• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      Cr離子摻雜超寬帶近紅外發(fā)光材料的設(shè)計(jì)方法

      2024-09-29 00:00:00尚蒙蒙孫藝昕
      中國(guó)粉體技術(shù) 2024年5期

      摘要:【目的】Cr離子摻雜近紅外(near-infrared,NIR)熒光材料在食品安全、醫(yī)療診斷、現(xiàn)代農(nóng)業(yè)與環(huán)境保護(hù)等各領(lǐng)域廣泛應(yīng)用,獲得研究人員的大量關(guān)注。NIR熒光材料的發(fā)射帶寬對(duì)近紅外光譜技術(shù)檢測(cè)分析的靈敏度和檢測(cè)范圍至關(guān)重要,為獲得Cr離子激活的超寬帶NIR熒光材料,分析Cr離子的價(jià)態(tài)和晶格格位占據(jù),理解發(fā)光構(gòu)效關(guān)系,對(duì)實(shí)現(xiàn)新型Cr離子激活的超寬帶NIR熒光材料具有重要意義?!狙芯楷F(xiàn)狀】綜述NIR熒光材料中Cr離子的常見價(jià)態(tài),總結(jié)Cr離子摻雜超寬帶NIR熒光材料的設(shè)計(jì)方法,概括不同方法制備材料的發(fā)光機(jī)制,對(duì)比不同近紅外熒光材料設(shè)計(jì)方法的優(yōu)缺點(diǎn)?!窘Y(jié)論與展望】認(rèn)為選取弱晶體場(chǎng)環(huán)境基質(zhì)材料,進(jìn)行晶格位點(diǎn)調(diào)控是獲得高效Cr離子摻雜超寬帶近紅外發(fā)光材料的有效方法。

      關(guān)鍵詞:Cr離子摻雜;近紅外發(fā)光;發(fā)光機(jī)制

      中圖分類號(hào):O611.3;TB4文獻(xiàn)標(biāo)志碼:A

      引用格式:

      尚蒙蒙,孫藝昕.Cr離子摻雜超寬帶近紅外發(fā)光材料的設(shè)計(jì)方法[J].中國(guó)粉體技術(shù),2024,30(5):91-101.

      SHANG Mengmeng,SUN Yixin.Progress on design methods of Cr-doped ultra-broadband near-infrared luminescent materials[J].China Powder Science and Technology,2024,30(5):91?101.

      近紅外光譜技術(shù)是利用化學(xué)鍵(或化學(xué)基團(tuán))對(duì)特征光的反射、透射和散射原理進(jìn)行定性、定量分析的技術(shù),在食品安全、生物醫(yī)學(xué)成像、現(xiàn)代農(nóng)業(yè)與環(huán)境保護(hù)等領(lǐng)域具有廣泛的應(yīng)用前景。近紅外光譜利用近紅外波段對(duì)C—H、O—H和N—H基團(tuán)的不同響應(yīng)[1],對(duì)有機(jī)體具有良好的穿透性,且不損傷生物組織,可用于實(shí)時(shí)的健康監(jiān)測(cè)、質(zhì)量監(jiān)測(cè)和成分分析。隨著社會(huì)的發(fā)展,公眾對(duì)食品安全和身體健康日益關(guān)注,迫切需要開發(fā)能夠用于日常食品檢測(cè)和健康狀況監(jiān)測(cè)的集成、便攜式光譜儀[2]。實(shí)現(xiàn)便攜式光譜分析技術(shù)的關(guān)鍵在于開發(fā)小型化、可集成化的近紅外光源。目前常見的傳統(tǒng)近紅外光源有白熾燈、鹵素?zé)艉徒t外發(fā)光二極管,其中白熾燈和鹵素?zé)舸嬖诎l(fā)光效率低、壽命短、體積大、發(fā)熱量大、工作溫度高等缺點(diǎn);近紅外(near-infrared,NIR)二極管發(fā)射峰偏窄,光譜難以調(diào)控。相比之下,由藍(lán)光芯片和近紅外熒光材料組成的新型NIR熒光轉(zhuǎn)換發(fā)光二極管(phosphor converted light-emitting diode,pc-LED)具有體積小、壽命長(zhǎng)、效率高、發(fā)射峰波長(zhǎng)與半峰寬易調(diào)控等優(yōu)點(diǎn),成為近紅外光源的研究熱點(diǎn)。

      迄今為止,已經(jīng)有許多關(guān)于稀土離子(Nd3+、Dy3+、Er3+、Yb3+和Eu2+)[3-8]或過渡金屬離子(Cr3+、Ni2+、Mn2+、Mn4+和Fe3+)[9-10]激活的新型近紅外熒光材料的研究報(bào)道。3價(jià)稀土離子產(chǎn)生的發(fā)射峰大多為4f-4f躍遷的銳線發(fā)射,發(fā)射帶寬窄,吸收效率較低,而具有f-d電子組態(tài)的Eu2+通常在紫外或可見光譜區(qū)表現(xiàn)出較寬的發(fā)射。雖然近年來Eu2+激活的近紅外熒光材料逐漸被研發(fā),但發(fā)射波長(zhǎng)都難以超過1 000 nm,如Ca9NaZn1-yMgy(PO4)7∶Eu2+(波長(zhǎng)450~750 nm)[11]、SrLaScO4∶Eu2+(波長(zhǎng)550~800 nm)[12]、(Sr,Ba)Y2O4∶Eu2+(波長(zhǎng)600~1 000 nm)[13],不能覆蓋長(zhǎng)波長(zhǎng)的近紅外區(qū)域,因此無法滿足作為光源的要求。

      具有d-d躍遷的過渡金屬離子摻雜的熒光材料雖較稀土離子具有更寬的發(fā)射波長(zhǎng)范圍,但在近紅外范圍內(nèi),發(fā)射半峰寬(full width at half maxima,F(xiàn)WHM)并不理想,如Mn4+激活的熒光材料,發(fā)射波長(zhǎng)為650~800 nm,如LaAlO3∶Mn4+[14]的FWHM僅為50 nm;Ti3+激活的熒光材料FWHM也相對(duì)較窄,如SrAl12O19∶Ti3+[15]的FWHM約為100 nm;Fe3+摻雜的A2BB′O6(A=Sr2+,Ca2+,B,B′=In3+,Sb5+,Sn4+)[16]體系,雖然其FWHM可以達(dá)到146 nm,但Fe3+激活的基質(zhì)與商業(yè)藍(lán)光LED芯片匹配較差,實(shí)際應(yīng)用并不理想。Ni2+摻雜的熒光材料大多在NIR-Ⅱ區(qū)[17]。

