摘要:【目的】推進片劑連續(xù)制造技術(shù)的發(fā)展,分析粉體學性質(zhì)在片劑連續(xù)制造中的重要性,進一步提升片劑連續(xù)制造的致密性和均勻性?!狙芯楷F(xiàn)狀】綜述物料輸送、連續(xù)進料、連續(xù)混合、連續(xù)壓片、連續(xù)輥壓制粒、連續(xù)雙螺桿制粒、連續(xù)流化床干燥等工藝過程,概括各工藝過程中使用的過程分析技術(shù)(process analytical technology,PAT)及監(jiān)測工具,闡述原輔料粉末的關(guān)鍵原料特性對工藝過程和片劑關(guān)鍵質(zhì)量屬性的影響?!窘Y(jié)論與展望】提出應(yīng)當對具有多變性質(zhì)的原輔料進行全面表征,預(yù)測流動性和成形性,建立物料庫并進行分類,有利于選擇工藝參數(shù)、優(yōu)化工藝性能、完善處方設(shè)計;認為重視原輔料粉體性質(zhì)并建立預(yù)測模型有利于減少裂片、含量不均勻等質(zhì)量問題及堵塞、黏壁等生產(chǎn)問題。
關(guān)鍵詞:片劑;連續(xù)制造;粉體學性質(zhì);單元操作;過程分析技術(shù)
中圖分類號:R944;TB4文獻標志碼:A
引用格式:
徐浩原,任曼華,何顯洪,等. 原輔料粉體學性質(zhì)對片劑連續(xù)制造的影響[J]. 中國粉體技術(shù),2024,30(6):97-118.
XU Haoyuan,REN Manhua,HE Xianhong,et al. Influence of powder properties of pharmaceutical ingredients on continuous tablet manufacturing[J]. China Powder Science and Technology,2024,30(6):97?118.
市場對藥品需求的增大迫切需要制藥界改善傳統(tǒng)的批量制造模式。傳統(tǒng)的批量制造模式是一個間歇、不連貫的過程,一個操作之后暫停生產(chǎn)、離線檢測,耗時又耗力。藥品連續(xù)制造技術(shù)是一種先進制藥技術(shù),定義為將物料連續(xù)不斷地輸入并轉(zhuǎn)化,在加工過程中將不合格物料不斷移除,可以24 h連續(xù)運行不間斷生產(chǎn),符合質(zhì)量源于設(shè)計(quality by design,QbD)原則,與包括一系列不連貫的單元操作的傳統(tǒng)批量制造相比,連續(xù)制造流程集成了各個單元操作,制藥設(shè)施體積小、運營成本低、自動化程度高、人為失誤風險小,生產(chǎn)工藝智能高,在加快生產(chǎn)效率的同時產(chǎn)品質(zhì)量尤其是一致性也得以保證,實現(xiàn)制藥行業(yè)對降本增效的期待[1-2]。批量制造放大化生產(chǎn)時,需要改變儀器大小和形狀,并在每個生產(chǎn)工藝后暫停生產(chǎn),離線檢測中間體的物理性質(zhì)是否達標。連續(xù)制造則使用相同設(shè)備,只增加生產(chǎn)時間即可擴大生產(chǎn)規(guī)模,以在線檢測技術(shù)對中間體的性質(zhì)進行檢驗,若檢測過程出現(xiàn)擾動,對不合格產(chǎn)品進行分流,通過反饋裝置更改儀器的運行參數(shù),恢復穩(wěn)態(tài)[3]。
口服固體制劑,尤其是片劑,具有劑量準確、性質(zhì)穩(wěn)定、攜帶方便、易于服用及產(chǎn)量高的特點,是目前藥物制劑比例最高的一類,也是連續(xù)制造應(yīng)用最為成熟的制劑。片劑的連續(xù)制造生產(chǎn)過程集成了物料輸送、連續(xù)進料、連續(xù)混合、連續(xù)制粒、連續(xù)干燥、連續(xù)壓片、連續(xù)包衣等單元操作,其中進料、混合、制粒、壓片等操作中,原料藥(active pharmaceutical ingredient,API)、輔料都以粉體的形式存在,粉末的結(jié)構(gòu)使原輔料具有類似氣體的壓縮性、類似液體的流動性和類似固體的成形性,可以通過制劑手段對粉體改性加工,多樣的表征手段為制備工藝及參數(shù)與處方的選擇提供參考。在片劑的連續(xù)制造中,需不停地檢測生產(chǎn)過程中的粉末和顆粒,對原輔料的粉體學性質(zhì)和制藥設(shè)備都具有更高要求,流動性差的粉體會導致連續(xù)制造工藝生產(chǎn)中出現(xiàn)黏壁、堵塞、間斷等不良現(xiàn)象,增加設(shè)備清潔難度;壓縮成形性差的粉末會導致片劑裂片、黏沖等不良現(xiàn)象;粒徑和密度差異過大的粉末影響混合均勻度,嚴重影響連續(xù)制造的生產(chǎn)效率和藥品質(zhì)量。把握粉體物料屬性及其變化對整個連續(xù)制造工藝性能和產(chǎn)品質(zhì)量的影響具有重要意義[4]。根據(jù)QbD理念,在連續(xù)制造之前,需要確定目標產(chǎn)品質(zhì)量概述(qualitytarget product profile,QTPP)和片劑的關(guān)鍵質(zhì)量屬性(critical quality attributes,CQA),在設(shè)計之初考慮到原料關(guān)鍵屬性(critical material attributes,CMA)中原料藥和輔料的粉體學性質(zhì),如粒徑大小、粒子形狀、表面積、密度、流動性、壓縮成形性對片劑的抗張強度、含量均勻度、溶出度等CQA的影響。隨著科學技術(shù)的不斷發(fā)展,采用過程分析技術(shù)(process analytical technology,PAT)在線檢測動態(tài)粉末性質(zhì)和關(guān)鍵工藝參數(shù)(critical processing parameters,CPP)已經(jīng)成為現(xiàn)實。為確保中間產(chǎn)品和終產(chǎn)品的質(zhì)量,需要以過程控制不斷優(yōu)化CPP和CQA,采用科學的方法與全面的表征技術(shù)對CMA進行充分表征,對CPP、CQA進行定時、連續(xù)的檢測,以達到連續(xù)制造的要求[5-7]。
本文中介紹了藥品連續(xù)制造技術(shù)的相關(guān)概念與法規(guī)及片劑連續(xù)制造各個單元操作的基本原理,歸納總結(jié)生產(chǎn)中涉及到的工藝參數(shù)以及各單元操作中使用到的PAT工具和方法,闡述原輔料粉體學性質(zhì)對連續(xù)制造各工藝的影響和粉體性質(zhì)表征的必要性,為片劑連續(xù)制造的后續(xù)實施提供參考。
1連續(xù)制造的法規(guī)與發(fā)展現(xiàn)狀
連續(xù)制造技術(shù)的提出,可以追溯至1984年[8],在汽車、食品制造等行業(yè)中已應(yīng)用多年,成功提高了制造效率并降低總成本,制藥業(yè)中藥品生產(chǎn)較為保守,目前制藥行業(yè)生產(chǎn)過程仍采用傳統(tǒng)批量制造技術(shù)為主流模式,連續(xù)制造技術(shù)在制藥領(lǐng)域仍然屬于新興技術(shù),符合工業(yè)4.0理念[2]。諸多國家的監(jiān)管機構(gòu)對連續(xù)制造技術(shù)給予了厚望,國際人用藥品注冊技術(shù)協(xié)調(diào)會(international conference on harmonization,ICH)認為連續(xù)制造技術(shù)符合QbD原則,發(fā)布ICH Q8-Q12等指南,并于2022年11月16日公布了Q13《原料藥與制劑的連續(xù)制造》指南最終采納版本,指南范圍涵蓋了用于化學實體和治療性蛋白質(zhì)的原料藥和制劑產(chǎn)品的連續(xù)制造,對連續(xù)制造的實施具有里程碑意義。國際制藥工程協(xié)會(international society for pharmaceutical engineering,ISPE)于2022年發(fā)布了口服固體制劑連續(xù)制造的實踐指南,完整地敘述了小分子固體制劑藥物的生產(chǎn)流程與工藝要點,說明粉末特性對連續(xù)制造工藝的影響。我國連續(xù)制造起步較晚,近年來,國家藥監(jiān)局藥品審評中心(center for drug evaluation,CDE)陸續(xù)發(fā)表了相關(guān)指導原則,如《關(guān)于公開征求ICH指導原則〈Q13:原料藥和制劑的連續(xù)制造〉意見的通知》、《藥審中心召開ICH〈Q13:連續(xù)制造〉指導原則專家研討會》等。其中《化藥口服固體制劑連續(xù)制造技術(shù)指導原則(征求意見稿)》是國內(nèi)首部針對藥物制劑的連續(xù)制造技術(shù)指導原則,彌補我國對藥物制劑連續(xù)制造技術(shù)在法規(guī)層面和技術(shù)層面的空白。近期,CDE還組織翻譯了中文版ICH Q13指南,征求ICH《Q13:原料藥和制劑的連續(xù)制造》意見,藥品連續(xù)制造技術(shù)在我國的應(yīng)用正有條不紊地進行著。
PAT是連續(xù)制造的關(guān)鍵技術(shù),是通過實時監(jiān)測原材料、中間體和工藝過程關(guān)鍵屬性的一種分析檢測與控制系統(tǒng),包括過程分析儀、過程控制工具、數(shù)據(jù)采集與多變量分析工具等,藥品的連續(xù)制造要求實時質(zhì)量合格,故離不開PAT的使用[9]。早在2002年,美國食品藥品監(jiān)督管理局(food and drug administration,F(xiàn)DA)提出了過程分析技術(shù)的概念用以提高藥品生產(chǎn)質(zhì)量,并于2004年發(fā)布了過程分析技術(shù)的框架性指導原則,指導制藥行業(yè)在藥品研發(fā)、生產(chǎn)與質(zhì)控上的創(chuàng)新性工作[10]。此外,這份指導原則還提出實時放行的概念,定義為基于過程數(shù)據(jù),確保過程和(或)最終產(chǎn)品接受質(zhì)量的能力,使藥品在投入生產(chǎn)前可以通過批準的放行規(guī)格和要求。FDA于2021年發(fā)布了《近紅外分析程序的開發(fā)和提交》指導原則,有助于近紅外光譜技術(shù)(near-infrared spectroscopy,NIR)這一最為常用的PAT方法的實施,PAT相關(guān)法規(guī)的完善也為連續(xù)制造工藝的開發(fā)提供了成熟的環(huán)境。
已獲批的7家企業(yè),其連續(xù)制造固體制劑,除Orkambi?的劑型兼具顆粒劑外,其他皆為薄膜包衣片劑(見表1),說明片劑是目前連續(xù)制造最為成熟的劑型。為推進連續(xù)制造技術(shù)在我國的應(yīng)用,需要更加關(guān)注粉末流動性等特性對連續(xù)制造工藝的影響,國家藥典委員會組織起草了《粉體流動性測定指導原則》,設(shè)立多變量統(tǒng)計過程控制技術(shù)指導原則、過程分析技術(shù)指導原則、粉體壓縮特性與制劑成型相關(guān)性研究等相關(guān)課題,有助于完善我國粉體表征等指導原則,增強物料粉體學性質(zhì)對連續(xù)制造影響的理解[7]。
2單元操作中原輔料粉體學性質(zhì)對連續(xù)制造的影響
廣義上,連續(xù)制造有3種模式,分別是半連續(xù)制造、連續(xù)制造和端到端連續(xù)制造[12]。半連續(xù)制造是一種批量生產(chǎn)結(jié)合連續(xù)生產(chǎn)的模式,通過將幾個生產(chǎn)單元整合成一個半連續(xù)生產(chǎn)線,在整個生產(chǎn)線中既有連續(xù)的單元操作,又有可中途停止生產(chǎn)進行檢測的批量制造,從而實現(xiàn)“連續(xù)+批量”的制造模式,如ICH Q13指南文件中提出的示例,采用連續(xù)直接壓片工藝生產(chǎn)片劑后,以批處理模式薄膜包衣。而連續(xù)制造分為原料藥連續(xù)制造和藥物制劑連續(xù)制造,各單元操作連續(xù)式進行,在單元操作之間通常采用中間料斗或氣動傳送裝置進行物料的轉(zhuǎn)移,已上市連續(xù)制造藥品Orkambi?、Tramacet?、Symkevi?和Prezista?在制劑生產(chǎn)環(huán)節(jié)均無批量制造環(huán)節(jié),可視為連續(xù)制造[11]。端到端連續(xù)制造包含了從連續(xù)多步合成原料藥到形成最終制劑的整個生產(chǎn)過程,即集成了連續(xù)合成原料藥、連續(xù)結(jié)晶以及后續(xù)的藥物制劑連續(xù)制造,是真正的連續(xù)制造,實施難度大,目前尚未應(yīng)用于固體制劑的連續(xù)生產(chǎn)。片劑的連續(xù)生產(chǎn)工藝可以分為連續(xù)直接壓片(continuous direct compression)、連續(xù)濕法制粒(continuous wet granulation)和連續(xù)干法制粒(continuous dry granulation)3類,如圖1所示。模塊化的制藥設(shè)備使得連續(xù)制造平臺總體積控制在遠小于批量制造占地的空間內(nèi),連續(xù)制造平臺1層通常放置壓片(compression)、制粒(granulation)及包衣裝置(coating),2層及更上層為進料(feeding)、混合(blending)裝置,根據(jù)實際生產(chǎn)需求,可對制藥設(shè)備和空間進行調(diào)整。已獲批上市的連續(xù)制造藥品大部分采用連續(xù)直接壓片工藝,即進料混合后直接壓片的生產(chǎn)方式,因省去制粒、干燥等步驟,減少了單元操作,工藝更加穩(wěn)健,是最佳的連續(xù)制造模式。在片劑連續(xù)制造的不同單元操作中,原輔料粉末的粉體學性質(zhì)如粒徑分布(particlesize distribution,PSD)、流動性、制粒后的顆粒形態(tài)、含水量等性質(zhì)會逐層遞進地影響到后續(xù)混合物的性質(zhì),進而影響最終片劑的質(zhì)量,因此需要借助合適的PAT工具對片劑的連續(xù)生產(chǎn)進行實時檢測,如表2所示。在連續(xù)制造工藝開始前對原輔料進行充分表征,并建立預(yù)測模型,預(yù)測工藝性能,能夠優(yōu)化處方設(shè)計,從源頭控制產(chǎn)品的質(zhì)量。
