• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      超吸水聚合物對堿激發(fā)泡沫混凝土性能的影響

      2024-09-29 00:00:00郝偉偉張樹祥買英東包超毛明杰
      中國粉體技術(shù) 2024年5期

      摘要:【目的】研究超吸水聚合物(super?absorbent polymer,SAP)對提升以礦渣和再生微粉為主要材料的堿激發(fā)泡沫混凝土性能的影響?!痉椒ā空{(diào)節(jié)SAP預(yù)吸NaOH溶液的質(zhì)量分數(shù)和SAP摻量(質(zhì)量分數(shù),下同),考察其對堿激發(fā)泡沫混凝土的流動性、吸水率、凝結(jié)時間、導(dǎo)熱系數(shù)、孔隙結(jié)構(gòu)及強度的影響;借助掃描電子顯微鏡和傅里葉紅外光譜分析,從微觀角度揭示SAP對泡沫混凝土性能影響機制?!窘Y(jié)果】隨著SAP摻量的增加,堿激發(fā)泡沫混凝土的流動度、凝結(jié)時間和導(dǎo)熱系數(shù)呈下降趨勢,但吸水率增大。SAP的摻入會導(dǎo)致堿激發(fā)泡沫混凝土孔隙率增大和孔隙分布的改變,摻入預(yù)吸水和預(yù)吸質(zhì)量分數(shù)為0.4%的NaOH溶液的SAP后,增大了堿激發(fā)泡沫混凝土中孔隙直徑大于550μm的孔隙比例;摻入預(yù)吸質(zhì)量分數(shù)為0.9%的NaOH溶液的SAP后,則增大了堿激發(fā)泡沫混凝土中孔隙直徑小于250μm的孔隙比例。適量的摻入SAP可以顯著改善堿激發(fā)泡沫混凝土的抗壓、抗折強度,當SAP預(yù)吸質(zhì)量分數(shù)為0.4%的NaOH溶液且摻量為0.10%時,堿激發(fā)泡沫混凝土的抗壓、抗折強度最高。【結(jié)論】SAP預(yù)吸NaOH溶液處理后,可以明顯改善堿激發(fā)泡沫混凝土的工作性能、孔隙結(jié)構(gòu)和力學(xué)性能。

      關(guān)鍵詞:泡沫混凝土;超吸水聚合物;再生微粉;堿激發(fā);孔隙結(jié)構(gòu)

      中圖分類號:TU528.2;TB44文獻標志碼:A

      引用格式:

      郝偉偉,張樹祥,買英東,等.超吸水聚合物對堿激發(fā)泡沫混凝土性能的影響[J].中國粉體技術(shù),2024,30(5):70-80.

      HAO Weiwei,ZHANG Shuxiang,MAI Yingdong,et al.Influence of super-absorbent polymer on properties of alkali-activated foamed concrete[J].China Powder Science and Technology,2024,30(5):70?80.

      隨著城市化建設(shè)的加快,越來越多的舊建筑被拆除,產(chǎn)生了大量混凝土建筑垃圾。在回收建筑垃圾制備再生骨料的過程中,會產(chǎn)生許多粒徑小于75μm的顆粒,稱作再生微粉,這些再生微粉粒徑小,容易漂浮在空氣中污染環(huán)境[1-3]。再生微粉的資源化利用是實現(xiàn)建筑垃圾零排放的重要環(huán)節(jié)。在工程建設(shè)中,堿激發(fā)礦渣基泡沫混凝土作為一種建筑節(jié)能材料在建筑領(lǐng)域具有廣闊的應(yīng)用前景[4-5];因為成本較高,所以需加入其他材料以降低成本[4-5]。使用再生微粉作為輔助膠凝材料制備堿激發(fā)泡沫混凝土可降低成本,還能解決建筑垃圾破碎粉塵污染大氣等問題,但較高摻量的再生微粉通常會使混凝土的強度降低[6-9]。為了提高再生微粉摻入后材料的性能,龔泳帆等[10]通過機械力、化學(xué)、熱力耦合活化法提高再生微粉的活性,進而提高堿激發(fā)再生微粉膠凝材料的性能。姚田帥等[11]在以再生微粉和礦渣為原料的泡沫混凝土中摻入CaCl2·6H2O,成功地提高了試件的抗壓強度與熱惰性。李琴等[12]研究發(fā)現(xiàn),堿激發(fā)再生微粉活性與溫度有很大關(guān)系,溫度過低會導(dǎo)致堿激發(fā)反應(yīng)慢、堿激發(fā)泡沫混凝土的抗壓強度低;溫度過高會使得體系內(nèi)生成膠凝土物凝結(jié)太快、堿激發(fā)泡沫混凝土的抗壓強度同樣降低。

