• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      石墨粉吸波劑對(duì)抹灰石膏性能的影響

      2024-11-27 00:00:00井敏魏沁陳曦劉靜宇楊碩王亞男孫叢濤
      中國(guó)粉體技術(shù) 2024年6期
      關(guān)鍵詞:石墨粉力學(xué)性能

      摘要:【目的】為了低成本制備民用建筑吸波材料,研究不同種類石墨粉對(duì)抹灰石膏性能的影響?!痉椒ā恳孕滦蛪w抹灰砂漿抹灰石膏作為研究對(duì)象,摻入包括自制的膨脹破碎石墨在內(nèi)的不同種類的低成本石墨粉作為吸波劑,制備石墨-抹灰石膏復(fù)合材料;使用X射線衍射儀、掃描電子顯微鏡、網(wǎng)絡(luò)分析儀等設(shè)備對(duì)復(fù)合材料的結(jié)構(gòu)、物性、強(qiáng)度和吸波性能進(jìn)行測(cè)試和表征?!窘Y(jié)果】在抹灰石膏中摻入石墨粉,導(dǎo)致標(biāo)準(zhǔn)擴(kuò)散度用水量增加,凝結(jié)時(shí)間縮短,體積密度減小,力學(xué)性能降低,吸波性能提高;相比于天然鱗片石墨和石墨微片,抹灰石膏中摻入質(zhì)量分?jǐn)?shù)為8%的膨脹破碎石墨粉可獲得最好的吸波性能,在頻率為2~18 GHz時(shí),反射損耗(reflection loss,RL)小于-5 dB的帶寬可達(dá)10. 8 GHz,至少有68. 38%的電磁波被吸收,且凝結(jié)時(shí)間、體積密度和力學(xué)性能均可達(dá)到國(guó)標(biāo)中對(duì)輕質(zhì)底層抹灰石膏的要求?!窘Y(jié)論】膨脹破碎石墨粉是幾種石墨粉中最適合用于民用建筑的低成本吸波劑。

      關(guān)鍵詞:石墨粉;抹灰石膏;吸波材料;力學(xué)性能

      中圖分類號(hào):TB44文獻(xiàn)標(biāo)志碼:A

      引用格式:

      井敏,魏沁,陳曦,等. 石墨粉吸波劑對(duì)抹灰石膏性能的影響[J]. 中國(guó)粉體技術(shù),2024,30(6):140-148.

      JING Min,WEI Qin,CHEN Xi,et al. Effect of graphite powder absorbing agent on gypsum plaster properties[J]. China Powder Science and Technology,2024,30(6):140?148.

      無(wú)線電廣播、電視、手機(jī)、電腦的高頻使用,讓我們的生活更加便捷,但室內(nèi)空間的電磁輻射越來越多。電磁輻射對(duì)人的危害有熱效應(yīng)、非熱效應(yīng)和累積效應(yīng),熱效應(yīng)是在較強(qiáng)的電磁輻射的情況下發(fā)生,而后2種都是在較弱的電磁輻射的長(zhǎng)期作用下積累發(fā)生的。通過破壞人體內(nèi)本身微弱電磁場(chǎng)的平衡有序的狀態(tài),使血液、淋巴和細(xì)胞發(fā)生功能性或代謝變化,從而引發(fā)頭暈、失眠等癥狀。電磁密度的增加,改變了室內(nèi)的電磁環(huán)境,除危害人的健康外,可能還會(huì)產(chǎn)生嚴(yán)重的電磁干擾,破壞建筑物以及其他電氣設(shè)備[1-2],因此,亟須制造出能夠應(yīng)用于建筑減弱電磁輻射、改善人居電磁環(huán)境的材料。常用的具有減少輻射危害的功能性材料包括電磁屏蔽材料和電磁吸波材料2種。電磁屏蔽材料只能反射電磁波,并不能消除或減弱電磁波;而電磁吸波材料能夠讓電磁波在材料內(nèi)部傳輸?shù)倪^程中轉(zhuǎn)化為熱能等其他形式的能量,從而達(dá)到對(duì)電磁波的減弱作用,對(duì)于建筑人居環(huán)境安全是非常有利的。