2.1物料輸送
連續(xù)制造各設(shè)備之間物料的傳送需要借助物料輸送裝置,可分為依靠料倉、滾筒、柔性袋的重力自由流動輸送和依靠機械化助流裝置如振動裝置和氣體輸送工藝的輔助輸送[12]。
2.1.1氣力輸送
氣力輸送可在進料前輸送原輔料,又或是在單元操作之間轉(zhuǎn)移過程中的粉末,是一種通過管道內(nèi)的空氣,將粒狀、粉狀物料從一段輸送到另一端密閉裝置的技術(shù),應(yīng)用廣泛,在食品、農(nóng)業(yè)、塑料、醫(yī)藥、化工等行業(yè)都有涉及,可應(yīng)用于連續(xù)化生產(chǎn)。根據(jù)系統(tǒng)的相對固體負載和速度,大致分為稀相或濃相[38]。根據(jù)空氣在管道中的狀態(tài),又可以將氣動輸送分為正壓輸送和負壓輸送。正壓輸送系統(tǒng)輸送距離遠,輸送能力強,是通過氣流將物料壓送至管道,風機通常安裝在進料前段,因此必須使用密閉加料裝置,安裝繁瑣且需注意管道的泄露問題。負壓輸送系統(tǒng)也名真空輸送系統(tǒng),常將引風裝置裝在系統(tǒng)的末端,當風機運轉(zhuǎn)后,整個系統(tǒng)會形成負壓,從而在管道內(nèi)外存在壓差,空氣被吸入管道,此時物料在真空作用下,經(jīng)管路輸送至旋風分離器,氣固分離后即可收集物料,該體系不易泄露,可以輸送毒性和易產(chǎn)生粉塵的物料[39],楊森Prezista?的連續(xù)化生產(chǎn)采用的是真空輸送裝置。
盡管氣力輸送具有易清潔、初始成本低、易于自動化、維護量小、輸送效率高、環(huán)境友好污染少的優(yōu)點,但在輸送前通常需要對粉末特性(粒徑分布、真密度和堆密度、含水量、黏附性、流動性)進行測定,對粉末要求高,且能耗較高。黏附性物料可能會導致出料口出現(xiàn)架橋、鼠洞現(xiàn)象,使得后續(xù)重力流或高剪切攪拌受阻,甚至產(chǎn)生結(jié)塊。流動性差的粉末會導致輸送效率低下,加大了清潔難度。此外,還要考慮到氣力輸送中由粉末特性導致的風險,如輸送中過細的顆粒與氣流接觸導致粉塵形成,使得API偏析,甚至產(chǎn)生爆炸的風險。粉末摩擦產(chǎn)生靜電,直接的體現(xiàn)即粉末黏附在管道內(nèi)壁、中間料斗出口處,阻礙后續(xù)粉末的流動,電能的積累亦可能有爆炸的隱患。粉末的充氣性也需要考慮,當粉末粒徑小于100 μm時,會導致兩相(空氣-固體)流動行為,導致粉末床中的空氣滯留、需要更長的沉降時間才能將預(yù)期質(zhì)量裝入固定體積的容器中等問題[40]。原料藥是否吸濕也應(yīng)納入考慮,已上市的連續(xù)制造藥品原料藥67%為非吸濕性原料藥,這是因為非吸濕性原料藥在儲存和生產(chǎn)過程中不易水解,能避免加工前進行復雜的干燥步驟,穩(wěn)定性較好[11]。
2.1.2料斗輸送
料斗在固體制劑的處理中普遍存在,既是后續(xù)單元操作前的主要存儲手段,也是依靠重力輸送顆粒材料的來源,料斗形狀與粉體的流動有相關(guān)性,常用的料斗形狀為圓錐形,顆粒從料斗的排出速率隨著料斗孔徑的增加而增加,這是因為在流出過程中,顆粒與料斗底部的接觸概率減少,作用力減少[41]。早在20世紀60年代,Jenike[42]就提出了料斗設(shè)計理論,闡明應(yīng)區(qū)分質(zhì)量流和漏斗流的界限,物料在料斗中流動的主要作用力為重力,如果粉體能夠根據(jù)添加順序均勻地流出,沒有滯留和黏附現(xiàn)象時,這一流動模式稱為質(zhì)量流,如圖2所示。質(zhì)量流是生產(chǎn)過程中的理想流動模式,對輔料的粒徑和流動性要求高。如果流動過程中形成了滯留區(qū)(flow dead zone),先加入的物料會發(fā)生滯留,流動區(qū)域縮小為漏斗型,后加入的物料可以先流出,稱為漏斗流。漏斗流不但會產(chǎn)生潛在的流動障礙,還會使得清潔過程變得困難。無論是批量還是連續(xù)制造,粉末的流動行為都應(yīng)符合質(zhì)量流模式。通過剪切單元測試,可以得出壁面摩擦角(φw)和有效內(nèi)摩擦角(δ)2個參數(shù),進而根據(jù)下式計算滿足值質(zhì)量流的臨界出料口尺寸(αc)和臨界料斗半角(Bc),如式(1)和式(2)[43]。Moravkar等[44]考察了不同潤滑劑,鹽酸二甲雙胍為API的處方,得出滿足質(zhì)量流的最小臨界料斗半角為35.6°,出料口直徑為1.343 m。
式中:α c為臨界料斗半角;φw為壁面摩擦角;δ為有效內(nèi)摩擦角。
(2)
式中:Bc為臨界出料口尺寸;H(α)為料斗半角的函數(shù),可用式3計算;σ為料斗中形成料拱時的應(yīng)力;ρb為粉末的堆密度;g為重力加速度。
H(α)=(1+m)+0.01(0.5+m)α,(3)
式中,m是料斗的形狀系數(shù),對于軸對稱圓錐料斗,m=1,對于平面對稱楔形,m=0。
料斗的結(jié)構(gòu)材料與物料之間的摩擦力不同,產(chǎn)生靜電能力不同,故料斗材質(zhì)也會影響到物料的流動能力。料斗材質(zhì)通常為不銹鋼,如若使用不同種類的材料,物料在流動過程中與料斗壁產(chǎn)生摩擦,產(chǎn)生不同累積電荷,使得物料黏附在料斗壁上,繼而影響后續(xù)物料的流動,有研究采用制藥業(yè)常用的材料對K100M控釋(control release,CR)級羥丙甲基纖維素(hydroxypropyl methyl cellulose,HPMC)進行了累積電荷表征,結(jié)果發(fā)現(xiàn):316L不銹鋼gt;聚乙烯gt;聚氯乙烯gt;鋁gt;高密度聚乙烯,高密度聚乙烯與K100M CR級HPMC摩擦產(chǎn)生的電荷只有316L不銹鋼的1/2,說明進料過程中料斗材質(zhì)確實可以影響粉末的流動表現(xiàn),進而影響連續(xù)化生產(chǎn)[45]。對于同種粉末,料斗的材質(zhì)、形狀、半角改變都會影響粉末的卸料速率,在不同料斗中需要不同的出料口尺寸才能達到相同的質(zhì)量流,粉體性質(zhì)的改變?nèi)缌健⒚芏鹊牟町?,也會影響其在相同料斗中的卸料速率。綜上,流動性優(yōu)良的物料、陡峭的半角、不易產(chǎn)生靜電的材料以及更大的出料口尺寸均利于粉末物料的流動。
2.2連續(xù)直接壓片
連續(xù)直接壓片集成了連續(xù)進料裝置、連續(xù)混合模塊和連續(xù)壓片裝置。與制粒技術(shù)相比,直接壓片的工藝步驟和設(shè)備更少,減少了加工時間、人工成本、工藝驗證,粉末損耗更低,在工藝過程中無需加熱或使用液體[46-47]。目前連續(xù)直接壓片工藝的開發(fā)最為完善,輝瑞公司和GEA集團合作開發(fā)設(shè)計出了一種便攜化、連續(xù)化、微型、模塊化(portable,continuous,miniature,modular,PCMM)連續(xù)制造平臺,該平臺集成了6種失重式進料器、一臺立式混合器與一種旋轉(zhuǎn)壓片機,并在壓片機飼粉器內(nèi)配備了近紅外系統(tǒng),壓片前可以實時監(jiān)控含量均勻度并對片劑分流轉(zhuǎn)移不合格的片劑,壓片后,對片劑進行除塵,以批生產(chǎn)的方式包衣,離線檢測終產(chǎn)品的溶出度、硬度、片重等性質(zhì),按需生產(chǎn)藥物,大大降低了運營成本,提高生產(chǎn)效率,減少了生產(chǎn)時間,Daurismo?和Cibinqo?均采用這種PCMM平臺進行制備[48-49]。GEA和Fette等制藥器械公司分別設(shè)計了ConsiGma 25、FE CPS等CDC平臺,F(xiàn)E CPS具有6個進料器,物料在混合器內(nèi)可以以不同的混合速率混合,混合物從傳動裝置運輸至壓片機中壓片。
雖然連續(xù)直接壓片工藝簡便,但由于粉末與顆粒相比,粒徑更小,內(nèi)聚力更大,連續(xù)運行對原輔料的流動性具有較高要求。粉末的特性會影響后續(xù)設(shè)備的選擇與工藝參數(shù)的選擇,根據(jù)質(zhì)量源于設(shè)計原則,在工藝設(shè)計之初就應(yīng)考慮到粉末特性對產(chǎn)品和工藝的影響。在生產(chǎn)前對原輔料進行系統(tǒng)、全面地表征是十分必要的,有利于預(yù)測和避免潛在的工藝故障,如偏析、結(jié)塊、黏附等,減少工藝開發(fā)前期的物料損耗。原輔料能否在進料裝置、中間料斗、壓片機飼粉器處順利地流動或填充是保證連續(xù)直接壓片工藝生產(chǎn)效率和片劑質(zhì)量的關(guān)鍵,常規(guī)的粉末流動性表征方法有測定休止角、卡爾指數(shù)和Hausner比、流出速度法等。隨著粉體表征技術(shù)發(fā)展,應(yīng)用粉體剪切單元測試可以全面地評估連續(xù)制造中動態(tài)粉末的流動性,篩選滿足連續(xù)直接壓片要求的原輔料。通過粉體流變儀測試粉體基本流動能(basicflow energy,BFE)、最大主應(yīng)力(major principal stress,MPS)、無約束屈服強度(unconfined yield stress,UYS)、內(nèi)聚力(τc)、流動函數(shù)(flow function coefficient,F(xiàn)FC)、壓縮率等參數(shù)[50-52],其中表示流動性的參數(shù)如表3所示。
BFE是槳葉片向下旋轉(zhuǎn)穿過粉末第7次向下測得的流動能量,BFE值越大,說明物料流動需要克服的能量越大,流動性越差。除BFE外,粉體流變儀還能測定比流動能(specific energy,SE)、穩(wěn)定性指數(shù)(stability index,SI)、流動速率指數(shù)(flow rate index,F(xiàn)RI)等流動能量參數(shù),分別指的是第7次測試葉片上升時測得的流動能量、流動過程中受到擾動時粉體的結(jié)構(gòu)變化和粉體流動過程中對于槳葉轉(zhuǎn)速的敏感度,三者均是粒徑和密度作用的結(jié)果[53]。SI反映了流動能量隨時間的變化,其值為第7次葉片向下通過所需的流動能量與第1次葉片向下通過所需的流動能量的比值,SI越接近1,說明物料越穩(wěn)定。流動速率指數(shù)FRI為槳葉片速度為10 mm/s時的流動能量與槳葉片速度為100 mm/s時的比值,當FRI>3時,說明物料呈黏性,F(xiàn)RI<1時,物料可能加入了助流劑。SE這一參數(shù)反映了物料的黏附性,比流動能越高,黏附性越高,SE值在5~10之間,說明物料的黏性適中。此外,基于莫爾圓理論對藥物粉末進行剪切測試,可得到屈服軌跡和2個莫爾圓,取小莫爾圓與x軸相交中的較大值為UYS,又名破壞強度,取大莫爾圓與x軸相交中的較大值為MPS,又名固結(jié)應(yīng)力。MPS和UYS的比值,即為FFC,可以表征粉末流動的優(yōu)劣能力。將各參數(shù)存儲建立物料庫,再以主成分分析(principal component analysis,PCA)方法降維,并將物料性質(zhì)與工藝性能相聯(lián)系,使用聚類分析進而對物料加以分類,即可得到具有相似流動性的物料。因相似性質(zhì)的原輔料通常表現(xiàn)出相似的工藝性能,故使用不同原輔料時可在物料庫中快速檢索到相似的輔料,對后續(xù)流動行為和工藝表現(xiàn)和產(chǎn)品性能進行預(yù)測,找到可替代的材料以用于連續(xù)制造,減少了原輔料表征所需的工作量[51-52,54]。