      為了改善摻入再生微粉的堿激發(fā)泡沫混凝土材料性能,目前多采用不同的活化方式激發(fā)再生微粉的活性,或通過加入外加劑改變水化產(chǎn)物的方式來實現(xiàn)。這些方式往往成本較高,用時較長,很難應(yīng)用于工程實際中。基于上述考慮,本文中通過向以再生微粉和礦渣為原料的堿激發(fā)泡沫混凝土中摻入超吸水聚合物(super?absorbent polymer,SAP),利用內(nèi)養(yǎng)護的手段來提高材料性能。具體研究了預(yù)吸不同質(zhì)量分數(shù)的NaOH溶液的SAP對堿激發(fā)泡沫混凝土的工作性能和孔結(jié)構(gòu)的影響,考察基于SAP內(nèi)養(yǎng)護的堿激發(fā)泡沫混凝土的抗壓強度和抗折強度變化規(guī)律,并借助掃描電子顯微鏡和傅里葉紅外光譜分析,從微觀角度揭示了SAP對泡沫混凝土性能影響機制。

      1材料與方法

      1.1試劑材料和儀器設(shè)備

      試劑材料:再生微粉為寧夏某拆除建筑中廢棄混凝土,原設(shè)計強度等級為C30。破碎后,通過孔徑為1.18 mm的方孔篩初篩,磨成粉末,球料質(zhì)量比為1∶1,轉(zhuǎn)速為300 r/min。礦渣和再生微粉的化學(xué)組成如表1所示。激發(fā)劑由水玻璃(模數(shù)為3.3)和NaOH混合配置。SAP是一種吸水能力極強的特殊吸附性樹脂。選用聚丙烯酸酯型SAP,由交聯(lián)的聚丙烯酸酯與NaOH溶液通過中和反應(yīng)制成,粒徑為96~125μm。發(fā)泡劑是山東樂高公司生產(chǎn)的Legao發(fā)泡劑,與自來水以質(zhì)量比1∶50混合使用。

      儀器設(shè)備:MT81-1100型壓力機(上海美三思檢測設(shè)備有限公司)、QXQM-12型行星球磨機(長沙天創(chuàng)粉末技術(shù)有限公司)、AD-HD208CD型光學(xué)顯微鏡(深圳市奧斯微光學(xué)儀器有限公司)、Gemini SEM 300型掃描電子顯微鏡(武漢環(huán)球三本精密儀器有限公司)、TENSOR 27型紅外光譜儀(德國布魯克公司)。

      1.2制備方法

      按照表2的配合比設(shè)計制備干密度為800 kg/m3的堿激發(fā)泡沫混凝土,水膠比(質(zhì)量比,下同)為0.38,水玻璃的模數(shù)為1.0,堿當量(Na2O與膠凝材料的質(zhì)量比)為6%。再生微粉與礦粉的質(zhì)量比為3∶7。以未摻SAP的堿激發(fā)泡沫混凝土為對照組。經(jīng)過預(yù)吸水處理的SAP以SAP-Water表示,預(yù)吸質(zhì)量分數(shù)為0.4%和0.9%的NaOH溶液的SAP以SAP-0.4%NaOH、SAP-0.9%NaOH表示,0.5%SAP-0.4%NaOH表示本組摻入了0.5%的預(yù)吸質(zhì)量分數(shù)0.4%的NaOH溶液的SAP,其余配比以此類推。

      按配合比稱出干料的質(zhì)量,置于攪拌機中攪拌30 s。再將水與激發(fā)劑倒入攪拌機中攪拌1 min。后將稱量好的SAP預(yù)吸指定量的溶液,加入攪拌漿體中,再攪拌2 min,獲得均勻流態(tài)的漿體。最后將預(yù)先制備和稱量好的泡沫迅速均勻倒入漿體中,期間攪拌機保持運轉(zhuǎn),制成堿激發(fā)泡沫混凝土。

      1.3性能測試

      為了測試堿激發(fā)泡沫混凝土的工作性能,依據(jù)相關(guān)標準[13-16]測定其流動性、吸水率、凝結(jié)時間和導(dǎo)熱系數(shù)。按照JG/T 266—2011《泡沫混凝土》[16]的方法測定抗壓強度,壓力機的加載速率為0.5 kN/s。測試堿激發(fā)泡沫混凝土抗折強度過程按GB/T 17671—2021《水泥膠砂強度檢驗方法(ISO法)》[17]的有關(guān)規(guī)定進行。