      相比之下,Cr離子是一種理想的近紅外發(fā)光中心,在紫外-可見光譜范圍內(nèi)表現(xiàn)出寬帶吸收,與藍(lán)光LED具有良好匹配性,因此,Cr離子激活的近紅外發(fā)光材料被認(rèn)為是近紅外pc-LED光源的最優(yōu)選擇。表1所示為Cr3+在各種熒光材料中的FWHM??梢钥闯觯蠖鄶?shù)近紅外熒光材料的FWHM小于200 nm,限制了近紅外pc-LED光源在光譜分析技術(shù)領(lǐng)域的探測(cè)范圍和精度,因此,開發(fā)具有優(yōu)異性能的超寬帶發(fā)射近紅外發(fā)光材料對(duì)近紅外pc-LED能否盡早實(shí)現(xiàn)商業(yè)應(yīng)用具有重要意義。本文中根據(jù)已報(bào)道的Cr離子激活近紅外發(fā)光材料的文獻(xiàn),總結(jié)了Cr離子激活超寬帶發(fā)射材料的設(shè)計(jì)方法,通過對(duì)相關(guān)研究實(shí)例進(jìn)行對(duì)比,分析Cr離子在晶體材料中的存在價(jià)態(tài)、占位情況,對(duì)理解Cr離子的發(fā)光構(gòu)效關(guān)系和開發(fā)新型熒光材料及推動(dòng)未來應(yīng)用具有重要意義。

      1常見的3種Cr離子發(fā)光中心

      與許多過渡金屬一樣,Cr離子在其化合物中表現(xiàn)出不同的氧化態(tài)(化學(xué)價(jià)-2~+5)和配位幾何結(jié)構(gòu)(立方、八面體、四面體),且具有不同的特性,但在近紅外發(fā)光材料中最常見的主要有3種類型的發(fā)光中心:六配位和四配位的Cr3+及四配位的Cr4+,且在某些條件下Cr3+和Cr4+可以相互轉(zhuǎn)換。本文中主要對(duì)這3種類型的Cr離子占據(jù)不同格位的情況進(jìn)行分析討論。

      圖1所示為Cr3+的價(jià)層電子構(gòu)型為3d3,配位數(shù)為6時(shí)占據(jù)具有八面體配位的晶格位點(diǎn),離子半徑為0.615?,其能級(jí)分布可以用Tanabe-Sugano(田邊-菅野,簡(jiǎn)稱T-S)圖描述,如圖1(a)所示,其中縱坐標(biāo)中E代表能量,B為Racah(拉卡)參數(shù),橫坐標(biāo)中Dq和B分別為晶體場(chǎng)強(qiáng)度和拉卡參數(shù)。除2E能級(jí)和2T1能級(jí)外,大多數(shù)Cr3+晶體場(chǎng)能級(jí)(如4T2、4T1、2A1)對(duì)Dq/B值有很強(qiáng)的依賴性[27-28]。在可見光譜范圍內(nèi),激發(fā)光譜通常具有2個(gè)較寬的吸收帶,分別由自旋4A2→4T2和4A2→4T1躍遷引起。Cr3+的發(fā)射帶形狀由基質(zhì)晶體場(chǎng)強(qiáng)決定。當(dāng)Cr3+占據(jù)弱晶體場(chǎng)格位時(shí)(Dq/Blt;2.3)時(shí),2E能級(jí)高于4T2能級(jí),4T2→4A2的允許躍遷將主導(dǎo)Cr3+的發(fā)光,呈現(xiàn)寬帶發(fā)射[21],且發(fā)射峰位置易受到周圍晶體場(chǎng)環(huán)境的影響而發(fā)生改變。當(dāng)Cr3+占據(jù)強(qiáng)晶體場(chǎng)格位時(shí)(Dq/Bgt;2.3),2E為發(fā)射態(tài),Cr3+的發(fā)射光譜特征為尖銳的R線發(fā)射(2E→4A2躍遷)[29],基質(zhì)的晶體場(chǎng)環(huán)境對(duì)其影響不大。此外,當(dāng)Cr3+的摻雜濃度越來越高[30],即相鄰Cr3+距離越來越近時(shí),Cr3+還易形成[Cr3+-Cr3+]離子對(duì)[31](即不同大小2個(gè)或3個(gè)單元的Cr3+團(tuán)簇)作為獨(dú)立的發(fā)光中心,如Serment等[32]報(bào)道的SnO2:Cr3+,隨Cr3+的摻雜濃度越來越高,在EPR中屬于[Cr3+-Cr3+]離子對(duì)的g=1.98(g因子,描述電子自旋在磁場(chǎng)中的響應(yīng))共振信號(hào)越來越強(qiáng)且寬,表明[Cr3+-Cr3+]離子對(duì)的含量越來越高。

      通常來說Cr3+會(huì)占據(jù)八面體格位,但Mg、Al等尖晶石構(gòu)型的化合物中因?yàn)榉次坏挠绊?,四面體格位也有可能被Cr3+占據(jù)[33],此時(shí)Cr3+配位數(shù)為4,離子半徑為0.46?,其T-S圖如圖1(b)所示。當(dāng)Cr3+位于弱晶體場(chǎng)時(shí),2T1→4T1躍遷占主導(dǎo)呈寬帶發(fā)射,發(fā)射峰傾向于出現(xiàn)相對(duì)較長(zhǎng)的波長(zhǎng),如Zhou等[34]報(bào)道的BaMgAl10O17:0.01Cr3+樣品,Cr3+在基質(zhì)中分別占據(jù)了2個(gè)四面體格位和2個(gè)八面體格位,而占據(jù)2個(gè)四面體格位的發(fā)射峰皆處于長(zhǎng)波長(zhǎng)區(qū)域;反之為2G→4T1躍遷發(fā)射峰波長(zhǎng)較短。

