,i.e.thermal gravity(TG)and differential scanning calorimeter(DSC),and X-ray diffrac?tion(XRD)to demonstrate the phase changes of RFP during the high-temperature calcination.
Results and Discussion When the calcination temperature increased from 600 to 900°C step by step,the activity indexofcal?cined RFP was found to increase evidently with the increasing temperature for calcination,but further elevation of calcination temperature higher than 600°C was not proposed due to the lowering of the activity index.Similar results was observed from the activity index tests of RFP calcined at 600°C with different time,in which the activity indexof RFP was found to increase appar?ently when the calcination time was not longer than 1.5 hours,but further increase of calcination time gave rise of a relative low activity index from the obtained RFP.Therefore,the suggested calcination conditions for RFP were to be 600°C in temperature and 1.0~1.5 h in time,which could bring forth of a maximum activity index of 90.19%at the age of 28 d.It is also found that the as-prepared RFP resulted in a relative high indexof pozzolanic reactivity at the age of 7 d compared to that at 28 d.Further?more,microstructural characterizaion under TG-DSC and XRD showed that the calcination being carried out at 600°C brought forth of an appreciable change of microscaled structure in RFP,i.e.the dehydration of clay minerals such as kaolinite,as well as the hydrated products of Portland cement including calcium hydroxide and calcium silicate hydrate(C-S-H),which must be helpful to improve the pozzolanic activity of RFP.However,high temperature calcination at 800 to 900°C resulted in the gen?eration of low-activity products such as spinel(Al2O3·SiO2)or gehlenite(2CaO·Al2O3·SiO2,C2AS),and thus made a negative effect on the pozzolanic activity of RFP.The calcination of hydrated Portland cement at 900°C did give rise to the generation ofC2S rather than C2AS.
Conclusion The processing of high-temperature calcination is evidently helpful to upgrade the pozzolanic activity of RFP,but the calcination regime must be coordinated with the chemical composition and mineral components of RFP.As a result,the cal?cination of RFP in laboratory is proposed to be carried out at 600°C in temperature and 1.0 to 1.5 h in time to realize an opti?mized improvement of its pozzolanic activity,which can be attributed to the dehydration and amorphization of clay minerals,as well as the thermal decomposition of hydrated Portland cement,especially C-S-H.
Keywords:concrete;recycled fine powder;calcination;activity index;microstructural characteristics
(責(zé)任編輯:武秀娟)