      采用光學(xué)顯微鏡測試堿激發(fā)泡沫混凝土的孔隙率和孔隙分布。將采集的圖片使用Image-Pro-Plus軟件進行二值化處理和分析,獲得孔隙結(jié)構(gòu)數(shù)據(jù)。圖片中每一像素代表150μm的長度,意味著本文中僅能檢測到孔隙直徑大于150μm的孔隙。

      采用掃描電子顯微鏡對堿激發(fā)泡沫混凝土的表面形貌進行表征,用小錘將試樣破碎,使用乙醇終止水化,然后真空干燥后進行測試。使用紅外光譜儀分析各試樣的成分,將堿激發(fā)泡沫混凝土破碎后,將其研磨至通過孔徑為0.075 mm的方孔篩,置于60℃真空干燥箱中干燥3 d,然后進行測試。

      2結(jié)果與分析

      2.1 SAP對堿激發(fā)泡沫混凝土工作性能的影響

      圖1所示為SAP摻量(質(zhì)量分數(shù),下同)對堿激發(fā)泡沫混凝土流動度的影響。由圖可知,隨著SAP-Water和SAP-0.4%NaOH摻量的增加,流動度整體呈下降趨勢,與SAP和膠凝材料間的競爭性吸水行為有關(guān)[18]。SAP預(yù)吸少量水分或質(zhì)量分數(shù)為0.4%的NaOH溶液時,處于非飽和狀態(tài)下,在攪拌過程中會吸收并固定新拌漿體中的自由水,從而降低有效水灰比,增加內(nèi)部摩擦力,導(dǎo)致流動性下降[19]。隨著SAP-0.9%NaOH摻量的增加,堿激發(fā)泡沫混凝土的流動性基本維持不變,表明此時SAP內(nèi)外的滲透壓達到平衡,不再繼續(xù)吸收漿體中的液體。

      圖2所示為SAP摻量對堿激發(fā)泡沫混凝土吸水率的影響。由圖可知,堿激發(fā)泡沫混凝土吸水率具有SAP摻量增強效應(yīng),其中SAP-Water的摻入對吸水率影響最顯著,當其摻量從0.05%增加到0.2%時,堿激發(fā)泡沫混凝土吸水率從46.7%提高到了53.5%。這是因為隨著水分的蒸發(fā)及膠凝材料的水化反應(yīng),基體內(nèi)部SAP體積收縮,增加了孔隙率,進而提升了吸水率,其次,SAP的高吸水性能促進了水分向堿激發(fā)泡沫混凝土內(nèi)部的遷移,從而增強了材料的吸水能力[20]。相比之下SAP-0.4%NaOH和SAP-0.9%NaOH顯示出較低的吸水性和膨脹特性,且隨著NaOH溶液質(zhì)量分數(shù)的增加這一現(xiàn)象更加明顯。

      圖3所示為SAP摻量對堿激發(fā)泡沫混凝土凝結(jié)時間的影響。圖中,深色區(qū)域代表初凝時間,淺色與深色相結(jié)合的部分表示終凝時間。由圖可知,隨著SAP-Water摻量的增加,凝結(jié)時間先縮短后延長。這是因為SAP-Water的增加降低了堿激發(fā)泡沫混凝土漿體中的自由水量,從而提高了漿體內(nèi)的OH-含量,促進了堿激發(fā)聚合反應(yīng),導(dǎo)致凝結(jié)時間縮短;當SAP摻量超過0.15%后,凝結(jié)時間開始延長,這是由于過高的離子濃度導(dǎo)致的Na鈍化效應(yīng)[21]。隨著SAP-0.4%NaOH的摻入,凝結(jié)時間仍然低于對照組,并隨SAP摻量增加而進一步縮短,表明SAP-0.4%NaOH吸收了部分自由水,加快了漿體的凝結(jié)過程。當摻入SAP-0.9%NaOH后,凝結(jié)時間進一步縮短。這是因為SAP-0.4%NaOH和SAP-0.9%NaOH緩慢釋放OH-,基體內(nèi)部的OH-含量逐漸增加,避免了漿體的突然凝結(jié)。

      圖4所示為SAP對堿激發(fā)泡沫混凝土導(dǎo)熱系數(shù)的影響。由圖可見,隨著SAP-Water和SAP-0.4%NaOH摻量的增加以及SAP預(yù)吸NaOH溶液質(zhì)量分數(shù)的降低,堿激發(fā)泡沫混凝土的導(dǎo)熱系數(shù)呈現(xiàn)減小趨勢,這一趨勢與堿激發(fā)泡沫混凝土吸水率的變化呈現(xiàn)出相反的規(guī)律。這是因為SAP的摻入使堿激發(fā)泡沫混凝土的孔隙率增加,導(dǎo)致熱量傳導(dǎo)的阻礙增多,宏觀表現(xiàn)為堿激發(fā)泡沫混凝土的導(dǎo)熱系數(shù)減小,特別是SAP-Water摻入時導(dǎo)熱系數(shù)減小更為顯著,表明預(yù)吸NaOH溶液質(zhì)量分數(shù)的降低可以提高堿激發(fā)泡沫混凝土的絕熱性能。