      采用固相法制備Cr離子激活的氧化物或含氧酸鹽類近紅外材料時(shí),通常選取Cr2O3為原料,但在高溫?zé)Y(jié)或低價(jià)元素取代高價(jià)元素條件下,特別是有適宜Cr4+占據(jù)的四面體位點(diǎn)時(shí),Cr3+易被氧化成Cr4+。Cr4+離子半徑為0.41?,價(jià)層電子構(gòu)型為3d2,T-S圖如圖1(c)所示,3d2構(gòu)型的自由Cr4+的最低光譜項(xiàng)為3F。當(dāng)其位于具有Td-symmetry的理想四面體位置時(shí),3F項(xiàng)會(huì)被晶體場(chǎng)分裂為3A2、3T2和3T1能級(jí),其吸收帶通常有3個(gè),分別位于波長(zhǎng)300~500、500~850、850~1 200 nm,對(duì)應(yīng)3A2→3T1(3P)、3A2→3T1(3F)和3A2→3T2(3F)躍遷。Cr4+激活的材料發(fā)射范圍一般覆蓋波長(zhǎng)1 000~1 400 nm,峰值波長(zhǎng)超過1 200 nm,主要由3T2→3A2躍遷引起的寬帶發(fā)射[37-38]。Cr3+和Cr4+在合適的條件下可以相互轉(zhuǎn)換:如在適當(dāng)基質(zhì)化合物中通入還原性氣氛或利用電荷平衡原理(共取代或電荷補(bǔ)償),可抑制Cr4+形成,獲得Cr3+離子的寬帶發(fā)射;反之,選擇合適基質(zhì)(如含有[GeO4]的四面體結(jié)構(gòu),其離子半徑與Cr4+相近,電荷一致)或采用高氧化型氣氛燒結(jié)等方法獲得單一價(jià)態(tài)的Cr4+的特征長(zhǎng)波長(zhǎng)發(fā)射。

      當(dāng)基質(zhì)中同時(shí)具有Cr3+和Cr4+時(shí),也會(huì)收獲意想不到的效果。Cai等[39]報(bào)道的Mg2GeO4∶Cr3+,Cr4+通過精確控制燒結(jié)條件和化學(xué)成分獲得了Cr3+、Cr4+發(fā)射強(qiáng)度相近的雙峰近紅外發(fā)射。Mg2GeO4的晶體結(jié)構(gòu)如圖2所示。Mg2GeO4屬于正交晶系Pnma空間群的橄欖石型結(jié)構(gòu)。Mg1占據(jù)具有反演對(duì)稱性的4a位,Mg2占據(jù)具有鏡像對(duì)稱性的4c位。Mg1和Mg2由6個(gè)O配位形成[MgO6]八面體,Ge由4個(gè)O配位形成[GeO4]四面體,多面體之間通過角共享和邊共享連接,且[Mg2O6]的多面體體積大于[Mg1O6]。Mg2GeO4晶體結(jié)構(gòu)由[Mg1O6]-[GeO4]層和[Mg2O6]層沿a方向交替排列構(gòu)成。具有不同配位環(huán)境的多格位情況使自主設(shè)計(jì)發(fā)光位點(diǎn)成為可能。在Mg2GeO4中,Mg2+(配位數(shù)為6時(shí),離子半徑為0.72?)格位和Ge4+(配位數(shù)為4時(shí),離子半徑為0.39?)格位可以容納Cr離子分別形成Cr3+(配位數(shù)為6時(shí),離子半徑為0.615?)和Cr4+(配位數(shù)為4時(shí),離子半徑為0.41?)發(fā)光中心。混合價(jià)態(tài)熒光材料的設(shè)計(jì)原則如圖3所示。Li+(配位數(shù)為6時(shí),離子半徑為0.76?)作為電荷補(bǔ)償劑被共摻雜到Mg2+位點(diǎn)中,以補(bǔ)償Cr3+取代Mg2+時(shí)引起的電荷失衡(Li++Cr3+→2Mg2+),電荷平衡的環(huán)境可以穩(wěn)定Cr3+的價(jià)態(tài),并最終形成單一Cr3+的寬帶發(fā)射[40]。一旦缺乏Li+,如果Cr3+仍然進(jìn)入Mg2+的位置,就會(huì)形成大量的空位缺陷,(2Cr3++□→3Mg2+,□代表空位缺陷)。在缺乏Li+的環(huán)境下,Cr4+的形成能低于缺陷形成能,所以Mg2GeO4∶Cr的近紅外發(fā)光性能強(qiáng)烈依賴于Li+電荷補(bǔ)償,因此,Cai等通過1 500℃高溫?zé)Y(jié)、確定化學(xué)式為Mg2-2zLizCrzGeO4(z為Cr離子的摻雜濃度),通過控制Cr3+與Cr4+的比例,實(shí)現(xiàn)該材料的超寬帶(波長(zhǎng)650~1 600 nm)雙峰近紅外發(fā)光。在激發(fā)波長(zhǎng)為465 nm時(shí),低摻雜濃度(z=0.005)樣品中獲得了2個(gè)峰相近的雙寬帶發(fā)射,同樣的現(xiàn)象也出現(xiàn)在激發(fā)波長(zhǎng)為660 nm的高摻雜濃度樣品的發(fā)射光譜中,如圖4所示。

      2 Cr離子激活超寬帶發(fā)射近紅外材料的設(shè)計(jì)方法

      想要獲得Cr摻雜的超寬帶發(fā)射近紅外材料主要有2種方法:一是將Cr3+與其他離子如三價(jià)稀土金屬離子(RE3+)、過渡族金屬離子(如Ni2+)等共摻雜;二是設(shè)計(jì)篩選具有不同陽(yáng)離子晶格位點(diǎn)的基質(zhì)材料,實(shí)現(xiàn)不同價(jià)態(tài)Cr離子對(duì)不同晶格位點(diǎn)的占據(jù)或者單一價(jià)態(tài)Cr3+同時(shí)占據(jù)不同晶格格位。