通過擬合上述表征流動性的參數(shù),建立流動預(yù)測模型是一種新興篩選手段,在設(shè)計之初即可預(yù)測原輔料流動性對后續(xù)生產(chǎn)的影響,進而不斷優(yōu)化工藝,提高產(chǎn)品一致性,對連續(xù)制造工藝大有裨益。Barjat等[55]設(shè)計了一種粉體流動性預(yù)測模型,通過對100種粉末樣品進行剪切單元測試,篩選出FFC>3的粉末,并認為其可以滿足連續(xù)直接壓片中粉末流動的基本需求。FFC<3的粉末流動性差,易黏合,在進料以及后續(xù)生產(chǎn)過程中處理復雜,不適于連續(xù)制造。Sonia等[56]采用主成分分析法在結(jié)構(gòu)化有機顆粒系統(tǒng)工程研究中心(Engineering Research Center for Structured Organic Particulate Systems,ERC-SOPS)建立的數(shù)據(jù)庫中提取了33種常見藥用輔料,進行PCA分析,關(guān)鍵原料屬性如粒徑、堆密度、FFC對流動性貢獻更大的主成分1產(chǎn)生正面影響,而SI、FRI、卡爾指數(shù)產(chǎn)生負面影響。由此可見FFC高、壓縮率低和內(nèi)聚力低的原輔料流動性更好,適用于連續(xù)直接壓片。
2.2.1連續(xù)進料
片劑連續(xù)生產(chǎn)過程始于進料,失重式(loss-in-weight,LIW)進料器通常用于連續(xù)制藥的進料環(huán)節(jié),由料斗、進料器、稱重裝置和調(diào)節(jié)器組成[57]。LIW進料方式分為振動進料、螺旋進料或帶式進料,目前連續(xù)進料中應(yīng)用廣泛的是螺旋進料器。與批生產(chǎn)中需要對原輔料稱重再進行混合不同,API和輔料加入失重式進料器后在螺桿的作用下不斷流動通過重量傳感器,實時監(jiān)測物料的重量,計算瞬時速率,與事先設(shè)定好的恒定速率對比,對物料質(zhì)量隨時修正,使進料速率維持在動態(tài)平衡的狀態(tài),克服堆密度的影響,并在進料裝置下游達到穩(wěn)態(tài),進入后續(xù)的混合與壓片等裝置[58]。為保證粉末連續(xù)地進料,料斗中的粉末需要及時補充。料斗中的機械化助流裝置可用于幫助粉末流入進料螺桿,以確保每個螺桿的螺旋在運行期間始終充滿粉末,這一過程稱為螺桿填充。通過反饋控制系統(tǒng),用螺桿轉(zhuǎn)速控制并保持粉末的質(zhì)量流率,其中螺桿速度自動調(diào)整,從而在單位時間輸送精確量物料[59]。螺桿轉(zhuǎn)速和螺桿種類是影響進料性能的關(guān)鍵工藝參數(shù)。目前,廠商已開發(fā)出多種尺寸的螺桿,顯著減少了在實際操作中因物料自身特性,如流動性、顆粒大小和堆密度等,所引發(fā)的架橋、堵塞和靜電等問題。當相同輔料在不同螺距的螺桿下進料的相對標準偏差小于5%時,可以認為連續(xù)進料的性能均勻[56]。
粉體性質(zhì)差的原輔料,可能導致進料不均勻,從而造成混合不均,進而影響片劑的質(zhì)量,導致片重差異超出范圍和含量不均勻等問題,因此,原輔料的進料性能優(yōu)劣直接決定了最終片劑的質(zhì)量。與進料器性能相關(guān)的物料屬性包括粒度分布、形狀、密度和流動特性[58,60-61]。自身帶電荷的原輔料可能與進料裝置管壁之間摩擦生成靜電,導致其發(fā)生黏附現(xiàn)象。輔料的選擇對連續(xù)進料具有較大影響,連續(xù)直接壓片工藝通常選取為直壓工藝開發(fā)的輔料。高黏度輔料如HPMC,因自身帶有電荷容易在進料過程中與進料器摩擦產(chǎn)生靜電,粘結(jié)在出料口,此時粘結(jié)的物料可能會結(jié)塊并掉落至進料器下方的料斗中,掩蓋傳感器,使得粉末質(zhì)量流量受到影響,監(jiān)測數(shù)據(jù)出現(xiàn)尖峰產(chǎn)生誤差,從而對后續(xù)連續(xù)生產(chǎn)造成不良影響。Allenspach等[45]在失重式進料器中對直壓型(direct compression,DC)和CR型2類HPMC的靜態(tài)流動性、動態(tài)流動性和所帶電荷進行了表征,發(fā)現(xiàn)DC型的振實密度更高,計算Hausner比后發(fā)現(xiàn)2類輔料流動性均較差,DC型的HPMC較標準型號的休止角較小,流動性稍好,CR類型的材料都有正初始電荷,在卸料口處有顯著電荷累計,造成粉末堆積在卸料口,掩蓋傳感器,對后續(xù)連續(xù)生產(chǎn)造成誤差,粉末堆積在卸料口的程度還和進料速度有關(guān),進料速度為1 kg/h時,粉末明顯堆積在了卸料口處。當流速增加,堆積情況明顯改善。綜上,選擇具有較小負電荷、流動性稍好的輔料,如DC型HPMC更適用于連續(xù)進料。API含量低的處方靜電影響小,當API含量增大,易導致進料器中架橋、在螺桿上堆積成層的現(xiàn)象,使得進料質(zhì)量流量可變性增大[46]。通過將原料藥與膠體二氧化硅共處理,納米級的二氧化硅可以包覆在API表面,填充外表的孔隙,降低靜電,減少了API與器壁的摩擦力,增加原料藥的流動性。在Escotet-Espinoza[62]等的研究中發(fā)現(xiàn),將黏附性強的API與膠體二氧化硅共混后,物料在失重式進料裝置上的黏附性明顯改善,同時降低了進料系數(shù)、螺桿轉(zhuǎn)速的相對標準偏差。膠態(tài)二氧化硅比表面積大、粒徑小,單獨進料易黏附在進料器的螺桿上,應(yīng)將膠態(tài)二氧化硅與原料藥進行預(yù)混后再進行連續(xù)進料[58]。
由于原輔料的多變量性質(zhì),通常無法直接確定哪些性質(zhì)對進料過程的影響最大,因此,常使用多變量分析(multi-variate analysis,MVA)工具評估物料特性對進料性能的影響[46,51]。Wang等[52]對17種輔料進行了壓縮率、透氣性、內(nèi)聚力、流動能量、剪切單元等表征,并通過主成分分析和聚類分析,得到了具有相似性質(zhì)的同一簇物料,如微晶纖維素101和乳糖、共聚維酮和交聯(lián)聚維酮,在進料器表征后證實相同簇的物料在進料器中可表現(xiàn)出相似進料行為。Escotet等[51]對5種原料藥和15種輔料的堆密度、粒徑分布、剪切單元測試、透氣性、壓縮性、動態(tài)流動性進行表征,經(jīng)主成分分析得到5個主成分,通過計算相似性指數(shù),進行聚類分析,發(fā)現(xiàn)微晶纖維素Avicel PH-301和Avicel PH-101的流動性相似,因2種輔料除堆密度有區(qū)分外,其余性質(zhì)如粒徑、FFC、黏附性相近。以進料系數(shù)、進料流動行為、再填充質(zhì)量為工藝指標,進料系數(shù)為恒定的螺桿速度與螺桿角速度的比值,2種輔料的進料系數(shù)相差小于0.2。通過高速成像相機拍攝,發(fā)現(xiàn)粉末從螺桿中掉落有3種情況:以塊狀掉落,易黏附在螺桿上;以較小的粉末塊掉落,黏附情況有改善;粉末呈自由流動,基本無黏附現(xiàn)象,2種輔料均屬于第2種情況,且再填充的相對標準偏差小于5%。綜上,可以證明具有相似性質(zhì)的輔料在工藝性能上表現(xiàn)一致。Singh等[14]以乙酰對氨基苯酚為模型藥物,硅化微晶纖維素為輔料,硬脂酸鎂為潤滑劑,通過近紅外光譜法實時監(jiān)測了堆密度和進料器螺桿速度,設(shè)計了一種前饋-反饋組合系統(tǒng),前饋控制回路基于對粉末密度的實時監(jiān)控,而反饋控制回路基于粉末水平、藥物濃度、片劑重量和硬度。研究者發(fā)現(xiàn)進料器螺桿速度和粉末堆密度成反比,這是由于流動性優(yōu)良的粉末通常質(zhì)量較大,堆密度高,重力大于摩擦力、內(nèi)聚力等阻礙流動的力,在進料時螺桿所需能力更高。以螺桿速度作為定性標準,可以側(cè)面反映堆密度的大小。在原料藥及潤滑劑含量不變時,只將微晶纖維素Avicel PH-301改變成Avicel PH-101,隨著粉末堆密度的降低,片劑重量降低,片劑硬度下降。Andrew等[54]以貝葉斯優(yōu)化原理在物料庫中建立預(yù)測物料流動性的模型,發(fā)現(xiàn)強烈影響模型的參數(shù)是粒徑分布、堆密度、FFC和粉體流變儀參數(shù)。通過不斷完善物料庫,可以綜合分析堆密度、粒徑、流動性參數(shù)等對螺桿速度的影響,大大減少連續(xù)制造物料篩選的工作量。
2.2.2連續(xù)混合
連續(xù)直接壓片生產(chǎn)線的第2步是連續(xù)混合。批量混合器設(shè)備體積大,混合完成后需要離線檢測,與批量混合使用的密閉式雙錐形、V型等混合器不同,連續(xù)混合常用水平的管狀混合器,通常由2個連續(xù)的混合器組成,混合器內(nèi)部有葉輪,經(jīng)過失重式進料的原料藥、填充劑、崩解劑等原輔料從常規(guī)進料器流動到混合機中,而潤滑劑則從微型進料器流動到混合器中。隨著葉輪不斷攪拌,原輔料不斷輸入的同時,混合均勻的混合物不斷流出,混合物的滯留量達到穩(wěn)態(tài),滯留量與流動速率之比,即為混合物在混合器中的平均停留時間。連續(xù)混合設(shè)備無需離線取樣,可實時分析含量均勻性,縮短生產(chǎn)周期,在出料口集成近紅外探頭,實時檢測混合物的含量[12,63-65]。德國GEA公司開發(fā)的商業(yè)型直接壓片的ConsiGma-DC型連續(xù)生產(chǎn)設(shè)備中采用近紅外光譜儀實時檢測成分的混合均勻度[66]。在混合器中可加入示蹤劑,建立停留分布模型(residence time distribution,RTD),可以模擬粉末在混合器中的流動行為[67]?;旌暇鶆蚨仁腔旌瞎に嚨年P(guān)鍵質(zhì)量屬性,混合不勻會導致后續(xù)片劑質(zhì)量不合格,產(chǎn)生片重差異超限、含量不均勻等問題。
物料性質(zhì)如粒徑、粒度分布、粒子形狀、粒子密度、表面帶電都會對粉體的混合產(chǎn)生影響,相近粒徑、密度的原輔料更容易混合[68-70]。偏析現(xiàn)象是混合的相反過程,常見于基于批處理的直接壓片過程,尤其是對于低劑量片劑產(chǎn)品。偏析最關(guān)鍵的原因是顆粒物理性質(zhì)的差異,例如粒徑、密度和形態(tài)相差較大。批量生產(chǎn)低劑量藥物的挑戰(zhàn)對連續(xù)混合而言是優(yōu)勢:因其可減少物料的加工量,減少粉末轉(zhuǎn)移量,降低了偏析的風險[71]。在處方設(shè)計時,應(yīng)提前分析各組分粒徑密度大小,避免差異過大的組分混合導致偏析。在連續(xù)混合時,亦可通過PAT工具實時檢測混合物的PSD變化。Lee等[13]混合過程中以NIRs收集了不同含量乳糖為填充劑的的光譜數(shù)據(jù),通過偏最小二乘回歸(partial least squares regression,PLSR)建立模型,快速準確地監(jiān)測到了混合成分的PSD及其變化。
除了要考慮帶粉末性質(zhì)對連續(xù)混合的影響,還要考慮到工藝設(shè)計的影響。連續(xù)混合設(shè)備分為垂直型和水平型,垂直型混合設(shè)備在物料特性和工藝參數(shù)發(fā)生波動的情況下混合性能更穩(wěn)定[12]。在連續(xù)混合中監(jiān)測動態(tài)粉末物料的含量均勻度和API濃度是一個技術(shù)難點,因此需要確保最合適的探頭位置。測量粉末混合均勻性的探頭可以安裝在連續(xù)混合器后的溜槽處或連續(xù)直接壓片飼粉器處。Sierra等[72]通過比較不同攪拌轉(zhuǎn)速下在溜槽處、飼粉器內(nèi)和片劑中乙酰氨基酚粉末含量的相對標準偏差,發(fā)現(xiàn)溜槽處監(jiān)測的混合均勻性優(yōu)異。Manley等[73]在飼粉器處安裝了NIR探頭,以確保隨后壓片的混合均勻性,確定片劑的組成。在PCMM平臺中,并未使用管狀混合器而是使用了立式混合機,內(nèi)部具有上下葉輪,物料從輸料料斗流經(jīng)上葉輪后過篩,經(jīng)下葉輪混合后,流入壓片裝置。含高劑量黏性API的處方容易在混合過程中導致粉末團聚,Vanarase等[74]混合了對乙酰氨基酚和微晶纖維素Avicel PH-200,在混合后增加了研磨過篩工藝,使團聚的粉末破碎,確?;旌暇鶆?。除了設(shè)計的影響,對連續(xù)混合的研究還主要集中在工藝參數(shù)上,如混合器葉輪的轉(zhuǎn)速[46,75]。葉輪轉(zhuǎn)速會影響滯留量,一般中等葉輪轉(zhuǎn)速可以達到最佳的混合效果[75]。當物料的堆密度增大時,平均停留時間增加,混合最佳葉輪轉(zhuǎn)速降低,基于物料的堆密度可對混合器的葉輪轉(zhuǎn)速進行篩選[74]。
2.2.3連續(xù)壓片