      2.2 SAP對堿激發(fā)泡沫混凝土孔隙結(jié)構(gòu)的影響

      圖5所示為SAP對堿激發(fā)泡沫混凝土孔隙率的影響。由圖可見,隨著SAP摻量的增加,堿激發(fā)泡沫混凝土的孔隙率呈現(xiàn)整體上升趨勢,其中摻入SAP-Water的提升效果最為顯著。當SAP-Water的摻量從0增至0.2%時,試件的孔隙率從64.8%上升至67.9%,增幅達4.8%,說明堿激發(fā)泡沫混凝土的孔隙率隨著SAP摻量增加的而增大。當預(yù)吸NaOH溶液的質(zhì)量分數(shù)由04%增加到0.9%時,相同SAP摻量下堿激發(fā)泡沫混凝土的孔隙率降低,原因是較高含量的堿會增加試件密實度[22]。

      圖6所示為SAP對堿激發(fā)泡沫混凝土孔隙貢獻率的影響。由圖可知,SAP-Water和SAP-0.4%NaOH的摻入均增加了堿激發(fā)泡沫混凝土中直徑大于550μm的孔隙的比例,但摻入SAP-Water的增加幅度更大;摻入SAP-0.9%NaOH則會增大堿激發(fā)泡沫混凝土中直徑小于250μm的孔隙的比例;無論是預(yù)吸何種質(zhì)量分數(shù)的NaOH溶液,SAP摻量的增加均會減小堿激發(fā)泡沫混凝土中直徑為250~550μm的孔隙的比例。

      圖7所示為堿激發(fā)泡沫混凝土試樣28 d的孔隙微觀結(jié)構(gòu)。由圖7(a)可見,對照組基體孔壁平滑,產(chǎn)物較少,且有裂縫。圖7(b)中泡沫孔壁產(chǎn)物增加,裂縫數(shù)量減少,這可能是SAP的內(nèi)養(yǎng)護效果,為孔壁附著產(chǎn)物的形成提供了必要條件。由圖7(c)可以看出,泡沫的孔型得到顯著改善,并且孔壁附著產(chǎn)物增多,表明SAP和質(zhì)量分數(shù)為0.4%的NaOH溶液協(xié)同作用促進了基體的水化,減少了內(nèi)部缺陷。由圖7(d)中可以看出,盡管試樣孔壁產(chǎn)物增多,但孔洞也有所增加,可能是由于SAP-0.9%NaOH引入了過多的堿導(dǎo)致缺陷增多。

      2.3 SAP對堿激發(fā)泡沫混凝土抗壓強度和抗折強度的影響

      圖8所示為SAP對堿激發(fā)泡沫混凝土的抗壓強度和抗折強度的影響。由圖8(a)可知,隨著SAP-Water和SAP-0.4%NaOH摻量的增加,堿激發(fā)泡沫混凝土的抗壓強度呈現(xiàn)先上升后下降的趨勢。當SAP-0.4%NaOH的摻量為0.10%時,堿激發(fā)泡沫混凝土抗壓強度最大,達到4.94 MPa。圖8(b)所示的抗折強度結(jié)果也反映了相似的趨勢,SAP摻量的增加初期有利于提高堿激發(fā)泡沫混凝土的抗折強度,當摻量為0.10%時,各配比下堿激發(fā)泡沫混凝土的抗折強度達到峰值。這是因為,在低摻量下,SAP的加入促進了內(nèi)部水化反應(yīng)的均勻性和水化反應(yīng)程度,從而使堿激發(fā)泡沫混凝土的強度提高[23]。其中,SAP-0.4%NaOH對抗折強度的提升效果最為顯著,相比對照組提升了17.5%。當SAP摻量超過最優(yōu)值時,過多的SAP會在堿激發(fā)泡沫混凝土基體中引入額外的孔隙,降低了材料的密實度,進而削弱了強度。