      2.1 Cr離子與其他離子共摻雜

      共摻雜體系中研究報(bào)道最多的是Cr離子與RE3+共摻,表2總結(jié)了近幾年報(bào)道的Cr離子與RE3+共摻雜的近紅外材料體系。從表中可以看出,以共摻Y(jié)b3+[41]居多。由于Yb3+的2F7/2→2F5/2躍遷,通常在波長(zhǎng)900~1 050 nm處出現(xiàn)吸收帶,發(fā)致發(fā)光(PL)光譜范圍為950~1 100 nm,自旋禁阻的f-f躍遷特征使Yb3+本身具有較好的量子效率和熱穩(wěn)定性。較單摻Cr3+的體系,Yb3+與Cr3+共摻可拓寬PL譜范圍,提高熱穩(wěn)定性。以LiScP2O7(LSP)∶Cr3+,Yb3+[42]體系為例,如圖5所示,LSP:0.06 Cr3+的發(fā)射峰與LSP:0.03Yb3+的吸收峰重疊,表明Yb3+將有效吸收Cr3+發(fā)射的光,即Cr3+作為敏化劑,產(chǎn)生Cr3+→Yb3+的有效能量傳遞。同時(shí),LSP:0.06Cr3+的PLE光譜在波長(zhǎng)470 nm處表現(xiàn)出強(qiáng)烈的吸收帶,而LSP:0.03Yb3+在波長(zhǎng)470 nm處幾乎沒有吸收峰,表明在激發(fā)波長(zhǎng)為470 nm時(shí),LSP:0.06Cr3+,yYb3+中Yb3+的發(fā)射主要由Cr3+→Yb3+的能量傳遞導(dǎo)致,如圖6所示。隨著Yb3+摻雜濃度的增加,波長(zhǎng)1 001 nm處Yb3+的發(fā)射峰強(qiáng)度逐漸增強(qiáng),Cr3+峰的強(qiáng)度不斷減弱。共摻Y(jié)b3+后,發(fā)射光譜的FWHM從170 nm拓寬到210 nm,其熱穩(wěn)定性也有大幅度提高,因此,當(dāng)Cr3+在共摻體系中作為敏化劑時(shí),共摻RE3+雖有效拓寬近紅外發(fā)射范圍,但要以犧牲Cr3+的發(fā)射強(qiáng)度為代價(jià)。

      當(dāng)RE3+在體系中作為敏化劑向Cr3+傳能時(shí),是不能拓寬近紅外的發(fā)射范圍的,如Liang等[50]報(bào)道的Zn0.5Mg0.5Al2O4(ZMAO)∶Cr3+,Tb3+體系,ZMAO∶Tb3+的發(fā)射范圍與ZMAO∶Cr3+的激發(fā)范圍重合,可發(fā)生Tb3+→Cr3+的能量傳遞,提高Cr3+的發(fā)射強(qiáng)度,且拓寬光譜發(fā)射范圍,但遺憾的是向Cr3+傳能就意味著RE3+的發(fā)射范圍在Cr3+發(fā)射范圍之前,其拓寬的是可見光范圍的發(fā)射而非近紅外光區(qū)域,如圖7所示。

      2.2設(shè)計(jì)篩選具有不同陽(yáng)離子晶格位點(diǎn)的基質(zhì)材料

      設(shè)計(jì)篩選具有不同陽(yáng)離子晶格位點(diǎn)的基質(zhì)材料,實(shí)現(xiàn)不同價(jià)態(tài)Cr離子對(duì)基質(zhì)中不同晶格位點(diǎn)的占據(jù),或者單一價(jià)態(tài)Cr3+同時(shí)占據(jù)不同晶格格位,顯得尤為重要。在單一純相基質(zhì)中獲得占據(jù)多個(gè)位點(diǎn)的Cr離子激活發(fā)光材料主要有3種策略:1)選擇合適的多陽(yáng)離子位點(diǎn)基質(zhì);2)同位點(diǎn)陽(yáng)離子取代,額外引入不同晶體場(chǎng)環(huán)境的晶格位點(diǎn);3)控制實(shí)驗(yàn)條件。

      2.2.1選擇合適的多陽(yáng)離子位點(diǎn)基質(zhì)

      當(dāng)基質(zhì)中含有多個(gè)陽(yáng)離子位點(diǎn),摻雜離子與晶格陽(yáng)離子半徑相近,位點(diǎn)對(duì)稱性和電價(jià)匹配時(shí),更易出現(xiàn)Cr離子同時(shí)占據(jù)多個(gè)格位的情況。如配位數(shù)為6的Cr3+易占據(jù)電價(jià)一致Al3+、Ga3+、In3+和Sc3+八面體格位,還有半徑相近的Ge4+、Mg2+、Ca2+八面體格位;如Sun等[51]報(bào)道的Mg7Ga2GeO12∶Cr3+體系,Cr3+在基質(zhì)中就占據(jù)[MgO6]和[GaO6]八面體。由于含Mg、Al離子的基質(zhì)中常出現(xiàn)反位缺陷,且Mg2+(配位數(shù)CN為4,離子半徑r為0.57?)和Al3+(CN為4,r為0.39?)與Cr3+(CN為4,r為0.46?)的離子半徑相近,使Cr3+更易占據(jù)四配位的[MgO4]和[AlO4]四面體位點(diǎn)。Zhou等[34]報(bào)道的BaMgAl10O17∶Cr3+體系中,Cr3+同時(shí)占據(jù)[AlO4]四面體和[AlO6]八面體格位。此外,Cr4+與Ge4+(CN為4,r為0.39?)、Si4+(CN為4,r為0.26?)的電價(jià)一致,離子半徑相近,晶格中存在[GeO4]和[SiO4]四面體格位時(shí),Cr離子更容易形成Cr4+離子取代Ge4+或者Si4+占據(jù)四面體位點(diǎn)。如Mg2SiO4∶Cr3+,Cr4+體系中[52],Cr4+占據(jù)其中的[SiO4]四面體格位形成波長(zhǎng)為1 000~1 600 nm的超寬帶發(fā)射。綜上,當(dāng)基質(zhì)中含有以上所述的多個(gè)特性時(shí),則為Cr離子多格位占據(jù)的概率較大。