連續(xù)直接壓片的最后一步是連續(xù)壓片。若無需包衣,則壓片是片劑成型的最后一步。連續(xù)壓片通常采用批量制造的旋轉(zhuǎn)壓片機,由一個帶有可變數(shù)量沖頭和模具的旋轉(zhuǎn)轉(zhuǎn)臺組成。連續(xù)壓片始于模具填充[76],經(jīng)連續(xù)混合的粉末由管道輸送至壓片機料斗中進行壓片粉末流動到模具中的速度和流量受飼粉器[77-80]和料斗[81]的設(shè)計如形狀和大小的影響。飼粉器分為單腔室、雙腔室和三腔室3種,是監(jiān)測混合均勻度的最佳位置。飼粉模式可分為重力飼料和強制飼料。強制飼料中,粉末經(jīng)漏斗流至飼粉器腔室,在槳葉旋轉(zhuǎn)的作用下,留到?jīng)_模中[79]。填充粉末后,通過片重調(diào)節(jié)裝置改變沖模體積推出并刮凈多余粉末,進行預(yù)壓縮和主壓縮,初始以較低壓力壓片,顆粒重排,粉末間的空氣被排除。隨著壓力不斷增加,孔隙率降至最低,粉末固結(jié),當上沖和片劑分離時,壓縮力降低,成形的片劑發(fā)生部分彈性復原。片劑被推出,進行后續(xù)包衣或除塵操作。在該單元操作中,粉末的流動性、壓縮成形性與壓縮工藝參數(shù)對最終成品片劑的關(guān)鍵質(zhì)量屬性具有直接影響。通過粉體學知識可以建立關(guān)鍵質(zhì)量屬性預(yù)測模型,實時調(diào)整工藝參數(shù),以獲得預(yù)期質(zhì)量的片劑。
連續(xù)制造中旋轉(zhuǎn)壓片的沖模填充階段是否穩(wěn)定是影響含量均勻度、片劑硬度、溶出度、片重等關(guān)鍵質(zhì)量屬性的主要因素,其與粉末特性(如內(nèi)聚力、堆密度、粒徑分布和表觀形貌)以及關(guān)鍵工藝參數(shù)(如飼粉模式、飼粉速率、沖模尺寸)有關(guān)[82-84]。粉末流動性的優(yōu)劣決定了后續(xù)片劑的片重、硬度是否合格,以臨界流動速率為指標可用于評估粉末從料斗流入沖模的填充效率。在重力飼料模式下,粉末的流動性能與自身性質(zhì)密切相關(guān),粒徑小于100 μm的原輔料流動性差,填充差異大,可用制粒工藝或加入助流劑的方式適度改良流動性。表觀形貌上,球形的粒子具備更出色的流動能力,通過噴霧干燥手段制備近球形的顆??梢允诡w粒表面光滑,摩擦力降低。在Mills等[85]的研究中,重力飼料條件下,微晶纖維素的粒徑越大,臨界流動速率大,相同時間內(nèi)流入料斗的量越多,粒徑大于100 μm的微晶纖維素流動能力無明顯區(qū)別,均較為優(yōu)異。粒徑小的粉末,內(nèi)聚力強,出現(xiàn)了間歇填料的情況,相同粒徑下,堆密度較低的微晶纖維素表現(xiàn)出了更優(yōu)的流動性。但在強制飼料條件下,微晶纖維素粉末流動性沒有明顯差異,說明適當?shù)墓に嚄l件可以改變粉末的流動行為,流動特性取決于工藝參數(shù)和粉體特性之間的相互關(guān)系,對于流動性差的輔料,使用強制飼料裝置可減少對粉體自身流動性的依賴,更適用于連續(xù)制造。傳統(tǒng)方法的靜態(tài)流動性參數(shù)不能精準預(yù)測連續(xù)制造沖模填充階段的粉體流動行為,Yanginuma等[86]在旋轉(zhuǎn)壓片機上評估了不同飼粉模式下的粉末了流動行為,發(fā)現(xiàn)靜態(tài)流動性參數(shù)(如休止角、卡爾指數(shù))優(yōu)異的輔料在重力飼料下流動行為優(yōu)異,而動態(tài)粉體學參數(shù)(如流變儀參數(shù))在強制飼料下流動行為優(yōu)異。含有細長顆粒形貌的微晶纖維素粉末靜態(tài)流動性低,而動態(tài)流動性參數(shù)優(yōu)異,在強制飼料條件下,更易在攪拌地作用下與其他輔料混勻,適用于高速壓片的過程,故連續(xù)制造物料庫中流動性參數(shù)均使用流變儀參數(shù)。相對濕度和溫度也是影響片劑質(zhì)量的重要因素,粉末含水量隨相對濕度增加而增加,水分對顆粒的作用機制復雜,顆粒表面吸附水分后形成液體橋,內(nèi)聚力內(nèi)聚力,導致流動性降低。不同性質(zhì)輔料受濕度的影響也不相同,顆粒表面的水分也可充當潤滑劑,減少粉末之間的摩擦力,從而增加粉末的流動性。水分增加還會改變原輔料的表面性質(zhì)和密度,更改范德華力與靜電力,對流動特性產(chǎn)生影響。在Wu等[87]的研究中,磷酸氫鈣和甘露醇的流動性均都隨著相對濕度增加而增加,控制生產(chǎn)環(huán)境溫濕度恒定利于工藝穩(wěn)定。
填充后進入粉末壓縮階段,片劑的硬度和體積與壓縮成形性密切相關(guān)。根據(jù)壓片機壓縮,解壓縮,推片等過程可將粉末壓縮過程分為顆粒重排、顆粒變形、固結(jié)和彈性復原4個步驟。壓縮成形性包括可壓縮性、成形性和可壓片性,分別代表粉末體積減少、形成具有一定強度的粉塊、在壓力下形成具有一定機械強度片劑的能力,若處方設(shè)計不當,壓縮成形性差的輔料含量過多,生產(chǎn)過程中往往出現(xiàn)裂片、黏沖等現(xiàn)象。壓縮成型主要取決于原輔料成分的自身性質(zhì),特別是它們的變形機制,即塑性變形、彈性變形與脆性變形,含水量、表面特性、粒徑及其分布、多晶型和無定形也是影響壓縮成型的一些特性[46,88-89]。Patel等[89]強調(diào)了物料性質(zhì)和壓片速度對壓縮性、成形性與可壓片性的重要性,對壓縮機制深入研究有利于優(yōu)化處方設(shè)計和工藝參數(shù)。在美國藥典1062片劑壓縮表征文件中提出,采用數(shù)學模型法可評估壓縮特性,預(yù)測原輔料的壓縮行為,指導實際生產(chǎn)。常用的壓縮方程有反映孔隙率-壓縮力關(guān)系的Heckel方程[90]、抗張強度(tensile strength,σ)-壓縮力關(guān)系的壓力-抗張強度線性方程抗張強度-壓縮力關(guān)系的(R-D)方程[91-92]等,如下表4所示。使用數(shù)學模型評估粉末的壓縮性和成形性還需要計算粉末內(nèi)部的孔隙率:
ε=1-,(4)
式中:ε為孔隙率;ρb為堆密度;ρt為真密度。堆密度與真密度的比值又稱固相分數(shù)(solid fraction,SF),通過改變壓片壓力,可以得到具有不同孔隙率的片劑,對應(yīng)不同壓力或抗張強度可擬合不同的壓縮成型曲線。
Paul等[93]以壓縮方程評估了11種不同規(guī)格的甘露醇和5種不同規(guī)格的乳糖,發(fā)現(xiàn)粉末的比表面積強烈影響其塑性變形性和可壓片性,許多材料的壓片性能易受壓片速度的影響。壓縮過程伴隨著機械能與熱能的轉(zhuǎn)化,通過能量參數(shù)也可衡量物料的壓縮特性,通過壓實模擬器得出的實時壓力與沖頭位移數(shù)據(jù)可繪制壓力-沖頭位移曲線,根據(jù)曲線線下面積即可得出衡量物料變形能力的塑性功和彈性復原能力的彈性功,塑性功與彈性功的大小和塑性變形、彈性變形能力呈正相關(guān)。此外,除R-D方程外,彈性復原率(elastic recovery,Er)和σ也可用于評估成形性:
(5)
式中:F為片劑的徑向破碎力;D為片劑的直徑;L為片劑的厚度。由式(5)可知,相同壓力下,抗張強度越大,成形性越好??箯垙姸却韱挝幻娣e下片劑的徑向破碎力,與硬度相比,消除了面積的影響,適用于評價不同直徑、厚度的片劑。
(6)
式中:Ht為膨脹后的片劑體積;H0為片劑從模圈中推出的體積。Er過大,會產(chǎn)生裂片現(xiàn)象,影響成形性。研究者們可采取壓縮方程與能量參數(shù)相結(jié)合的方法,驗證各輔料的壓縮成形性。
在固體制劑生產(chǎn)中,物料是否具有足夠的潤滑性也是需要考察的關(guān)鍵,黏附性強的物料壓片后黏沖,產(chǎn)生的片劑表面不光滑,暗淡粗糙,究其本質(zhì)是物料與壓縮工具的黏附力大于物料自身的內(nèi)聚力,預(yù)測和表征黏沖的手段包括離心分離[94]、原子力顯微掃描[95]、粉末流變學[96]等方法,為降低物料的黏附性,防止黏沖現(xiàn)象發(fā)生,可以在壓片機上集成外部潤滑裝置、對沖頭鍍上特殊材質(zhì),或在處方中適度提高潤滑劑的比例,對黏附性、吸濕性過強的原料藥進行前處理[97]。對易黏沖物料的預(yù)測與表征也應(yīng)納入連續(xù)制造物料庫中。
連續(xù)壓片中過程分析技術(shù)主要用于測定片劑含量、硬度、重量、溶出度等關(guān)鍵質(zhì)量屬性。將近紅外探頭集中在飼粉器處,可良好監(jiān)測粉末的混合均勻度,確定片劑的組成,確保后續(xù)壓片質(zhì)量穩(wěn)定[98]。無損、非侵入的監(jiān)測方式是連續(xù)制造區(qū)別于批量制造的關(guān)鍵,對片劑的直徑和厚度可通過激光三角法使用相機和傳感器進行測定,避免了傳統(tǒng)批量制造中的取樣測定。片劑的重量則可通過模型預(yù)測法,即壓片機工藝參數(shù)中的預(yù)壓壓力來確定。傳統(tǒng)的片劑硬度和溶出度監(jiān)測方法均是破壞性的,已有研究顯示可使用PAT技術(shù)如NIR、聲發(fā)射技術(shù)對片劑強度進行預(yù)測[31],聲波在片劑的傳播時間可構(gòu)建硬度預(yù)測模型,而溶出度的監(jiān)測可開發(fā)替代溶出模型,擬合預(yù)測系數(shù),得到各時間點的預(yù)測溶出百分比,從而得到預(yù)測溶出曲線[99]。
在片劑處方中,輔料用量通常大于原料藥,以發(fā)揮填充、崩解、潤滑等作用,當API不會影響到整個處方在連續(xù)直接壓片工藝中的流動性和壓縮性時,可以保持處方中的輔料不變,只改變API即可生產(chǎn)不同的產(chǎn)品,為工藝設(shè)計和處方開發(fā)階段節(jié)省大量時間。針對流動性差、高劑量的API處方,可以通過調(diào)整處方和工藝參數(shù)來改善處方的流動性,Schaller等[100]表征了各輔料的流變學、粒徑等性質(zhì),建立了物料庫,以壓縮率為流動性指標,抗張強度為片劑關(guān)鍵質(zhì)量屬性,篩選出2種最佳處方。以壓縮三角形原理考察了不同壓片速度下旋轉(zhuǎn)壓片制得片劑的壓縮性、成形性與可壓片性,發(fā)現(xiàn)成形性對壓片速度不敏感。對于HPC為填充劑的處方,在較低壓片速度下可制得較高抗張強度和較低孔隙率的片劑。通過這種方法可加快連續(xù)直接壓片的處方開發(fā)。Janssen等[46]采用GEA開發(fā)的完全集成的ConsiGma?CDC 120LB2-MS連續(xù)直接壓片生產(chǎn)線,以對乙酰氨基酚為API,考察了不同類別乳糖和微晶纖維素作填充劑對片劑質(zhì)量和工藝參數(shù)的影響。采用PCA分析法,通過PLSR將其與混合和壓片性能聯(lián)系起來,評估了粉末混合物的壓縮率、透氣性、粒徑分布等性質(zhì)。根據(jù)載荷圖和得分圖的結(jié)果,API的質(zhì)量分數(shù)為1%的處方,由于輔料含量較高,其成形性、片劑抗張強度和粉末流動性參數(shù)均較高,但在API的質(zhì)量分數(shù)為40%的處方中,片劑流動性和可壓性均較低,內(nèi)聚力較高。與含乳糖的處方相比,含微晶纖維素的處方顯示出更好的成形性、更低的流動性和更高的內(nèi)聚力,應(yīng)用PCA分析可篩選粉體性質(zhì)優(yōu)異的處方,完善適用連續(xù)直接壓片的處方。
2.3連續(xù)干法制粒
制??捎糜诟纳品勰┑牧鲃有裕岣邏嚎s成形性,分為干法制粒和濕法制粒。在連續(xù)干法制粒工藝中,輥壓制粒法是首選的制粒方法,適用于濕熱敏感的原輔料,連續(xù)化程度高,能耗低,成本低,在壓實過程中,使不同特性的顆粒緊粘在一起,增加了粉末的堆密度和粒徑,提高了流動性,有效地防止粉體顆粒離析[101]。連續(xù)混合后的物料通過料斗經(jīng)螺桿進料口后進入輥壓機,輥壓機由兩個反向轉(zhuǎn)動的擠壓輥輪組成,可以將松散的粉末壓縮成絲帶狀物料,即帶材,隨后帶材通過研磨裝置研磨過篩形成所需的干顆粒,如下圖3所示。Johanson[102]將粉末在輥壓機的運動描述為3個階段。粉末剛進入輥壓機時,運動速度小于輥輪的線速度,粉末位于滑移區(qū),隨著輥輪轉(zhuǎn)動,粉末被送入捏合區(qū),此時靠近輥輪表面的粉末速度與輥輪線速度一致,在捏合區(qū)壓實成條帶狀,進入釋放區(qū),帶材在彈性形變的作用下膨脹。
連續(xù)干法制粒的關(guān)鍵質(zhì)量屬性為帶材密度和整粒后的顆粒粒徑。帶材的密度、孔隙率、粒徑分布取決于工藝參數(shù)如螺桿速度、輥輪之間的間隙、輥壓速度、輥輪的表面紋理和直徑、輥輪壓力、除氣條件等因素[103]。輥輪中心與滑移區(qū)捏合區(qū)過渡面的夾角為捏合角。捏合角可作為評價帶材質(zhì)量的標準,捏合角越大,顆粒在捏合區(qū)受到的壓力時間越長,帶材分布更均勻。捏合角取決于混合粉末的塑性、粒徑、密度等性質(zhì)和螺桿速度、輥輪之間的間隙、輥壓速度、輥輪的表面紋理等工藝參數(shù)[104]。