      2.4微觀分析

      2.4.1傅里葉紅外光譜分析

      圖9所示為堿激發(fā)泡沫混凝土28 d試樣的紅外光譜圖。通過對比發(fā)現(xiàn),SAP的摻入并不會改變峰形,即使SAP預(yù)吸收了不同質(zhì)量分數(shù)的NaOH溶液,各配比試樣的紅外光譜峰形也很相似,主要區(qū)別在于峰強。這一現(xiàn)象表明,預(yù)吸NaOH溶液的SAP的加入并未在堿激發(fā)泡沫混凝土中引入新的化合物。在波數(shù)為3 444、1 446 cm-1處的特征峰歸屬試樣中存在水的吸收峰,這是由于溴化鉀研磨時,會吸附空氣中的水蒸氣。在波數(shù)為981和451 cm-1處顯示出Si—O—Si振動吸收峰表明水合硅酸鹽凝膠的形成,此外,在波數(shù)為878 cm-1處出現(xiàn)的Si—OH振動吸收峰,同樣證實了水合硅酸鹽凝膠的生成。值得注意的是,當SAP預(yù)吸NaOH溶液的質(zhì)量分數(shù)增加時,堿激發(fā)泡沫混凝土試樣在波數(shù)為981 cm-1附近的特征峰峰強先是增加后減少,在質(zhì)量分數(shù)為0.4%時達到最高,表明摻入SAP-0.4%NaOH后試樣在28 d時生成的產(chǎn)物最多,與其力學(xué)性能的變化趨勢一致。

      2.4.2微觀結(jié)構(gòu)特征

      圖10所示為堿激發(fā)泡沫混凝土在不同配比下28 d試樣的SEM圖像。由圖10(a)可知,對照組含有少量的鈣礬石和較多的裂縫;圖10(b)中,水化硅鋁酸鈣(C-A-S-H)凝膠開始增加,但依舊存在裂縫,表明SAP的內(nèi)養(yǎng)護效應(yīng)使得試樣的水化程度增加,產(chǎn)物增多但不夠密實。圖10(c)中,明顯看到C-A-S-H凝膠相的增多和裂縫的減少,這是由于SAP-0.4%NaOH的摻入提高了基體水化程度和密實度;在圖10(d)中,盡管觀察到水化產(chǎn)物增加,但內(nèi)部結(jié)構(gòu)仍呈現(xiàn)缺陷和裂縫,這可能是由于過高堿性導(dǎo)致的凝膠結(jié)構(gòu)松散,從而削弱了材料的結(jié)合力和力學(xué)性能。

      3結(jié)論

      本文中研究了預(yù)吸不同質(zhì)量分數(shù)NaOH溶液的SAP對以再生微粉和礦渣為主要原料堿激發(fā)泡沫混凝土的影響,著重探討了對堿激發(fā)泡沫混凝土的流動度、吸水率、凝結(jié)時間、導(dǎo)熱系數(shù)、孔隙結(jié)構(gòu)、抗壓和抗折強度性能的影響。

      1)對堿激發(fā)泡沫混凝土工作性能的研究表明,SAP的摻入顯著影響了堿激發(fā)泡沫混凝土的流動性,隨著SAP摻量的增加,堿激發(fā)泡沫混凝土的流動性降低。SAP的加入有助于縮短堿激發(fā)泡沫混凝土的凝結(jié)時間,尤其當摻入預(yù)吸質(zhì)量分數(shù)為0.9%NaOH溶液的SAP時,堿激發(fā)泡沫混凝土的凝結(jié)時間明顯縮短。此外,SAP對堿激發(fā)泡沫混凝土的導(dǎo)熱系數(shù)和吸水率也有顯著影響,主要與孔隙結(jié)構(gòu)的改變有關(guān)。

      2)孔隙結(jié)構(gòu)分析表明,SAP的摻入不僅會導(dǎo)致堿激發(fā)泡沫混凝土孔隙率上升,而且會造成堿激發(fā)泡沫混凝土孔隙分布的改變。摻入預(yù)吸水和預(yù)吸質(zhì)量分數(shù)為0.4%NaOH溶液的SAP時,增大了堿激發(fā)泡沫混凝土中直徑大于550μm的孔隙的比例,而摻入預(yù)吸質(zhì)量分數(shù)為0.9%的NaOH溶液的SAP則會增大堿激發(fā)泡沫混凝土中直徑小于250μm的孔隙的比例。

      3)力學(xué)性能測試結(jié)果顯示,摻入適量的SAP可以顯著提高堿激發(fā)泡沫混凝土的抗壓和抗折強度。通過微觀分析可知,SAP的摻入改變了堿激發(fā)泡沫混凝土的水化程度和微觀結(jié)構(gòu),促進了C-A-S-H凝膠的形成,提高了材料的密實性。預(yù)吸質(zhì)量分數(shù)為0.4%NaOH溶液的SAP的摻入不僅改善了試件的孔隙結(jié)構(gòu),并且提高了基體水化程度,使試件的力學(xué)性能表現(xiàn)更優(yōu),當SAP摻量為0.1%時,試件28 d抗壓強度達到了4.94 MPa,抗折強度較對照組提升了17.5%。

      利益沖突聲明(Conflict of Interests)

      所有作者聲明不存在利益沖突。

      All authors disclose no relevant conflict of interests.