      2.2.2同位點(diǎn)陽(yáng)離子取代,額外引入不同晶體場(chǎng)環(huán)境的格位

      除直接選擇具有多格位基質(zhì)晶格外,也可以通過實(shí)驗(yàn)策略在原有晶格中引入新位點(diǎn),如同位點(diǎn)陽(yáng)離子取代策略,即借助額外引入的陽(yáng)離子制造新的可以被Cr離子占據(jù)的格位[7,11],以此來拓寬發(fā)射光譜。如在Ca3?xLux Ga2+x Ge3?xO12∶Cr3+(CLGGG∶Cr3+)(x=0~1)體系中[53],通過[Lu3+-Ga3+]對(duì)[Ca2+-Ge4+]的共取代,使近紅外光譜在波長(zhǎng)460 nm的藍(lán)光激發(fā)下,表現(xiàn)出顯著的光譜展寬,其FWHM從129 nm拓寬到267 nm,如圖8所示。隨取代量的增加,發(fā)射峰紅移,激發(fā)光譜也在不斷紅移。這是因?yàn)镃N為8時(shí)Lu3+的離子半徑為0.97?,小于CN為8時(shí)Ca2+的離子半徑1.12?,導(dǎo)致晶格收縮,而Ga3+(CN為4,r為0.47?)取代Ge4+(CN為4,r為0.39?)的離子半徑相似,影響可以忽略。同時(shí),[Lu3+-Ga3+]引入后,晶格中的Lu與Ga的原子比變大,結(jié)構(gòu)紊亂增加。隨著離子半徑較小的Lu3+取代較大的Ca2+,Ca(Lu)-Ca(Cr)的平均距離從3.764 1?增加到3.795 3?,離子間相對(duì)斥力較小,使得Cr3+可以遷移到富Lu的格位。同時(shí)Lu3+被Cr3+包圍形成了一個(gè)相對(duì)穩(wěn)定的電場(chǎng),更多的Cr3+可以穩(wěn)定在Ca2+的格位上,特別是在相鄰Lu3+和O2?的正、負(fù)電場(chǎng)共同影響下,使原本占據(jù)[GaO6]八面體格位的Cr3+更有效地占據(jù)Ca2+格位。采用此種同位離子取代的方法,可以有效拓寬發(fā)射光譜。

      2.2.3控制實(shí)驗(yàn)條件

      Da Silva等[54]采用高溫固相反應(yīng),將原料在溫度為800℃預(yù)燒結(jié)12 h后,再于溫度為1 350℃燒結(jié)12 h成功制備了Mg2Al4Si5O18∶Cr3+體系;該材料發(fā)射光譜由波長(zhǎng)為695 nm處的尖峰發(fā)射和峰值位于波長(zhǎng)為750 nm的寬帶組成,如圖9所示,研究證實(shí)Cr3+占據(jù)[MgO6]八面體格位。Zou等[55]將原材料在還原氣氛(N2與H2的體積比為95∶5)時(shí),1 550℃燒結(jié)4 h,自然冷卻后在溫度為750℃下進(jìn)一步退火5 h,釋放內(nèi)部應(yīng)力。最后,在溫度為1 120°C下加熱15 min,冷卻至室溫,制得的Mg2Al4Si5O18:Cr3+樣品發(fā)射光譜呈現(xiàn)峰值位于波長(zhǎng)為867 nm的超寬帶發(fā)射,如圖10所示,并證實(shí)Cr3+占據(jù)2個(gè)不同[AlO4]四面體格位,因此,通過控制制備條件可以改變Cr3+所處的晶體場(chǎng)環(huán)境,從而實(shí)現(xiàn)寬帶發(fā)射。此外,提高燒結(jié)溫度,延長(zhǎng)燒結(jié)時(shí)間,可實(shí)現(xiàn)Cr3+對(duì)不同晶格位點(diǎn)的占據(jù),從而實(shí)現(xiàn)Cr3+向Cr4+的轉(zhuǎn)變[36],更易獲得Cr3+和Cr4+共存的超寬近紅外發(fā)射光譜,如Mg2GeO4∶Cr[39],隨燒結(jié)溫度提高,燒結(jié)時(shí)間延長(zhǎng),Cr4+含量提高。

      3結(jié)論

      本文中綜述了Cr離子激活超寬帶NIR發(fā)光材料的價(jià)態(tài)與設(shè)計(jì)方法。Cr離子摻雜的寬帶近紅外熒光材料主要以Cr3+與Cr4+2種價(jià)態(tài)存在于基質(zhì)化合物中,在一定晶體場(chǎng)環(huán)境中,均可呈現(xiàn)寬帶近紅外發(fā)射的特征。目前獲得Cr離子摻雜的超寬帶發(fā)射近紅外材料主要有2種方法:一是將Cr3+與其他離子如3價(jià)稀土金屬離子(RE3+)、過渡族金屬離子(如Ni2+)等共摻雜;二是設(shè)計(jì)篩選具有不同陽(yáng)離子晶格位點(diǎn)的基質(zhì)材料,實(shí)現(xiàn)不同價(jià)態(tài)Cr離子對(duì)不同晶格位點(diǎn)的占據(jù),或者單一價(jià)態(tài)Cr3+同時(shí)占據(jù)不同晶格格位。當(dāng)設(shè)計(jì)Cr離子與RE3+共摻時(shí),可作為敏化劑拓寬紅外發(fā)射范圍,但要以降低Cr離子的發(fā)射強(qiáng)度為代價(jià),因此,設(shè)計(jì)篩選具有不同陽(yáng)離子晶格位點(diǎn)的基質(zhì)材料,實(shí)現(xiàn)不同價(jià)態(tài)Cr離子對(duì)不同晶格位點(diǎn)的占據(jù)方法更為可取,當(dāng)Cr離子占據(jù)基質(zhì)中的不同格位時(shí),不僅可以獲得較寬的近紅外發(fā)射范圍(700~1 600 nm),且由于容納的Cr離子總量增多,所以Cr3+在多格位基質(zhì)中的摻雜濃度猝滅值升高,調(diào)控Cr離子發(fā)光光譜的手段也較為靈活。

      利益沖突聲明(Conflict of Interests)

      所有作者聲明不存在利益沖突。

      All authors disclose no relevant conflict of interests.