      將電磁吸波劑摻加到建筑材料中是制備建筑電磁吸波材料的可行方法[3]。民用建筑材料的應(yīng)用要求是成本低廉和施工方便,所以建筑用電磁吸波材料也應(yīng)具備這2個(gè)特點(diǎn)。一方面,要盡量選用易得、便宜的電磁吸波劑,所以成本高的金屬類[4-5]、化學(xué)合成類[6-7]以及復(fù)雜制備的吸波劑[8]都不適合應(yīng)用在民用建筑中,而石墨在自然中資源豐富、成本低廉,同時(shí)具有良好的電、熱性能[9-11];另一方面,哪一類建筑材料更適合作為承載電磁波吸收劑的基體材料,顯然不是混凝土這種建筑的主承力材料,原因是建筑對(duì)力學(xué)性能的嚴(yán)苛要求大大提高了吸波劑的摻入門檻。建筑涂料雖然不是建筑結(jié)構(gòu)材料,但是其薄層而美觀的要求也會(huì)讓摻加吸波劑的技術(shù)難度提高。砂漿,既不作為承重材料,也沒有薄而美的裝飾要求,而且施工層厚大,覆蓋墻體和地面的面積大,施工方便,是非常合適的承載電磁波吸收劑的基體材料[12]。

      抹灰石膏是一種新型墻材,主要組分為脫硫石膏,pH低且含有自由氯離子,易使鋼筋銹蝕[13,14],因此金屬類吸波劑不易直接用于石膏類砂漿中而成本低廉的石墨最具優(yōu)勢(shì)。本研究中以新型墻體抹灰石膏作為研究對(duì)象,摻入包括自制的膨脹破碎石墨粉在內(nèi)的不同種類的低成本石墨粉作為吸波劑,比較不同種類石墨粉對(duì)抹灰石膏的標(biāo)準(zhǔn)擴(kuò)散度用水量、凝結(jié)時(shí)間、體積密度、力學(xué)強(qiáng)度和吸波性能的影響,為低成本建筑吸波材料的研制提供思路。

      1材料與方法

      1.1試劑材料和儀器設(shè)備

      試劑材料:普通輕質(zhì)抹灰石膏(山東華迪建筑科技有限公司);天然鱗片石墨(NSG,青島巖海碳材料有限公司);粒徑分別為10、30、50 μm的3種石墨微片(GM,青島巖海碳材料有限公司);可膨脹石墨(GIC,青島巖海碳材料有限公司)。石墨主要參數(shù)見表1。

      儀器設(shè)備:Mini FlexⅡ型X射線衍射儀(日本理學(xué)公司);FEI Quanta FEG 250型掃描電子顯微鏡(美國(guó)賽默飛公司);水泥型維卡儀(上海申銳公司);CDT1305-2型微機(jī)控制電子壓力試驗(yàn)機(jī)(美特斯中國(guó)公司);N5234A型矢量網(wǎng)絡(luò)分析儀(美國(guó)安捷倫公司)。

      1.2試樣制備

      1.2.1膨脹破碎石墨粉的制備

      將烘箱干燥后的可膨脹石墨放入馬弗爐中,經(jīng)500℃高溫膨化3 h后再高速破碎5 min,得到的石墨粉命名為膨脹破碎石墨(expanded crushed graphite,ECG)。

      1.2.2石墨?抹灰石膏試樣的制備

      將一定量的抹灰石膏、石墨和水放入攪拌鍋中,均勻攪拌制成抹灰石膏漿。

      將抹灰石膏漿倒入長(zhǎng)度、寬度、高度分別為40、40、160 mm的三聯(lián)模具中,靜置2 h,脫模后在20℃、相對(duì)濕度為90%的養(yǎng)護(hù)箱內(nèi)養(yǎng)護(hù)7 d。每種石墨粉制備6塊試塊,用于測(cè)試抗折強(qiáng)度和抗壓強(qiáng)度。

      將抹灰石膏漿倒入長(zhǎng)度、寬度、高度分別為180、180、325 mm的模具中成型,1 d后拆模放入養(yǎng)護(hù)箱在20℃、90%相對(duì)濕度養(yǎng)護(hù)7d,制得石墨-抹灰石膏試板,用于測(cè)試電磁吸波性能。