      作者貢獻(Author’s Contributions)

      毛明杰和郝偉偉進行了方案設(shè)計,毛明杰和郝偉偉參與了論文的寫作和修改,包超、張樹祥和買英東對試驗過程給予幫助。所有作者均閱讀并同意了最終稿件的提交。

      The study was designed by MAO Mingjie and HAO Weiwei.The manuscript was written and revised by MAO Mingjie and HAO Weiwei.The experiment was conducted with the help of BAO Chao,ZHANG Shuxiang and MAI Yingdong.All authors have read the last version of paper and consented to its submission.

      參考文獻(References)

      [1]DACIC A,F(xiàn)ENYVESI O,KOPECSKóK.Investigation of waste perlite and recycled concrete powders as supplementary cementitious materials[J].PeriodicaPolytechnica Civil Engineering,2023,67(3):683-694.

      [2]CHEN X,LI Y,KANG X M,et al.Study on recycled concrete powders as mineral admixture in recycled concrete[J].IOP Conference Series:Earth and Environmental Science,2019,330(2):022113.

      [3]方維炯,宣曉鑫,趙建明,等.再生混凝土粉和再生磚粉活化技術(shù)研究進展[J].混凝土與水泥制品,2023(3):96-101.

      FANG W J,XUAN X X,ZHAO J M,et al.Research progress on activation technology of recycled concrete powder and recycled brick powder[J].China Concrete and Cement Products,2023(3):96-101.

      [4]STOLERIU S,VLASCEANU I N,DIMA C,et al.Alkali activated materials based on glass waste and slag for thermal and acoustic insulation[J].Materiales De Construccion,2019,69(335):194.

      [5]BHUYAN M,GEBRE R,F(xiàn)INNILA M,et al.Preparation of filter by alkali activation of blast furnace slag and its application for dye removal[J].Journal of Environmental Chemical Engineering,2022,10(1):107051.

      [6]HU R H,ZHANG Y C,ZHANG Z Y,et al.Development of sustainable cement-based materials with ultra-high content of waste concrete powder:properties and improvement[J].Sustainability,2023,15(20):14812.

      [7]周文娟,張晨,胡牛濤.再生微粉材料性能表征及其對混凝土性能的影響[J].中國粉體技術(shù),2022,28(5):64-72.

      ZHOU W J,ZHANG C,HU NT,et al.Characterization of recycled micro-powders and their effects on concrete properties[J].China Powder Science and Technology,2022,28(5):64-72.

      [8]馬世龍,尹鍵麗,吳文達,等.建筑垃圾再生微粉基堿激發(fā)膠凝材料綜述[J].混凝土,2023(11):170-174,180.

      MA S L,YIN J L,WU W D,et al.Status of research on construction waste recycled micronized alkali-activated cementitious material[J].Concrete,2023(11):170-174,180.

      [9]LIN Y K,HE T S,DA Y,et al.Effects of recycled micro-powders mixing methods on the properties of recycled concrete[J].Journal of Building Engineering,2023,80:107994.

      [10]龔泳帆,劉欣,賈夢曉,等.耦合活化對廢棄混凝土再生微粉活性的影響[J].混凝土,2023(8):100-104,108.

      GONG Y F,LIU X,JIA M X,et al.Effect of coupling activation on activity of recycled concrete powders[J].Concrete,2023(8):100-104,108.

      [11]姚田帥,田青,張苗,等.堿激發(fā)再生微粉-礦渣制備泡沫保溫材料及其性能[J].硅酸鹽學(xué)報,2023,51(11):2966-2977.

      YAO T S,TIAN Q,ZHANG M,et al.Preparation and properties of foam insulation material by alkali-activate recycled powder-ground granulated blast furnace slag[J].Journal of the Chinese Ceramic Society,2023,51(11):2966-2977.

      [12]李琴,張春紅,陳秋玲,等.溫度對堿激發(fā)再生混凝土微粉砂漿抗壓強度的影響[J].硅酸鹽通報,2017,36(4):1377-1382.

      LI Q,ZHANG C H,CHEN Q L,et al.Effect of temperature on the compressive strength of the mortar made of alkali activated recycled concrete debris[J].Bulletin of the Chinese Ceramic Society,2017,36(4):1377-1382.