      作者貢獻(xiàn)(Authors’Contributions)

      尚蒙蒙進(jìn)行了論文的寫作和修改,孫藝昕對(duì)文獻(xiàn)進(jìn)行了綜述。所有作者均閱讀并同意了最終稿件的提交。

      The manuscript was written and revised by SHANG Mengmeng,and the literature review was summarized by SUN Yixin.Both authors have read the last version of paper and consented to its submission.

      參考文獻(xiàn)(References)

      [1]MARQUES E J,de FREITAS S T,PIMENTEL M F,et al.Rapid and non-destructive determination of quality parameters in the“Tommy Atkins”mango using a novel handheld near infrared spectrometer[J].Food Chemistry,2016,24:1207-1217.

      [2]WANG Y,WANG Z J,WEI G H,et al.Ultra-broadband and high efficiency near-infrared Gd3ZnxGa5-2xGeO12∶Cr3+(x=0-2.0)garnet phosphors via crystal field engineering[J].Chemical Engineering Journal,2022,437(11):135346.

      [3]XIE X J,LI T J,SUI M Y,et al.A potential temperature-sensitive fluorescent material based on thermal coupling effect for temperature sensors[J].Energy,2018,159(15):429-439.

      [4]ZHANG Y H,CAO Y G,ZHAO Y,et al.Optical temperature sensor based on upconversion luminescence of Er3+doped GdTaO4 phosphors[J].Journal of the American Ceramic Society,2020,104(1):361-368.

      [5]PIOTROWSKI W M,MACIEJEWSKA K,DALIPI L,et al.Cr3+ions as an efficient antenna for the sensitization and brightness enhancement of Nd3+,Er3+-based ratiometric thermometer in GdScO3 perovskite lattice[J].Journal of Alloys and Compounds,2022,923:166343.

      [6]LIAO J,WANG M H,LIN F L,et al.Thermally boosted upconversion and downshifting luminescence in Sc2(MoO4)3∶Yb/Er with two-dimensional negative thermal expansion[J].Nature Communication,2022,13(1):2090.

      [7]CAO F B,XIONG Y,LIU J,et al.Eu2+as the structural probe in the phase transformation of CMSA by site-selective occupancy and adjustable multimode white luminescence inCa2(Mg0.5Al0.5)(Si1.5Al0.5O7)akermanite based on high-aluminum blast furnaceslag[J].Dalton Transaction,2022,51:13301-13310.

      [8]GAN W J,LIOU B M,HUANG L,et al.Manganeseion?sensitizednear?infrared light in Cs2NaBi1?xErxCl6 lead?free double perovskite[J].Advanced Optical Materials,2022,10(9):210285.

      [9]SHI R,NING L X,WANG Z Q,et al.Zero?thermal quenching of Mn2+red luminescence via efficient energy transfer from Eu2+in BaMgP2O7[J].Advanced Optical Materials,2019,7(23):1901187.

      [10]XIANG L,ZHOU X J,WANG Y J,et al.Environmentally-friendly and low-cost Fe3+-doped broadband NIR light-emitting phosphors[J].Journal of Luminescence,2022,252:119293.

      [11]ZHANG D,ZHENG B F,ZHENG Z B,et al.Multifunctional Ca9NaZn1-yMgy(PO4)7∶Eu2+phosphor for full-spectrum lighting,optical thermometry and pressure sensor applications[J].Chemical Engineering Journal,2021,431(11):133805.

      [12]YANG Z Y,LIU G C,ZHAO Y F,et al.Competitive site occupation toward improved quantum efficiency of SrLaScO4∶Eu red phosphors for warm white LEDs[J].Advanced Optical Materials,2022,10(6):2102373.

      [13]YANG Z Y,ZHAO Y F,ZHOU Y Y,et al.Giant red-shifted emission in(Sr,Ba)Y2O4∶Eu2+phosphor toward broadband near-infrared luminescence[J].Advanced Functional Materials,2021,32(1):2103927.

      [14]LI S Y,ZHU Q,SUN X D,et al.Magical polyhedral twist via chemical unit co-substitution in LaAlO3∶Mn4+to greatly enhance the zero phononline for high-efficiency plant-growth LEDs[J].Journal of Materials Chemistry C,2021,9(22):7163-7173.

      [15]LIN X H,LI Y,SARAVANAKUMAR S,et al.Sunlight-operable light converting smart windows for fertilizer-free plant growth enhancement[J].Nano Today,2020,34:100918.

      [16]LIU D J,LI G G,DANG P P,et al.Highly efficient Fe3+-doped A2BB′O6(A=Sr2+,Ca2+;B,B′=In3+,Sb5+,Sn4+)broad?band near-infrared-emitting phosphors for spectroscopic analysis[J].Light Science Application,2022,11(1):112.

      [17]WANG W C,ZHOU R,LE H Q,et al.Ni-doped fluorosulfates with broad NIR luminescence[J].Journal of Lumines?cence,2019,210:457-463.

      [18]HUANG D C,HE X G,ZHANG J R,et al.Efficient and thermally stable broadband near-infrared emission from near zero thermal expansion AlP3O9∶Cr3+phosphors[J].Inorganic Chemistry Frontiers,2022,9:1692-1700.

      [19]XU X X,SHAO Q Y,YAO L Q,et al.Highly efficient and thermally stable Cr3+-activated silicate phosphors for broadband near-infrared LED applications[J].Chemical Engineering Journal,2020,383:123108.

      [20]BAI B,DANG P P,HUANG D Y,et al.Broadband near-infrared emitting Ca2LuScGa2Ge2O12∶Cr3+phosphors:lumines?cence properties and application in light-emitting diodes[J].Inorganic Chemistry,2020,59(18):13481-13488.