      2結(jié)果與討論

      2.13種石墨粉的物相結(jié)構(gòu)與微觀形貌比較

      3種石墨粉的物相結(jié)構(gòu)如圖1所示。在衍射角分別為26.5°和54.7°處的特征衍射峰,分別對(duì)應(yīng)石墨的(002)和(004)晶面。天然鱗片石墨峰強(qiáng)而尖銳,說明晶粒尺寸大,結(jié)晶完整,膨脹破碎的石墨次之,而石墨微片峰弱而寬,說明晶粒尺寸小,結(jié)晶不完善。圖2是3種石墨的掃描電鏡圖像,天然鱗片石墨

      呈粒徑100 μm大小的厚片狀,由魚鱗狀的石墨片層緊密堆疊而成,如圖2(a)、(b)所示。3種粒徑的石墨微片呈不規(guī)則的薄片狀,薄而蜷曲且邊緣處碎裂,如圖2(c)―(e)所示。膨脹破碎石墨呈大小不一的粒狀,由于經(jīng)歷過高溫處理,導(dǎo)致石墨片層破碎且間距變大,如圖2(f)、(g)所示。

      2.2石墨粉對(duì)抹灰石膏標(biāo)準(zhǔn)擴(kuò)散度用水量的影響

      圖3為不同種類石墨粉摻量不同時(shí)抹灰石膏砂漿的標(biāo)準(zhǔn)擴(kuò)散度用水量。由圖可知,對(duì)于同種石墨而言,標(biāo)準(zhǔn)擴(kuò)散度用水量隨著石墨粉摻量的增加而線性增加。對(duì)不同種石墨粉,標(biāo)準(zhǔn)擴(kuò)散度用水量隨摻量的增速(圖3曲線斜率)是不同的,天然鱗片石墨的最小,而膨脹破碎石墨的標(biāo)準(zhǔn)擴(kuò)散度用水量隨摻量的增速最大。這是由不同種類石墨粉的粒徑和形態(tài)差異帶來的比表面積的差別以及表面氧化物數(shù)量的不同帶來的親水性能的不同造成的。天然鱗片石墨粒徑最大、片層最密實(shí),因此比表面積最??;而膨脹破碎石墨粒徑小、經(jīng)過化學(xué)處理和物理膨脹后片層間有間隙而且?guī)в泻趸鶊F(tuán),因此比表面積大,親水性強(qiáng)。從砂漿的性能考慮,希望達(dá)到相同流動(dòng)性,用水量越少越好,因此,天然鱗片石墨的摻入要好于石墨微片,而石墨微片好于自制的膨脹破碎石墨。

      通過比較天然石墨和石墨微片的吸水率可知雖然不同種類石墨粉對(duì)抹灰石膏的標(biāo)準(zhǔn)擴(kuò)散度用水量的影響不同,但對(duì)砂漿凝結(jié)成固體試塊后的吸水性影響不是太大,如圖4所示。隨石墨粉的添加量增加,吸水量增加;當(dāng)天然鱗片石墨和石墨微片在石膏砂漿中的添加量相同時(shí),其膠凝固化后試塊的吸水量略有差別,摻有石墨微片的抹灰石膏試塊的吸水量略高于天然鱗片石墨。

      2.3石墨粉對(duì)抹灰石膏凝結(jié)時(shí)間的影響

      按標(biāo)準(zhǔn)擴(kuò)散度用水量,測(cè)定了3種石墨粉:天然鱗片石墨、石墨微片和膨脹破碎石墨以不同量摻入抹灰石膏后的凝結(jié)時(shí)間,如圖5所示。3種石墨粉都有促凝作用,而且摻量越大,促凝效果越明顯,初凝和終凝時(shí)間都大大縮短。凝結(jié)時(shí)間太快,不利于砂漿施工。按GB/T 28627—2023的要求,抹灰石膏的初凝時(shí)間要大于1 h,因此必要時(shí)可以添加緩凝劑來控制凝結(jié)時(shí)間。

      摻入質(zhì)量分?jǐn)?shù)為8%的膨脹破碎石墨粉的抹灰石膏的初凝時(shí)間僅有20 min,實(shí)驗(yàn)添加質(zhì)量分?jǐn)?shù)為0. 1%的檸檬酸緩凝劑后可達(dá)到初凝時(shí)間為115 min,終凝240.5 min,符合GB/T 28627—2023的要求。