      [13]中華人民共和國住房和城鄉(xiāng)建設(shè)部.泡沫混凝土應(yīng)用技術(shù)規(guī)程:JGJ/T 341—2014[S].北京:中國建筑工業(yè)出版社,2014.

      Ministry of Housing and Urban-Rural Development of the People,s Republic of China.Technical specification for applica-tion of foam concrete:JGJ/T 341—2014[S].Beijing:China Architectureamp;Building Press,2014.

      [14]中華人民共和國國家質(zhì)量監(jiān)督檢驗檢疫總局,中國國家標準化管理委員會.水泥標準稠度用水量、凝結(jié)時間、安定性檢驗方法:GB/T 1346—2011[S].北京:中國標準出版社,2011.

      General Administration of Quality Supervision,Inspection and Quarantine of the People,s Republic of China,Standardization Administration of the People,s Republic of China.Test methods for water consumption of normal consistency,setting time and soundness of the portland cement:GB/T 1346—2011[S].Beijing:China Standards Press,2011.

      [15]中華人民共和國國家質(zhì)量監(jiān)督檢驗檢疫總局,中國國家標準化管理委員會.絕熱材料穩(wěn)態(tài)熱阻及有關(guān)特性的測定防護熱板法:GB/T 10294—2008/ISO 8302:1991[S].北京:中國標準出版社,2008.

      General Administration of Quality Supervision,Inspection and Quarantine of the People′s Republic of China,Standardiza-tion Administration of the People,s Republic of China.Thermal insulation-determination of steady-state thermal rasistance and related properties-guarded hot plate apparatus:GB/T 10294—2008/ISO 8302:1991[S].Beijing:China Standards Press,2008.

      [16]中華人民共和國住房和城鄉(xiāng)建設(shè)部.泡沫混凝土:JG/T 266—2011[S].北京:中國質(zhì)檢出版社,2011.

      Ministry of Housing and Urban-Rural Development of the People,s Republic of China.Foamed concrete:JG/T 266—2011[S].Beijing:China Quality Inspection Press,2011.

      [17]國家市場監(jiān)督管理總局,國家標準化管理委員會,水泥膠砂強度檢驗方法(ISO法):GB/T 17671—2021[S].北京:中國標準出版社.2021.

      State Administration for Market Regulation,Standardization Administration of the People,s Republic of China.Test method of cement mortar strength(ISO method):GB/T 17671—2021[S].Beijing:Standards Press of China.2021.

      [18]ZHENG S N,CHEN H X,XIAO Y,et al.Water distribution characteristics of capillary absorption in internally cured con-crete with superabsorbent polymers[J].Construction and Building Materials,2024,418:135446.

      [19]SHI J,ZHANG F,ZHUANG J P,et al.Study on the influence of sap on properties of white fair-faced concrete with lime-stone powder[J].Advances in Materials Science and Engineering,2023,2023:1-11.

      [20]YU P C,MO L M,DENG M,et al.Synergetic effect of mea and sap on the deformation and mechanical properties of conc-rete[J].Magazine of Concrete Research,2019,72(24):1289-1296.

      [21]LI L M,XIE J H,ZHANG B F,et al.A state-of-the-art review on the setting behaviours of ground granulated blast furnaceslag-and metakaolin-based alkali-activated materials[J].Construction and Building Materials,2023,368:130389.

      [22]JIANG F,QI Z W,CANG D Q,et al.Recycling coal fly ash rich in CaO to prepare novel ceramics:role of alkali activa-tion[J].Materials Letters,2022,311:131548.

      [23]LYU Z H,SHEN A Q,HE Z M,et al.Absorption characteristics and shrinkage mitigation of superabsorbent polymers in pavement concrete[J].International Journal of Pavement Engineering,2020,23(2):270-284.

      Influence of super?absorbent polymer on properties of alkali?activated foamed concrete

      HAO Weiwei,ZHANG Shuxiang,MAI Yingdong,BAO Chao,MAO Mingjie

      School of Civil and Hydraulic Engineering,Ningxia University,Yinchuan 750021,China

      Abstract

      Objective Using recycled concrete powder as an auxiliary cementing material to partially replace slag in the preparation of alkali-activated foamed concrete helps reduce costs and address the problem of air pollution caused by construction waste crushing dust.However,a higher amount of recycled fine powder usually reduces the performance of concrete.To improve the properties of alkali-activated foamed concrete with recycled micropowder and slag as the main raw materials,internal curing method was considered.The influence of superabsorbent polymer(SAP)on the properties of alkali-activated foamed concrete was studied in the paper.