      [21]YAN Y,SHANG M M,HUANG S,et al.Photoluminescence properties of AScSi2O6:Cr3+(A=Na and Li)phosphors with high efficiency and thermal stability for near-infrared phosphor-converted light-emitting diode light sources[J].ACS Applied Material Interfaces,2022,14(6):8179-8190.

      [22]LI J,MING H,ZHOU Y,et al.A near-infrared phosphor doped with Cr3+towards zero-thermal-quenching for high-power LEDs[J].Materials Today Chemistry,2022,24:100839.

      [23]CHEN X H,SONG E H,ZHOU Y Y,et al.Distorted octahedral site occupation-induced high-efficiency broadband near-infrared emission in LiScGe2O6∶Cr3+phosphor[J].Journal of Materials Chemistry C,2021,9(39):13640-13646.

      [24]HUANG D C,ZHU H M,DENG Z H,et al.A highly efficient and thermally stable broadband Cr3+-activated double borate phosphor for near-infrared light-emitting diodes[J].Journal of Materials Chemistry C,2021,9(1):164-172.

      [25]WANG Q,WANG S W,TAN T,et al.Efficient Cr3+-activated NaInP2O7 phosphor for broadband near-infrared LED appli?cations[J].Inorganic Chemistry Frontiers,2022,9(15):3692-3701.

      [26]LI R Y,LIU Y F,YUAN C X,et al.Thermally stable CaLu2Mg2Si3O12∶Cr3+phosphors for NIR LEDs[J].Advanced Opti?cal Materials,2021,9(16):2100388.

      [27]ADACHI S.Spectroscopy of Cr3+activator:Tanabe?Sugano diagram and Racah parameter analysis[J].Journal of Lumines?cence,2021,232:117844.

      [28]SHAO Q Y,DING H,YAP L Q.Photoluminescence properties of a ScBO3∶Cr3+phosphor and its applications for broadband nearinfrared LEDs[J].RSC Advances,2018,8:12035-12042.

      [29]HAO Y,WANG S,ZHANG K,et al.Effect of Y3+on the photoluminescence of MgAl2O4∶Cr3+nanopowders[J].Materials Chemistry and Physics,2020,253:123323.

      [30]LI C J,ZHONG J Y.Highly efficient broadband near-infrared luminescence with zero-thermal-quenching in garnetY3In2Ga3O12∶Cr3+phosphors[J].Chemistry of Materials,2022,34(18):8418-8426

      [31]CHEN G,NIE W D,ZUO J X,et al.A new broadband near-infrared emitting Mg2Al4Si5O18∶Cr3+phosphor for night-vision imaging[J].Dalton Transactions,2022,51(33):12576-12584.

      [32]SERMENT B,GAUDON M,TOULEMONDE O,et al.Tuning the Cr(IV)/Cr(III)valence states in purple Cr-doped SnO2 nanopowders:the key role of Cr(IV)centers and defects[J].Inorganic Chemistry,2020,59(1):678-686.

      [33]GAI S J,ZHOU C,PENG L,et al.A novel Cr3+-doped stannate far red phosphor for plant lighting:structure evolution,broad-narrow spectrum tuning and application prospect[J].Materials Today Chemistry,2022,26:101107.

      [34]ZHOU Y P,LI C C,WANG Y H.Crystal?field engineering control of an ultraviolet-visible?responsivenear?infrared?emitting phosphor and its applications in plant growth,night vision,and NIR spectroscopy detection[J].Advanced Optical Materials,2022,10(8):2102246.

      [35]RAJENDRAN V,F(xiàn)ANG M-H,De GUZMAN G N,et al.Super broadband near-infrared phosphors with high radiant flux as future light sources for spectroscopy applications[J].ACS Energy Letters,2018,3(11):2679-2684.

      [36]ZHAO F Y,SONG Z,LIU Q L.Advances in chromium?activated phosphors for near?infrared light sources[J].Laseramp;Photonics Reviews,2022,16(11):2200380.

      [37]SHAN Y,ZHANG L,ZHOU T Y,et al.One-order-higher Cr4+conversion efficiency in Cr4+∶YAG transparent ceramics for a high-frequency passively Q-switched laser[J].Photonics Research,2019,7(8):2327-9125.

      [38]ZHU H,CAI H,ZHAO J,et al.Crystallographic control for Cr4+activators toward efficient NIR-II luminescence[J].Inorganic Chemistry Frontiers,2022,9:1912-1919.

      [39]CAI H,CHEN H,ZHOU H,et al.Controlling Cr3+/Cr4+concentration in single-phase host toward tailored super-broad near-infrared luminescence for multifunctional applications[J].Materials Today Chemistry,2021,22:100555.

      [40]CAI H,LIU S Q,SONG Z,et al.Tuning luminescence from NIR-I to NIR-II in Cr3+-doped olivine phosphors for nonde?structive analysis[J].Journal of Materials Chemistry C,2021,9(16):5469-5477.

      [41]ZHANG X B,ZHANG L,XU Y H,et al.Broadband near-infrared-emitting phosphors with suppressed concentration quenching in a two-dimensional structure[J].Inorganic Chemistry,2022,61(19):7597-7607.

      [42]YAO L Q,SHAO Q Y,HAN S Y,et al.Enhancing near-infrared photoluminescence intensity and spectral properties in Yb3+codoped LiScP2O7∶Cr3+[J].Chemistry of Materials,2020,32(6):2430-2439.

      [43]WU J P,ZHUANG W D,LIU R H,et al.Broadband near-infrared luminescence and energy transfer of Cr3+,Ce3+co-doped Ca2LuHf2Al3O12 phosphors[J].Journal of Rare Earths,2021,39(3):269-276

      [44]WANG T,CAO L W,WANG Z J,et al.Luminescence properties and energy transfer of the near-infrared phosphor Ca3In2Ge3O12∶Cr3+,Nd3+[J].RSC Advances,2022,12(44):28405-28413.

      [45]ZHANG P,TONG J X,LUO Z W,et al.Effects of Er3+and/or Cr3+doping on crystallization activation energy and fluores?cence properties of transparent ZnGa2O4 glass-ceramics[J].Ceramics International,2022,48(24):36347-36357.