      2.4石墨粉對(duì)抹灰石膏體積密度的影響

      3種石墨粉以不同摻量摻入抹灰石膏后體積密度的變化曲線如圖6所示。石墨粉的摻加會(huì)降低抹灰石膏的體積密度,天然鱗片石墨,粒徑分別為30、50 μm的石墨微片在砂漿的質(zhì)量分?jǐn)?shù)為10%時(shí),抹灰石膏的體積密度小于1000 kg/m3,達(dá)到了輕質(zhì)底層抹灰石膏的體積密度要求。膨脹破碎石墨質(zhì)量分?jǐn)?shù)為5%時(shí),可使抹灰石膏的體積密度小于1000 kg/m3。這可能是由于膨脹破碎石墨制備過程中的高溫處理導(dǎo)致的石墨層間距變大,因而顆粒密度降低造成的。從體積密度這個(gè)指標(biāo)上看,石墨粉特別是膨脹破碎石墨粉可以作為輕質(zhì)填充料來制備輕質(zhì)底層抹灰石膏。

      2.5石墨粉對(duì)抹灰石膏強(qiáng)度的影響

      石墨粉的摻入會(huì)對(duì)抹灰石膏的抗折抗壓強(qiáng)度帶來負(fù)面影響,結(jié)果如圖7所示。一方面,摻加石墨粉后石膏用水量增多,會(huì)使抹灰石膏膠凝時(shí)因?yàn)樗恼舭l(fā)而孔隙增多,強(qiáng)度下降;另一方面,石墨本身力學(xué)性能差,石墨表面又不能和石膏晶體形成緊密結(jié)合,摻入石膏不能起到增強(qiáng)作用,會(huì)成為硫酸鈣微晶堆疊的阻礙。相比較而言,石墨微片和膨脹破碎石墨的摻入會(huì)導(dǎo)致抹灰石膏的強(qiáng)度下降更快。摻入質(zhì)量分?jǐn)?shù)為8%以內(nèi)的天然鱗片石墨和膨脹破碎石墨,符合GB/T 28627—2023中底層抹灰石膏抗折強(qiáng)度大于2 MPa、抗壓強(qiáng)度大于4 MPa的要求。摻入質(zhì)量分?jǐn)?shù)為10%的天然磷片石墨和膨脹破碎石墨,符合GB/T 28627—2023中輕質(zhì)底層抹灰石膏抗折強(qiáng)度大于1 MPa、抗壓強(qiáng)度大于2.5 MPa的要求。對(duì)摻入質(zhì)量分?jǐn)?shù)為8%的自制膨脹破碎石墨粉的抹灰石膏進(jìn)行抗拉強(qiáng)度測(cè)試,抗拉強(qiáng)度為0.45 MPa,符合GB/T 28627—2023中對(duì)底層抹灰石膏和輕質(zhì)底層抹灰石膏的要求。

      2.6不同種類石墨粉對(duì)石膏砂漿吸波性能的影響

      根據(jù)傳輸線理論計(jì)算的反射損耗(reflection loss,RL)描述電磁波吸收性能強(qiáng)弱,是國(guó)際上通用的評(píng)價(jià)吸波性能強(qiáng)弱的方式,計(jì)算公式[15]為:

      RL=20 lg|(Zin-Z0)(Zin+Z0)|,(1)

      式中:RL為反射損耗值;Z0和Zin分別為自由空間和吸收體的輸入阻抗。

      電磁波的吸收率與反射損耗值RL的對(duì)應(yīng)關(guān)系見表2。在軍事應(yīng)用中,RL須低于-10 dB,代表90%的電磁波被吸收;在民用結(jié)構(gòu)中,RLlt;-7 dB,相當(dāng)于80%的電磁波被吸收,可滿足大部分需求[16];而在一些建筑吸波研究中也用RLlt;-5 dB來衡量,認(rèn)為68.38%的電磁波被吸收[17-18]。

      圖8所示為石膏試塊試板、未摻加石墨粉的抹灰石膏試板、質(zhì)量分?jǐn)?shù)為10%的天然鱗片石墨-抹灰石膏試板、質(zhì)量分?jǐn)?shù)為10%的石墨微片-抹灰石膏試板和質(zhì)量分?jǐn)?shù)為8%的膨脹破碎石墨-抹灰石膏試板在2~18 GHz的反射損耗圖。