      Methods The experiment evaluated the influence of SAP on the fluidity,water absorption rate,setting time,thermal conductiv?ity,pore structure,and strength of alkali-activated foamed concrete by adjusting the mass concentration and dosage of SAP pre-absorbed with NaOH solution.Using alkali-activated foamed concrete without SAP as the control group,the study explored the influence of different SAP dosages(0.05%,0.10%,0.15%,0.2%)on the performance of alkali-activated foamed concrete with recycled micropowder and slag as the main raw materials,when SAP was pre-absorbed with 0%,0.4%,and 0.9%NaOH solution.The mechanism by which SAP affects the performance of alkali-activated foamed concrete was investigated by electron microscopy and infrared spectroscopy analysis.

      Results and Discussion The study on the viability of alkali-activated foamed concrete showed that SAP significantly affected the fluidity of the concrete.With the increase of SAP content,its fluidity showed a general trend of decreasing.The influence of SAP-Water on fluidity was the largest.The water absorption rate of alkali-activated foamed concrete increased gradually with the increase in SAP content.When the content of SAP-Water increased from 0.05%to 0.2%,the water absorption rate increased from 46.7%to 53.5%.Regardless of the mass concentration of NaOH solution added to SAP beforehand,the setting time of alkali-activated foamed concrete was shorter that of the control group.It initially decreased and then increased with the increase in SAP-Water content,but gradually decreased with the increase in SAP-0.4%NaOH or SAP-0.9%NaOH content.Inaddi?tion,SAP significantly influenced the thermal conductivity of alkali-activated foamed concrete.With the increase in SAP-Water and SAP-0.4%NaOH content and the decrease of the mass concentration of NaOH solution pre-absorbed by SAP,the thermal conductivity of alkali-activated foamed concrete decreased,which was related to the changes in pore structure.Pore structure analysis showed that SAP not only increased the porosity of the concrete,but also changed its porosity distribution.Among them,SAP-Water increased the porosity of the concrete most significantly.When the content of SAP-Water increased from 0%to 0.2%,the porosity of the specimen increased from 64.8%to 67.9%,an increase of 4.8%.SAP-Water and SAP-0.4%NaOH increased the proportion of pores larger than 550μm in alkali-activated foamed concrete,while SAP-0.9%NaOH increased the proportion of pores smaller than 250μm.Microscopic analysis of the pore structure showed that pre-absorbed SAP-0.4%NaOH improved the pore wall products,reduced internal defects,and improved the material′s pore structure.Mechanical property test showed that adding an appropriate amount of SAP significantly improved the compressive and flexural strength of alkali-activated foamed concrete.With the increase in SAP-Water and SAP-0.4%NaOH dosage,the compressive strength of the concrete initially increased and then decreased.Microscopic analysis showed that SAP did not produce new hydration prod?ucts but changed its hydration degree and microstructure.SAP promoted the formation of C-A-S-H gel,improving material com?pactness.SAP pre-absorbed with 0.4%NaOH solution not only improved the pore structure of the specimen,but also deepened the hydration degree of the matrix,enhancing the mechanical properties of the specimen.When the dosage was 0.1%,the 28-day compressive strength of the specimen reached 4.94 MPa,and the flexural strength was 17.5%higher than the control group.When the dosage of SAP exceeded the optimal value,excess SAP introduced additional pores in the matrix of alkali-activated foamed concrete,thereby reducing material compactness and consequently its strength.

      Conclusion Pre-absorbed SAP with NaOH solution,serving as an internal curing agent,significantly enhances the hydration degree and pore structure of alkali-activated foamed concrete that incorporates recycled concrete powder.This improvement in microstructure contributes to better viability and increases the strength of the concrete.The proposed method provides a new approach to improving the properties of alkali-activated foamed concrete materials mixed with recycled micropowder.

      Keywords:foamed concrete;super-absorbent polymer;recycled concrete powder;alkali activation;pore structure

      (責任編輯:趙雁)

      灌阳县| 常德市| 廊坊市| 察哈| 临城县| 武川县| 定远县| 台东市| 丹阳市| 宁波市| 辽源市| 临漳县| 讷河市| 农安县| 辽中县| 宁夏| 吕梁市| 广饶县| 光山县| 寿宁县| 鄂尔多斯市| 苏尼特右旗| 花莲市| 伊金霍洛旗| 高台县| 荣昌县| 太原市| 册亨县| 德庆县| 阳曲县| 滁州市| 新乡市| 同德县| 洛川县| 宣恩县| 高雄市| 霍城县| 仙桃市| 曲水县| 凤阳县| 安泽县|