輥壓后帶材的相對密度顯著影響最終顆粒PSD,較大的相對密度會導致較大的顆粒尺寸和機械性能較弱的片劑。傳統(tǒng)的PSD測量包括篩分、動態(tài)光散射等方法,這些方法需要獲取樣品后進行測試,破壞了生產(chǎn)過程的一致性。借助非侵入性的PAT技術(shù),如FBRM、動態(tài)圖像分析、SFV可以實時得到數(shù)據(jù)且不暫停生產(chǎn)工藝。AE技術(shù)檢測也可檢測輥壓過程中的顆粒、帶材的關(guān)鍵質(zhì)量屬性[105],通過NIR和熱成像技術(shù)可監(jiān)測帶材密度[24,106]。通過觀測平均停留時間,也可得出改變工藝參數(shù)對物料性質(zhì)的影響。較高的研磨速度導致物料的停留時間縮短,在大多數(shù)情況下,輥壓壓力增加導致在研磨機中停留的時間延長。此外,輥速對平均停留時間的影響取決于物料種類[107]。輥壓制粒會使制得顆粒的可壓片性降低(Loss of Tabletability,LoT),文獻中提出這可能與顆粒硬化、顆粒尺寸增大等機制有關(guān),顆粒粒徑增大,使得顆粒與粘合劑結(jié)合的表面積減小,孔隙率降低,顆粒硬化[108]。原輔料性質(zhì)如微觀形貌不同會影響顆粒的變形行為,進而影響LoT。對原輔料的成形性進行評估利于處方設(shè)計。Heiman等[109]發(fā)現(xiàn)干法制粒后破碎變形的撲熱息痛比塑性變形的布洛芬更容易發(fā)生LoT。可能的原因是布洛芬的造粒沒有產(chǎn)生大的顆粒,所得到的布洛芬顆粒比撲熱息痛顆粒更多孔。Janssen等[110]將不同種類不同粒徑微晶纖維素、一水乳糖和無水乳糖干法制粒后壓片,無水乳糖表面粗糙,利于成型,粒徑對片劑抗張強度影響較小,在干法輥壓過程中性質(zhì)穩(wěn)定。Su等[111]表征了31種原輔料的壓縮性能和物理特性,建立了物料庫,測定了輥壓干法制粒的顆粒在不同壓力下測算制得片劑的抗張強度和孔隙率,并對顆粒和粉末的壓縮性、成形性、可壓片性進行了表征,最后以主成分分析結(jié)合壓縮方程如Power方程對原輔料可壓片性進行分類并多元分析。發(fā)現(xiàn)原輔料粉末經(jīng)過輥壓制粒后,有21種輔料可壓片性發(fā)生變化,纖維素輔料可壓片性降低、乳糖輔料的結(jié)合能力和天然產(chǎn)物的塑形變形能力下降,近20種物料表現(xiàn)出可壓片性下降,13種輔料抗張強度降低,因此對所需的片劑抗張強度有較高要求時,可將輥壓制粒法替換成其他制備方法。
2.4連續(xù)濕法制粒
2.4.1連續(xù)雙螺桿制粒
濕法制粒是目前應(yīng)用較多的制粒方法,與干法制粒不同,需要加入黏合劑并在制得濕顆粒后干燥。連續(xù)濕法制粒主要有連續(xù)流化床濕法制粒、連續(xù)高剪切濕法制粒(high shear granulation,HSG)和連續(xù)雙螺桿濕法制粒(twin-screw granulation,TSG)3種,盡管TSG技術(shù)成本高、結(jié)構(gòu)復雜,但因其模塊化,高效率,應(yīng)用靈活,是目前應(yīng)用前景最好的連續(xù)濕法制粒技術(shù)[12]。TSG制粒機由物料進料裝置、粘合劑進料裝置、??凇㈦p螺桿擠出筒組成,雙螺桿擠出筒是最關(guān)鍵的工藝部分,由螺桿和螺桿原件組成,螺桿元件分為輸送元件、捏合元件和剪切元件,根據(jù)實際生產(chǎn)的需要可以排列組合各種數(shù)量的元件,安裝在螺桿軸上,將傳統(tǒng)多步驟制粒集為一體,從而達到靈活生產(chǎn)顆粒的目的[112],如圖4所示。根據(jù)所需的液固比(liquid-solid ratio,L/S),將含有黏合劑的蒸餾水或去離子水與預(yù)混后的物料一起加入到進料裝置中,通過同向雙螺桿上的輸送元件將物料與黏合劑混合,使得粉末成核,并在捏合元件(kneading elements)的研磨擠壓作用下壓實破碎,隨后進入第2段輸送元件(conveying elements)中繼續(xù)混合,在捏合元件和分散混合元件(distributive mixing elements)的作用下混合物料再次混勻破碎,末端即可制得所需的顆粒[113]。任沁等[114]比較了雙螺桿制粒和高剪切制粒所制備得到顆粒的表面形貌,發(fā)現(xiàn)雖然高剪切制得顆粒外觀更光滑,但TSG制得的顆粒更加均勻,在相同顆粒密度下,使用較低壓力(12.4 kN)即可達到目標硬度的片劑,可壓性明顯優(yōu)于HSG。TSG制得顆粒的脆碎度是HSG的一半,這是因為雙螺桿制粒機能將粘合劑與顆粒均勻混合,在顆粒外層包裹了黏合劑“外衣”,提高了顆粒的機械強度。隨著捏合塊元件數(shù)量增多,顆粒變得更緊實,片劑脆碎度也更低。TSG技術(shù)本就具有連續(xù)產(chǎn)出物料的特點,在連續(xù)濕法制粒生產(chǎn)線通常與連續(xù)流化床干燥技術(shù)聯(lián)用,干燥后,加入潤滑劑進行總混后即可壓片。
該工藝中顆粒的流動性、PSD、均勻度、含水量等中間質(zhì)量屬性受工藝參數(shù)如進料速率、螺桿轉(zhuǎn)速、液固比等工藝參數(shù)及平均停留時間以及原輔料性質(zhì)、黏合劑的用量、加入方式、濃度、黏度等變量影響[112]。在連續(xù)濕法制粒中,由于原輔料性質(zhì)多變,雙螺桿操作靈活,難以以一種影響因素評價對顆粒性質(zhì)的影響。有研究表明API生物藥劑學分類系統(tǒng)(biopharmaceutics classification system,BCS)、含量會顯著影響PSD,從而影響片劑的CQA,如硬度和崩解時限[115]。API性質(zhì)和處方組成對TSG制得顆粒有影響,扭矩可以表示旋轉(zhuǎn)葉輪所需能量的量度,扭矩大小可以反映物料阻止葉輪旋轉(zhuǎn)阻力大小。Portier等[116]發(fā)現(xiàn)L/S增大、螺桿速度降低可以增加扭矩,顆粒粒徑、密度明顯增加,Hausner比降低。選擇適當比例的乳糖和微晶纖維素作為輔料,最大限度地減少了原料對工藝的影響。液固比是連續(xù)濕法制粒中的關(guān)鍵工藝參數(shù),Monaco等[117]發(fā)現(xiàn)增加液固比會增大制得顆粒的平均粒徑,增加片劑的抗張強度,減小孔隙率。濕法制粒的濕顆粒干燥后顆粒的含水量是關(guān)鍵質(zhì)量屬性,影響后續(xù)片劑的機械性能、溶解性能以及穩(wěn)定性[5]。Zupan?i?等[115]評估了全集成連續(xù)濕法制粒生產(chǎn)線中原料藥含量和溶解度對顆粒干燥失重(loss on drying,LOD)、粒徑分布,以及對片劑硬度、崩解時間、孔隙率的影響。結(jié)果表明,BCS分類、API含量和處方組成的關(guān)鍵原料性質(zhì)對顆粒的LOD和PSD有顯著影響,從而影響片劑的CQA,如硬度和崩解時間。還有研究顯示,原輔料疏水性對制得顆粒具有影響,隨著疏水性增加,黏合劑分布不均勻,顆粒減小,表面粗糙不平[118]。
2.4.2連續(xù)流化床干燥
與傳統(tǒng)烘箱干燥、托盤干燥相比,連續(xù)流化床傳熱性能優(yōu)良,物料連續(xù)進入密閉裝置后,在底部網(wǎng)孔氣流的作用下干燥,并連續(xù)排出。顆粒含水量是連續(xù)干燥的關(guān)鍵質(zhì)量屬性,影響制得片劑的孔隙率和抗張強度,若含水量過高,會導致粉末結(jié)塊,甚至變質(zhì)[12]。顆粒含水量質(zhì)量分數(shù)通??刂圃?%~3%,當液固比L/S相同時,顆粒含水量的增加使片劑抗張強度增加,孔隙率降低,說明含水量顯著影響成型過程中孔隙率的變化[117]。使用NIRs可以檢測顆粒的含水量,用近紅外傳感器在流化床干燥器中監(jiān)測得到的光譜使用PLSR模型轉(zhuǎn)換為水分含量值,結(jié)果與使用熱重水分分析儀測量的干燥損失數(shù)據(jù)相當[119]。在該單元操作中,顆粒含水量受關(guān)鍵工藝參數(shù)—干燥時間、物料流速、進氣溫度的影響較大,當檢測到瞬時擾動和工藝偏差,可根據(jù)反饋系統(tǒng)調(diào)節(jié)物料流速和進氣溫度等工藝參數(shù),保持出料干顆粒的水分均一,從而確保了片劑的質(zhì)量。經(jīng)連續(xù)流化床制得的顆粒在氣動傳送裝置下進入壓片機飼粉器中,不斷生產(chǎn)片劑。
3結(jié)語
藥品連續(xù)制造相關(guān)指導原則已在我國有條不紊地推進中,醫(yī)藥類企業(yè)對連續(xù)制造技術(shù)的認可度也不斷提高。2025版中國藥典將增加粉體流動性指導原則,突出藥典委員會對粉體學性質(zhì)的重視。本文中對片劑連續(xù)制造3種制備工藝的特點以及各單元操作原輔料粉體性質(zhì)對顆粒與片劑性能的影響進行了綜述。
目前原輔料粉體學性質(zhì)對連續(xù)制造片劑質(zhì)量和工藝過程的影響已有諸多研究,但滿足片劑連續(xù)制造的原輔料粉體學性質(zhì)標準仍處于探索階段。需增強對粉體學性質(zhì)的理解,通過多變量分析手段與多種表征方法相結(jié)合,建立粉體學性質(zhì)對工藝操作和終產(chǎn)品質(zhì)量的預(yù)測模型,預(yù)測粉體在連續(xù)制造各單元操作中的流動行為與目標質(zhì)量片劑所需的工藝參數(shù)。建立物料庫,篩選性質(zhì)相近的優(yōu)良輔料,有利于處方設(shè)計和工藝參數(shù)調(diào)控,降低連續(xù)制造中不合格產(chǎn)品的分流率,對加快片劑連續(xù)制造技術(shù)在我國的實施,提高片劑藥品生產(chǎn)效率和一致性具有重要意義。建議從事藥品連續(xù)制造技術(shù)的工作者們在掌握ICH指導原則、PAT的基礎(chǔ)上,理解原輔料粉體學性質(zhì)對片劑連續(xù)制各單元操作的影響,重視粉體表征技術(shù),減少因原輔料粉體學性質(zhì)差而在連續(xù)生產(chǎn)時出現(xiàn)的各類問題。
利益沖突聲明(Conflict of Interests)
所有作者聲明不存在利益沖突。
All authors declare no relevant conflict of interests.
作者貢獻(Authors’Contributions)
徐浩原進行了文章的寫作和修改,任曼華、何顯洪、張欣、關(guān)健進行了文獻的檢索,陳蕾提供參考資料并進行了文章的審核,毛世瑞進行了選題、審閱與修改。所有作者均閱讀并同意了最終稿件的提交。
XUHaoyuanwroteandrevisedthearticle. RENManhua、HEXianhong、ZHANGXinandGUANJian searched the literatures. CHEN Lei provided references and proofread the article. MAO Shirui selected the topic,reviewed and revised the manuscript. All authors have read and agreed to the submission of the final manuscript.
參考文獻(References)
[1]孫昱,徐敢,文海若. FDA連續(xù)制造對中藥智能制造的借鑒和思考[J]. 中草藥,2021,52(21):6755-6767.
SUN Y,XU G,WEN HR. Reference and consideration for smart manufacturing of traditional Chinese medicine by continu-ous manufacturing of FDA[J]. Chinese Traditional and Herbal Drugs,2021,52(21):6755-6767.
[2]曹萌,丁力承,胡延臣,等. 藥品連續(xù)制造全球監(jiān)管發(fā)展現(xiàn)狀與思考[J]. 中國藥事,2022,36(4):364-376.
CAO M,DING LC,HU YC,et al. Current situation and considerations on global regulatory development of pharmaceutical continuous manufacturing[J]. Chinese Pharmaceutical Affairs,2022,36(4):364-376.
[3]LEUENBERGERH. New trends in the production ofpharmaceutical granules:the classical batch concept and the problem of scale-up[J]. European Journal of Pharmaceutics and Biopharmaceutics,2001,52(3):279-288.