      [46]XIANG J M,ZHANG J M,ZHAO X Q,et al.Synthesis of broadband NIR garnet phosphor Ca4ZrGe3O12∶Cr3+,Yb3+for NIR pc-LED applications[J].Materials Chemistry Frontiers,2022,6(4):440-449.

      [47]ZHAO S,MU Z F,LOU L L,et al.Broadening and enhancing emission of Cr3+simultaneously by co-doping Yb3+in Ga1.4In0.6SnO5[J].Journal of Rare Earths,2023,41(12):1895-1903.

      [48]WANG Q Q,ZHANG S Y,LI Z W,et al.Near infrared-emitting Cr3+/Eu3+co-doped zinc gallogermanate persistence lumi?nescent nanoparticles for cell imaging[J].Nanoscale Research Letters,2018,13(1):64.

      [49]DONG J,DENG P Z,XU J.Spectral and luminescence properties of Cr4+and Yb3+ions in yttrium aluminum garnet(YAG)[J].Optical Materials,2000,14(2):109-113.

      [50]LIANG Y Y,MU Z,CAO Q T,et al.Efficient ultraviolet to far-red spectral conversion:Tb3+,Cr3+co-doped Zn0.5Mg0.5Al2O4 phosphors and their application[J].Journal of the American Ceramic Society,2022,105(12):7399-7414.

      [51]SUN Y,YUAN L F,LIU H,et al.Multi-site occupation of Cr3+toward developing broadband near-infrared phosphors[J].Ceramics International,2021,47(16):23558-23563.

      [52]NANAI Y,ISHIDA R,URABE Y,et al.Octave-spanning broad luminescence of Cr3+,Cr4+-codoped Mg2SiO4 phosphor for ultra-wideband near-infrared LEDs[J].Japanese Journal of Applied Physics,2019,58:SFFD02.

      [53]LIANG T C,CAI M S,F(xiàn)ANG S Q,et al.Trade-off lattice site occupancy engineering strategy for near-infrared phosphorswith ultrabroad and tunable Emission[J].Advanced Optical Materials,2022,10(2):2101633.

      [54]DA SILVA M A F M,PEDRO S S,LóPEZ A,et al.Investigation on the structural and photoluminescent properties of chromium-doped ceramics cordierite[J].Optical Materials,2016,60:188-195.

      [55]ZOU X K,ZHANG H R,LI W,et al.Ultra-wide vis-NIR Mg2Al4Si5O18∶Eu2+,Cr3+phosphor containing unusual NIR lumi?nescence induced by Cr3+occupying tetrahedral coordination for hyperspectralimaging[J].Advanced Optical Material,2022,10(19):2200882.

      Progress on design methods of Cr-doped ultra-broadband near-infrared luminescent materials

      SHANG Mengmeng,SUN Yixin

      College of Materials Science and Engineering,Shandong University,Jinan 250061,China

      Abstract

      Significance In recent years,near-infrared(NIR)fluorescent materials have gained significant attention due to their wide applications in food safety,medical diagnosis,modern agriculture,and environmental protection.The emission bandwidth of NIR fluorescent materials is crucial for the sensitivity and detection range of NIR spectroscopy.Novel NIR fluorescent materials activated by rare earth ions(Nd3+、Dy3+、Er3+、Yb3+)or transition metal ions(Cr3+、Ni2+、Mn2+/4+,and Fe3+)have been widely reported.However,trivalent rare earth ions have narrow emission bandwidths and low absorption efficiency.Although transition metal ions with d-d transitions exhibit a wider emission range,their emission half-peak width and excitation-emission wave?length mismatch in the NIR range are suboptimal.Cr ions are ideal NIR luminescence centers with broad absorption in the UV-visible spectrum.Understanding the valence states and lattice sites of Cr ions is essential for developing high-performance Crion-activated ultra-broadband NIR fluorescent materials,which are significant for NIR spectroscopy applications.

      Progress This review discusses the two common valence states(+3 and+4)and three luminescent centers of Cr ions in NIR fluorescent materials:hexacoordinated Cr3+,tetracoordinated Cr3+,and tetracoordinated Cr4+.Hexacoordinated Cr3+occupies octahedral lattice sites,and its luminescence varies with crystal field strength,displaying either sharp peaks or broad emissions.In spinel compounds,elements such as Mg and Al influence site occupancy,causing Cr3+ions to occupy tetrahedral lattice sites,resulting in emission peaks that tend to appear at relatively longer wavelengths.Cr4+typically emits in the 1 000~1 400 nm range,with peak wavelengths exceeding 1 200 nm.The review summarizes two design methods for Cr ion-doped ultra-broadband NIR fluorescent materials:co-doping Cr3+with other ions such as rare earth(RE3+)and transition(Ni2+)ions,and selecting matrix materials with different cation lattice sites to achieve varying Crion valence states or having Cr3+occupy multiple lattice sites.The emission mechanisms of these methods are compared,highlighting their advantages and disadvantages.When co-doping Cr ions with RE3+ions,Cr ions can act as sensitizers to broaden the infrared emission range,although this may reduce Crionemission intensity.

      Conclusions and Prospects Selecting matrix materials with weak crystal field environments and regulating lattice sites areeffec?tive strategies for obtaining efficient Cr-doped ultra-broadband NIR fluorescent materials.By occupying different lattice sites,Cr ions can achieve a wider NIR emission range and higher concentration quenching values due to the increased total Crion con?tent.These regulatory methods are also flexible,providing various ways to optimize material performance.

      Keywords:Crion doping;near-infrared emission;luminescence mechanism

      (責(zé)任編輯:王雅靜)

      平塘县| 尉氏县| 蛟河市| 贡觉县| 玉门市| 邢台市| 溧水县| 康马县| 易门县| 德令哈市| 克拉玛依市| 新乐市| 北京市| 外汇| 宁强县| 毕节市| 德庆县| 许昌市| 内乡县| 黎川县| 太湖县| 台东县| 曲水县| 阆中市| 阿城市| 苗栗市| 类乌齐县| 临高县| 宝应县| 买车| 莱芜市| 尚义县| 云阳县| 磐石市| 上栗县| 关岭| 双峰县| 女性| 南陵县| 石屏县| 东丽区|