[4]梁子辰,唐雪芳,楊平,等. 中藥連續(xù)制造研究進展和成熟度評估[J]. 中國中藥雜志,2023,48(12):3162-3168. LIANG ZC,TANG XF,YANG P,et al. Research progress and maturity assessment of continuous manufacturing of traditional Chinese medicine[J]. China Journal of Chinese Materia Medica,2023,48(12):3162-3168.
[5]MARKL D,WARMAN M,DUMAREY M,etal. Review of real-time release testing of pharmaceutical tablets:state-of-the art,challenges and future perspective[J]. International Journal of Pharmaceutics,2020,582:119353.
[6]CHAROO NA. Critical excipient attributes relevant to solid dosage formulation manufacturing[J]. Journal of Pharmaceutical Innovation,2019,15(1):163-181.
[7]曹萌,葛淵源,曹輝,等. 連續(xù)制造口服固體制劑藥典標準通用技術(shù)要求探討[J]. 中國食品藥品監(jiān)管,2023,9:32-9. CAO M,GE YY,CAO H,et al. Discussion on general technical requirements of pharmacopeia standards for continuous manu-facturing of oral solid dosage[J]. China Foodamp;Drug Administration Magazine,2023,9:32-9.
[8]KLEINEBUDDEP,KHINASTJ,RANTANEN J. Continuous manufacturing ofpharmaceuticals[M]. John Wileyamp;Sons,2017,2:38-44.
[9]ZHONGL,GAOL,LIL,etal. Trends-process analytical technology in solid oral dosage manufacturing[J]. European Journal of Pharmaceutics and Biopharmaceutics,2020,153:187-199.
[10]省盼盼,羅蘇秦,尹利輝. 過程分析技術(shù)在藥品生產(chǎn)過程中的應(yīng)用[J]. 藥物分析雜志,2018,38(5):748-757.
SHENG PP,LUO SQ,YINLi-hui. Application of process analysis technology in pharmaceutical production process[J]. Chinese Journal of Pharmaceutical Analysis,2018,38(5):748-757.
[11]孫鐘毓,林泊然,李爽爽,等. 國內(nèi)外已上市連續(xù)制造口服固體制劑藥學審評內(nèi)容的研究與啟示[J]. 中國食品藥品監(jiān)管,2022(9):54-77.
SUNZY,LINBR,LIS S,et al. Research on the pharmaceutical evaluation of marketed continuous manufacturing oral solid preparations in China and abroad[J]. China Foodamp;Drug Administration Magazine,2022(9):54-77.
[12]唐藝菲,吳聞?wù)?,王? 連續(xù)制造在口服固體制劑中的研究與應(yīng)用[J]. 中國醫(yī)藥工業(yè)雜志,2022,53(9):1227-1239.
TANG YF,WU WZ,WANG J,et al. Research and application of continuous manufacturing for oral solid dosage forms[J]. Chinese Journal of Pharmaceuticals,2022,53(9):1227-1239.
[13]LEE WB,WIDJAJA E,HENG PW S,et al. Near infrared spectroscopy for rapid and in-line detection of particle sizedis?tribution variability in lactose during mixing[J]. International Journal of Pharmaceutics,2019,566:454-462.
[14]SINGHR,ROMáN-OSPINO AD,ROMA?ACHR J,et al. Real time monitoring of powder blend bulk density for coupled feed-forward/feed-back control of acontinuous direct compaction tablet manufacturing process[J]. International Journal of Pharmaceutics,2015,495(1):612-625.
[15]TRENFIELD SJ,XU X,GOYANES A,et al. Releasing fast and slow:non-destructive prediction of density and drugrelease from SLS 3D printed tablets using NIR spectroscopy[J]. International Journal of Pharmaceutics:X,2023,5:100148.
[16]DOMOKOS A,PUSZTAI é,MADARáSZ L,et al. Combination of PAT and mechanistic modeling tools in afully continu?ous powder to granule line:rapid and deep process understanding[J]. Powder Technology,2021,388:70-81.
[17]PETERS J,BARTSCHER K,DOSCHER C,et al. In-line moisture monitoring in fluidized bed granulation using anovel multi-resonance microwave sensor[J]. Talanta,2017,170:369-376.
[18]DESAI PM,ACHARYA S,ARMSTRONG C,et al. Underpinning mechanistic understanding of the segregation phenom?ena of pharmaceutical blends using anear-infrared(NIR)spectrometer embedded segregation tester[J]. European Jour?nal of Pharmaceutical Sciences,2020,154:105516.
[19]SIERRA-VEGA NO,GONZáLEZ-ROSARIO RA,RANGEL-GIL RS,et al. Quantitative analysis of blend uniformity within athree-chamber feed frame using simultaneously Raman and Near-Infrared spectroscopy[J]. International Journal of Pharmaceutics,2022,613:121417.
[20]ZHAOY,MOHANS,DAVEK,etal. NIRspectroscopicmethodsformonitoringblendpotencyinafeedframe-calibration transfer between offline and inline using acontinuum regression filter[J]. International Journal of Pharmaceu?tics,2022,614:121363.
[21]HARTING J,KLEINEBUDDE P. Optimisation of an in-line Raman spectroscopic method for continuous API quantifica?tion during twin-screw wet granulation and its application for process characterisation[J]. European Journal of Pharmaceu?tics and Biopharmaceutics,2019,137:77-85.
[22]CROWLEY ME,HEGARTY A,MCAULIFFE MA P,et al. Near-infrared monitoring of roller compacted ribbon density:Investigating sources of variation contributing to noisy spectral data[J]. European Journal of Pharmaceutical Sciences,2017,102:103-114.
[23]ZHANG J,PEI C,SCHIANO S,et al. The application of terahertz pulsed imaging in characterising density distribution of roll-compacted ribbons[J]. European Journal of Pharmaceutics and Biopharmaceutics,2016,106:20-25.
[24]WIEDEY R,KLEINEBUDDE P. Infrared thermography—a new approach for in-line density measurement of ribbons pro?duced from roll compaction[J]. Powder Technology,2018,337:17-24.
[25]REIMERS T,THIES J,DIETRICH S,et al. Evaluation of in-line particle measurement with an SFT-probe as monitoringtool for process automation using anew time-based buffer approach[J]. European Journal of Pharmaceutical Sciences,2019,128:162-170.
[26]HU X,CUNNINGHAM JC,WINSTEAD D. Study growth kinetics in fluidized bed granulation with at-line FBRM[J]. International Journal of Pharmaceutics,2008,347(1/2):54-61.
[27]AOKI H,HATTORI Y,SASAKI T,et al. Comparative study on the real-time monitoring of afluid bed drying process of extruded granules using near-infrared spectroscopy and audible acoustic emission[J]. International Journal of Pharmaceu?tics,2022,619:121689.
[28]PAULI V,ROGGO Y,KLEINEBUDDE P,et al. Real-time monitoring of particle size distribution in acontinuous granula?tion and drying process by near infrared spectroscopy[J]. European Journal of Pharmaceutics and Biopharmaceutics,2019,141:90-99.
[29]MENG W,ROMáN-OSPINO AD,PANIKAR SS,et al. Advanced process design and understanding of continuous twin-screw granulation via implementation of in-line process analytical technologies[J]. Advanced Powder Technology,2019,30(4):879-894.
[30]BAWUAH P,SILFSTEN P,ERVASTI T,et al. Non-contact weight measurement of flat-faced pharmaceutical tablets using terahertz transmission pulse delay measurements[J]. International Journal of Pharmaceutics,2014,476(1/2):16-22.
[31]RAZAVI SM,CALLEGARI G,DRAZER G,et al. Toward predicting tensile strength of pharmaceutical tablets by ultra?sound measurement in continuous manufacturing[J]. International Journal of Pharmaceutics,2016,507(1/2):83-89.
[32]SHAH RB,TAWAKKUL MA,KHAN MA. Process analytical technology:Chemometric analysis of Raman and near infra-red spectroscopic data for predicting physical properties of extended release matrix tablets[J]. Journal of Pharmaceu?tical Sciences,2007,96(5):1356-1365.
[33]ANUSCHEK M,KVISTGAARD VILHELMSEN T,AXEL ZEITLER J,et al. Towards simultaneous determination of tab?letporosityandheightbyterahertztime-domainreflectionspectroscopy[J]. InternationalJournalof Pharmaceutics,2023,645:123424.
[34]BAWUAH P,EVANS M,LURA A,et al. At-line porosity sensing for non-destructive disintegration testing in immediate release tablets[J]. International Journal of Pharmaceutics:X,2023,5:100186.
[35]AVALLE P,POLLITT MJ,BRADLEY K,et al. Development of process analytical technology(PAT)methods for con?trolled release pellet coating[J]. European Journal of Pharmaceutics and Biopharmaceutics,2014,87(2):244-251.
[36]SACHER S,PETER A,KHINAST JG. Feasibility of In-line monitoring of critical coating quality attributes via OCT:
Thickness,variability,film homogeneity and roughness[J]. International Journal of Pharmaceutics:X,2021,3:100067. [37]BARIMANI S,KLEINEBUDDE P. Evaluation of in–line Raman data for end-point determination of acoating process:Comparison of science-based calibration,PLS-regression and univariate data analysis[J]. European Journal of Pharma?ceutics and Biopharmaceutics,2017,119:28-35.
[38]周甲偉,閆翔宇,鄭澤冰,等. 氣力輸送關(guān)鍵裝置及管內(nèi)流動特性研究現(xiàn)狀及展望[J]. 過程工程學報,2023,23(5):649-661.
ZHOU JW,YAN XY,ZHENG ZB,et al. Research status and prospect of key installations and flow characteristics of pne-umatic conveying[J]. The Chinese Journal of Process Engineering,2023,23(5):649-661.
[39]徐丹. 原料藥規(guī)避物料輸送風險的方案探討[J]. 化工與醫(yī)藥工程,2017,38(5):38-41.
XU D. Discussion of Scheme for evading risks in drug substance conveyance[J]. Chemical and Pharmaceutical Engineering,2017,38(5):38-41.
[40]曹萌,葛淵源,胡延臣,等. 口服固體制劑連續(xù)制造物料處理考慮及監(jiān)管檢查要點探討[J]. 中國醫(yī)藥工業(yè)雜志,2022,53(10):1394-1401.
CAOM,GEYY,HU YC,et al. Considerations on material handling and regulatory inspection key points for continuous manufacturing of oral solid dosage forms[J]. Chinese Journal of Pharmaceuticals,2022,53(10):1394-1401.
[41]KHANAM J,NANDA A. Flow of granules through cylindrical hopper[J]. Powder Technology,2005,150(1):30-35. [42]A. W. JENIKE. Storage and flow of solids[J]. Bulletin of the Utah Engineering Experiment,1964,1(2):1-5.
[43]吳震,王利強,徐立敏,等. 粉體料倉設(shè)計及卸料特性綜述[J]. 中國粉體技術(shù),2023,29(1):19-30.
WU Z,WANG LQ,XU LM,et al. Powder silo design and discharge characteristics:a review[J]. China Powder Science and Technology,2023,29(1):19-30.
[44]MORAVKAR KK,SHAH DS,MAGAR AG,et al. Assessment of pharmaceutical powders flowability and comparative evaluation of lubricants on development of gastro retentive tablets:an application of powder flow tester[J]. Journal of Drug Delivery Science and Technology,2022,71:103265.
[45]ALLENSPACH C,TIMMINS P,LUMAY G,et al. Loss-in-weight feeding,powder flow and electrostatic evaluation for direct compression hydroxypropyl methylcellulose(HPMC)to support continuous manufacturing[J]. International Jour?nal of Pharmaceutics,2021,596:120259.
[46]JANSSEN PH M,F(xiàn)ATHOLLAHI S,BEKAERT B,et al. Impact of material properties and process parameters on tablet quality in acontinuous direct compression line[J]. Powder Technology,2023,424:118520.
[47]MORENO-BENITO M,LEE KT,KAYDANOV D,et al. Digital twin of acontinuous direct compression line for drugproduct and process design using ahybrid flowsheet modelling approach[J]. International Journal of Pharmaceutics,2022,628:122336.
[48]BLACKWOOD DO,BONNASSIEUX A,COGONI G. Continuous direct compression using portable continuous miniaturemodularamp;manufacturing(PCMamp;M)[J]. Chemical Engineering in the Pharmaceutical Industry:Drug Product Design,Development,and Modeling,2019:547-560.
[49]ALAM MA,LIU YA,DOLPH S,et al. Benchtop NIR method development for continuous manufacturing scale to enable
efficient PAT application for solid oral dosage form[J]. International Journal of Pharmaceutics,2021,601:120581.
[50]WANG C,SONG S,GUNAWARDANA CA,et al. Effects of shear cell size on flowability of powders measured using aring shear tester[J]. Powder Technology,2022,396:555-564.
[51]ESCOTET-ESPINOZA MS,MOGHTADERNEJAD S,SCICOLONE J,et al. Using amaterial property library to find sur?rogate materials for pharmaceutical process development[J]. Powder Technology,2018,339:659-676.
[52]WANG Y,O'CONNOR T,LI T,et al. Development and applications of amaterial library for pharmaceutical continuous manufacturing of solid dosage forms[J]. International Journal of Pharmaceutics,2019,569:118551.
[53]羅聰,陸海峰,郭曉鐳,等. 粉體流動性的靜力學及動力學表征研究[J]. 化工新型材料,2020,48(10):186-191. LUOC,LU HF,GUO XL,et al. Studty on statics and kinetics characterization of powder floeability[J]. New Chemical Materials,2020,48(10):186-191.
[54]SHIER AP,KUMAR A,MERCER A,et al. Development of apredictive model for gravimetric powder feeding from an API-rich materials properties library[J]. International Journal of Pharmaceutics,2022,625:122071.
[55]BARJAT H,CHECKLEY S,CHITU T,et al. Demonstration of the feasibility of predicting the flow of pharmaceutically rel?evant powders from particle and bulk physical properties[J]. Journal of Pharmaceutical Innovation,2021,16:181-196.
[56]RAZAVI SM,TAO Y,SCICOLONE J,et al. Starch products as candidate excipients in acontinuous direct compression line[J]. Journal of Pharmaceutical Innovation,2022,17(1):460-471.
[57]IERAPETRITOU M,MUZZIO F,REKLAITIS G. Perspectives on the continuous manufacturing of powder?based pharma?ceutical processes[J]. AIChE Journal. 2016,62(6):1846-1862.
[58]BLACKSHIELDS CA,CREAN AM. Continuous powder feeding for pharmaceutical solid dosage form manufacture:a short review[J]. Pharmaceutical Developmentamp;Technology,2018,23(6):554-560.
[59]ENGISCH WE,MUZZIO FJ. Feedrate deviations caused by hopper refill of loss-in-weight feeders[J]. Powder Technol?ogy,2015,283:389-400.
[60]ENGISCH WE,MUZZIO FJ. Loss-in-weight feeding trials case study:pharmaceutical formulation[J]. Journal of Phar?maceutical Innovation,2015,10:56-75.
[61]HSIAO W-K,H?RMANN TR,TOSON P,et al. Feeding of particle-based materials in continuous solid dosage manufac?turing:a material science perspective[J]. Drug Discovery Today,2020,25(4):800-806.
[62]ESCOTET-ESPINOZA MS,SCICOLONE JV,MOGHTADERNEJAD S,et al. Improving feedability of highly adhesive active pharmaceutical ingredients by silication[J]. Journal of Pharmaceutical Innovation,2020,16(2):279-292.
[63]OKA S,MUZZIO FJ. Continuous powder mixing and lubrication[M]. How to Design and Implement Powder-To-Tablet Continuous Manufacturing Systems. Academic Press,2022:59-92.
[64]VELEZ NL,DRENNEN JK,ANDERSON CA. Challenges,opportunities and recent advances in near infrared spectros?copy applications for monitoring blend uniformity in the continuous manufacturing of solid oral dosage forms[J]. Interna?tional Journal of Pharmaceutics,2022,615:121462.
[65]ERVASTI T,SIMONAHO S-P,KETOLAINEN J,et al. Continuous manufacturing of extended release tablets via powder mixing and direct compression[J]. International Journal of Pharmaceutics,2015,495(1):290-301.
[66]袁春平,時曄,王健,等. 口服固體制劑連續(xù)制造的研究進展[J]. 中國醫(yī)藥工業(yè)雜志,2016,47(11):1457-1463. YUAN CP,SHI Y,WANG J,et al. Research progress in continuous manufacturing of oral solid dosage forms[J]. Chinese Journal of Pharmaceuticals,2016,47(11):1457-1463.
[67]SUZUKI Y,SUGIYAMA H,KANO M,et al. Control strategy and methods for continuous direct compression processes[J]. Asian Journal of Pharmaceutical Sciences,2021,16(2):253-262.
[68]TANG P,PURI VM. Segregation quantification of wwo-component particulate mixtures:effect of particle size,density,shape,and surface texture[J]. Particulate Science and Technology,2007,25(6):571-588.
[69]ELY D,CHAMARTHY S,CARVAJAL MT. An investigation into low dose blend uniformity and segregation determina?tion using NIR spectroscopy[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2006,288(1/2/3):71-76.
[70]JAIN N,OTTINO JM,LUEPTOW RM. Combined size and density segregation and mixing in noncircular tumblers[J]. Physical Review E,2005,71(5):051301.
[71]OKA S,SAHAY A,MENG W,et al. Diminished segregation in continuous powder mixing[J]. Powder Technology,2017,309:79-88.
[72]SIERRA-VEGA NO,ROMáN-OSPINO A,SCICOLONE J,et al. Assessment of blend uniformity in acontinuous tablet manufacturing process[J]. International Journal of Pharmaceutics,2019,560:322-333.
[73]MANLEY L,SHI Z. Characterizing drug product continuous manufacturing residence time distributions of major/minor excipient step changes using near infrared spectroscopy and process parameters[J]. International Journal of Pharmaceu?tics,2018,551(1/2):60-66.
[74]VANARASE AU,OSORIO JG,MUZZIO FJ. Effects of powder flow properties and shear environment on the perfor?mance of continuous mixing of pharmaceutical powders[J]. Powder Technology,2013,246:63-72.
[75]VANARASE AU,MUZZIO FJ. Effect of operating conditions and design parameters in acontinuous powder mixer[J]. Powder Technology,2011,208(1):26-36.
[76]SINKA IC,SCHNEIDER LC R,COCKS AC F. Measurement of the flow properties of powders with special reference to die fill[J]. International Journal of Pharmaceutics,2004,280(1/2):27-38.
[77]SIEGMANNE,F(xiàn)ORGBERT,TOSONP,etal. Powderflowandmixingindifferenttabletpressfeedframes[J]. Advanced Powder Technology,2020,31(2):770-781.
[78]HILDEBRANDT C,GOPIREDDY SR,SCHERLIE? R,et al. Investigation of powder flow within apharmaceutical tablet press force feeder–a DEM approach[J]. Powder Technology,2019,345:616-632.
[79]SIERRA-VEGA NO,ROMA?ACH RJ,MéNDEZ R. Feed frame:the last processing step before the tablet compaction in pharmaceutical manufacturing[J]. International Journal of Pharmaceutics,2019,572:118728.
[80]KETTERHAGEN WR. Simulation of powder flow in alab-scale tablet press feed frame:effects of design and operating parameters on measures of tablet quality[J]. Powder Technology,2015,275:361-374.
[81]KETTERHAGEN WR,HANCOCK BC. Optimizing the design of eccentric feed hoppers for tablet presses using DEM[J]. Computersamp;Chemical Engineering,2010,34(7):1072-1081.
[82]MEHROTRA A,CHAUDHURI B,F(xiàn)AQIH A,et al. A modeling approach for understanding effects of powder flow proper?ties on tablet weight variability[J]. Powder Technology,2009,188(3):295-300.
[83]MURASE Y,TAKAYAMA K,UCHIMOTO T,et al. Prediction of tablet weight variability from bulk flow properties by sparse modeling[J]. Powder Technology,2022,407:117681.
[84]JIN C,ZHAO L,F(xiàn)ENG Y,et al. Simultaneous modeling prediction of three key quality attributes of tablets by powder physical properties[J]. International Journal of Pharmaceutics,2022,628:122344.
[85]MILLS LA,SINKA IC. Effect of particle size and density on the die fill of powders[J]. European Journal of Pharmaceu?tics and Biopharmaceutics,2013,84(3):642-652.
[86]YAGINUMA Y,OZEKI Y,KAKIZAWA M,et al. Effects of powder flowability on die-fill properties in rotary compression[J]. Journal of Drug Delivery Science and Technology,2007,17(3):205-210.
[87]WU Z,WU Y,ZAKHVATAYEVA A,et al. Influence of moisture content on die filling of pharmaceutical powders[J]. Journal of Drug Delivery Science and Technology,2022,78:103985.
[88]SUN CC. A classification system for tableting behaviors of binary powder mixtures[J]. Asian Journal of Pharmaceutical Sciences,2016,11(4):486-491.
[89]PATEL S,KAUSHAL AM,BANSAL AK. Compression physics in the formulation development of tablets[J]. Critical Reviews?in therapeutic drug carrier systems,2006,23(1):1-65.
[90]HECKEL R. Density-pressure relationships in powder compaction[J]. Trans Metal Soc AIME,1961,221:671-675.
[91]RYSHKEWITCH E. Compression strength of porous sintered alumina and zirconia:9th communication to ceramography[J]. Journal of the American Ceramic Society,1953,36(2):65-68.
[92]DUCKWORTH W. Discussion of ryshkewitch paper by winston duckworth[J]. J Am Ceram Soc,1953,36:68-69.
[93]PAUL S,TAJAROBI P,BOISSIER C,et al. Tableting performance of various mannitol and lactose grades assessed by compaction simulation and chemometrical analysis[J]. International Journal of Pharmaceutics,2019,566:24-31.
[94]STEVENSON CA,THOMAS MC,BEAUDOIN SP. An enhanced centrifuge-based approach to powder characterization:the interaction between particle roughness and particle-scale surface topography described by asize-dependent‘effective’Hamaker constant[J]. Powder Technology,2021,391:198-205.
[95]BADAL TEJEDOR M,NORDGREN N,SCHULEIT M,et al. AFM colloidal probe measurements implicate capillary con?densation in punch-particle surface interactions during tableting[J]. Langmuir,2017,33(46):13180-13188.
[96]PAREKH BV,SADDIK JS,PATEL DB,et al. Evaluating the effect of glidantson tablet sticking propensity of ketoprofen using powder rheology[J]. International Journal of Pharmaceutics,2023,635:122710.
[97]DE BACKERE C,DE BEER T,VERVAET C,et al. Upscaling of external lubrication from acompaction simulator to arotary tablet press[J]. International Journal of Pharmaceutics,2023,633:122616.
[98]MATEO-ORTIZ D,COLON Y,ROMA?ACH RJ,et al. Analysis of powder phenomena inside aFette 3090 feed frame using in-line NIR spectroscopy[J]. Journal of Pharmaceutical and Biomedical Analysis,2014,100:40-49.
[99]FERDOUSH S,GONZALEZ M. Semi-mechanistic reduced order model of pharmaceutical tablet dissolution for enabling Industry 4. 0 manufacturing systems[J]. International Journal of Pharmaceutics,2023,631:122502.
[100]SCHALLER BE,MORONEY KM,CASTRO-DOMINGUEZ B,et al. Systematic development of ahigh dosage formulation to enable direct compression of apoorly flowing API:acase study[J]. International Journal of Pharmaceutics,2019,566:615-630.
[101]VERVAETC,REMONJP. Continuous granulation in the pharmaceutical industry[J]. Chemical Engineering Science,2005,60(14):3949-3957.
[102]JOHANSON J. A rolling theory for granular solids[J]. Journal of Applied Mechanics,1965,32(4):842-848. .
[103]PEREZ-GANDARILLASL,PEREZ-GAGOA,MAZORA,etal. Effect of roll-compaction and milling conditions on granules and tablet properties[J]. European Journal of Pharmaceutics and Biopharmaceutics,2016,106:38-49.
[104]AL-ASADY RB,DHENGE RM,HOUNSLOW MJ,et al. Roller compactor:Determining the nip angle and powder com-paction progress by indentation of the pre-compacted body[J]. Powder Technology,2016,300:107-119.
[105]仝永濤,高春紅,高春生. 口服固體制劑連續(xù)生產(chǎn)與過程控制技術(shù)研究進展[J]. 中國新藥雜志,2017,26(23):2780-2787.
TONG YT,GAO CH,GAO CS. Research progress on continuous production and process control technology of oral solid dosage forms[J]. Chinese Journal of New Drugs,2017,26(23):2780-2787.
[106]KHORASANI M,AMIGO JM,BERTELSEN P,et al. Process optimization of dry granulation based tableting line:extra-cting physical material characteristics from granules,ribbons and tablets using Near-IR(NIR)spectroscopic measurement[J]. Powder Technology,2016,300:120-125.
[107]MANGAL H,KLEINEBUDDE P. Experimental determination of residence time distribution in continuous dry granulation[J]. International Journal of Pharmaceutics,2017,524(1/2):91-100.
[108]PATEL S,DAHIYA S,CALVIN SUN C,etal. Understanding size enlargement and hardening of granules on tabletability of unlubricated granules prepared by dry granulation[J]. Journal of Pharmaceutical Sciences,2011,100(2):758-766.
[109]HEIMAN J,TAJAROBI F,GURURAJAN B,et al. Roller compaction of hydrophilic extended release tablets—combined"effects of processing variables and drug/matrix former particle size[J]. AAPS PharmSciTech,2014,16(2):267-277.
[110]JANSSEN PH M,JASPERS M,MEIER R,etal. The effect of excipient particle size on the reduction of compactibility after roller compaction[J]. International Journal of Pharmaceutics:X,2022,4:100117.
[111]SU J,ZHANG K,QI F,et al. A tabletability change classification system in supporting the tablet formulation design via"the roll compaction and dry granulation process[J]. International Journal of Pharmaceutics:X,2023,6:100204.
[112]劉盼弟,劉怡,王優(yōu)杰,等. 雙螺桿制粒技術(shù)及其在藥物制劑領(lǐng)域中的應(yīng)用[J]. 中國醫(yī)藥工業(yè)雜志,2020,51(2):160-169.
LIU PD,LIU Y,WANG YJ,et al. Application of twinscrew granulation technology in the field of pharmaceutical prepar-ations[J]. Chinese Journal of Pharmaceuticals,2020,51(2):160-169.
[113]ZIDAN A,KOTAMARTHY L,RAMACHANDRAN R,et al. Optimization of screw design for continuous wet granulation:a case study of metoprolol succinate ER tablets[J]. International Journal of Pharmaceutics,2022,623:121964.
[114]任沁,劉怡,祝旻卿,等. 雙螺桿擠出濕法制粒工藝參數(shù)對顆??蓧浩院推瑒┤艹鏊俣鹊挠绊懀跩]. 中國醫(yī)藥工業(yè)雜志,2021,52(9):1215-1223.
REN Q,LIU Y,ZHU MQ,et al. Effects of twin-screw extrusion wet granulation process parameters on compressibility of granules and dissolution rate of tablets[J]. Chinese Journal of Pharmaceuticals,2021,52(9):1215-1223.
[115]ZUPAN?I? O,DO?AN A,MARTINS FRAGA R,et al. On the influence of raw material attributes on process behaviourand product quality in acontinuous wet granulation tableting line[J]. International Journal of Pharmaceutics,2023,642:123097.
[116]PORTIER C,DE VRIENDT C,VIGH T,et al. Continuous twinscrew granulation:robustness of lactose/MCC-based for-mulations[J]. International Journal of Pharmaceutics,2020,588:119756.
[117]MONACO D,REYNOLDS GK,TAJAROBI P,et al. Modelling the effect of L/S ratio and granule moisture content on the compaction properties in continuous manufacturing[J]. International Journal of Pharmaceutics,2023,633:122624.
[118]YU S,REYNOLDS GK,HUANG Z,et al. Granulation of increasingly hydrophobic formulations using atwinscrew gran-ulator[J]. International Journal of Pharmaceutics,2014,475(1/2):82-96.
[119]SOHAIL ARSHAD M,ZAFAR S,YOUSEF B,et al. A review of emerging technologies enabling improved solid oral dos-age form manufacturing and processing[J]. Advanced Drug Delivery Reviews,2021,178:113840.
Influence of powder properties of pharmaceutical ingredients on continuous tablet manufacturing
XU Haoyuan1,REN Manhua1,HE Xianhong1,CHEN Lei2,ZHANG Xin1,GUAN jian1,MAO Shirui1
1. School of Pharmacy,Shenyang Pharmaceutical University,Shenyang110016,China;
2. Chinese Pharmacopoeia Commission,Beijing 100061,China
Abstract
SignificanceContinuous manufacturing is the future trend in tablet manufacturing. In order to accelerate the development of continuous tablet manufacturing,this article analyzes the influence of powder properties of pharmaceutical ingredients on con?tinuous manufacturing. An in-depth understanding of powder properties enhances tablet quality,as well as the efficiency and homogeneity of continuous tablet manufacturing.
ProgressSo far,three main methods of continuous tablet manufacturing have improved production capability:continuous directcompression,continuous wet granulation,and continuous dry granulation. Among these,due to the limited number of unitoperations involved,continuous direct compression has become the most popular method of continuous tablet manufacturing. Compared to batch manufacturing,continuous tablet manufacturing integrates unit operations,including loss-in-weight feeders,continuous mixers,continuous tablet press,roller compactor,twin-screw granulation(TSG),and fluidized bed drying. Thepowder properties of pharmaceutical ingredients play apivotal role in these unit operations,affecting flow behavior and tabletquality. During the continuous direct compression process,the physical properties of the powder,such as density,particle size,and particle shape,affect the flowability of powders,which in turn impacts feedability,mixing uniformity,and hence the drugcontent of the final tablet. Flowability can be characterized by emerging technologies such as shear testing or traditional statictests,such as the angle of repose and Carr's index. The compression mechanism of the material,such as brittle or plastic defor?mation,moisture content,and crystal habit,affects the compressibility and compactibility of the material. Powders with goodcompressibility and compactibility can be used to obtain tablets with asmooth appearance and sufficient hardness through appro?priate process parameters. Compressibility and compactability can be evaluated using mathematical equations such as Heckel'sequation,Shapiro's equation,Ryshkewitch-Duckworth's equation,and others. Continuous dry granulation is suitable for mois?ture-and heat-sensitive materials,and the effect of roller compactor process parameters on ribbon density and particle sizeneeds to be emphasized. In addition,the process may lead to loss of tabletability. Continuous TSG has great potential due to itshigh efficiency,flexibility,and improved tabletability of granules. The properties of the binder and process parameters,such asscrew speed and liquid-solid ratio,affect the particle size of the granules,as well as tablet porosity,disintegration time,andhardness. TSG is always integrated with afluidized bed dryer,resulting in acontrolled and homogeneous drying process,whichgreatly improves product quality and production efficiency. Process analytical technology(PAT)is akey technology for continu?ous manufacturing,including near-infrared spectroscopy,Raman spectroscopy,microwave resonance,focused beam reflectiv?ity measurement,and other technologies. With PAT tools,the critical quality attributes of powders and tablets in each unit operation,such as drug content,moisture content,particle size,and other properties,can be monitored in real time.
Conclusions and ProspectsContinuous tablet manufacturing is gaining increasing recognition in the pharmaceutical industrydue to its high efficiency,flexibility,and reduced floor space. However,research on material properties has mainly focused onindividual unit operations in batch manufacturing processes. Researchers have proposed requirements for the powder propertiesof materials,especially flowability. It is considered that,for pharmaceutical powders with variable properties,comprehensivepowder characterizations should be carried out to predict their flowability and compression behavior during the process. A mate?rial property library needs to be established to classify the materials,which is conducive to selecting appropriate process param?eters,optimizing process performance,and enhancing formulation design for continuous manufacturing. In addition,a completematerial library facilitates the identification of materials with similar properties and reduces the workload of subsequent develop?ment. Modeling the predictive effects of powder properties on unit operations and end product quality can reduce various issues,such as sticking,capping,and bridging,that occur in continuous manufacturing due to poor powder properties.
Keywords:tablet;continuous manufacturing;powder properties;unit operation;process analytical technology
(責任編輯:趙雁)