      對(duì)照石膏砌塊,抹灰石膏反射損耗大,因?yàn)槠涑蔀閺?fù)雜、孔隙多;對(duì)照未摻加石墨粉的抹灰石膏板,3種石墨粉的摻加都對(duì)石膏吸波性能有所改善,其摻加膨脹破碎石墨的抹灰石膏吸波性能提升的最為明顯,分別在1.9~4.3、5.3~6.2、6.7~7.9、8.4~9.8、10.2~12.9、14.5~16.7、16.9~18.0 GHz頻率時(shí)RL在-5 dB以下,RLlt;-5 dB的帶寬總計(jì)可達(dá)10.8 GHz,這意味著至少68.38%的電磁波在這些頻率范圍內(nèi)被吸收,其中在15.7 GHz頻率時(shí),RL達(dá)到了最低值-9.1 dB,在這個(gè)頻率會(huì)有80%的電磁波被吸收。為了獲得更好的吸波效果,在質(zhì)量分?jǐn)?shù)為8%的膨脹破碎石墨-抹灰石膏中加掛了鋼絲網(wǎng)格布,砂漿力學(xué)性能和抗裂性也都得到了提升,但需克服鋼絲網(wǎng)在石膏的低pH體系和含氯環(huán)境中的銹蝕問題,包括引入水泥組分提高pH和固氯,這將另行撰文進(jìn)行詳細(xì)討論[19]。

      3結(jié)論

      1)在抹灰石膏中摻入石墨粉,導(dǎo)致標(biāo)準(zhǔn)擴(kuò)散度用水量增加,縮短凝結(jié)時(shí)間縮短,體積密度減小,力學(xué)性能降低,而且摻量越多,標(biāo)準(zhǔn)擴(kuò)散度用水量越多,凝結(jié)時(shí)間越短,體積密度越小,力學(xué)性能越差。

      2)相同摻入量時(shí),膨脹破碎石墨?抹灰石膏的用水量最多,凝結(jié)時(shí)間最短,這與其經(jīng)過高溫處理而造成的比表面積增大以及含氧的親水性基團(tuán)增多有關(guān);膨脹破碎石墨?抹灰石膏的體積密度最小,這與膨脹破碎石墨經(jīng)過高溫處理后層間距變大因而本身密度小有關(guān)。

      3)相同摻量時(shí),石墨微片-抹灰石膏的抗折抗壓強(qiáng)度最差,這與石墨微片的卷曲蓬松的形貌有關(guān)。天然鱗片石墨和膨脹破碎石墨在摻量質(zhì)量分?jǐn)?shù)為8%以內(nèi)時(shí),其抹灰石膏的強(qiáng)度可以滿足國(guó)標(biāo)中對(duì)底層抹灰石膏的要求;在摻量質(zhì)量分?jǐn)?shù)為10%時(shí),可以滿足國(guó)標(biāo)中對(duì)輕質(zhì)底層抹灰石膏的要求。

      4)石墨摻入有利于抹灰石膏吸波性能的提高。摻入質(zhì)量分?jǐn)?shù)為8%的膨脹破碎石墨-抹灰石膏的吸波性能最好,在2~18 GHz頻率內(nèi)RLlt;-5 dB的帶寬可達(dá)10.8 GHz,至少有68.38%的電磁波被吸收;在頻率為15.7 GHz時(shí),RL達(dá)到了損耗最大值-9.1 dB。

      利益沖突聲明(Conflict of Interests)

      所有作者聲明不存在利益沖突。

      All authors disclose no relevant conflict of interests.

      作者貢獻(xiàn)(Authors’Contributions)

      井敏、魏沁、陳曦、劉靜宇、孫叢濤進(jìn)行了方案設(shè)計(jì),井敏、魏沁、陳曦、劉靜宇參與了論文的寫作和修改,楊碩和王亞男參與了部分實(shí)驗(yàn),所有作者均閱讀并同意了最終稿件的提交。

      The study was designed by JING Min,WEI Qin,CHEN Xi,LIU Jingyu,and SUN Congtao. The manuscript was writtenand revised by JINGMin,WEIQin,CHEN Xi,andLIU Jingyu. Parts of experiments were carried by YANG Shuo and WANG Yanan. All authors have read the final version of the paper and consented to its submission.

      參考文獻(xiàn)(References)

      [1]張忠倫,辛志軍. 室內(nèi)電磁輻射污染控制與防護(hù)技術(shù)[M]. 北京:中國(guó)建材工業(yè)出版社,2016.

      ZHANG ZL,XIN ZJ. Electromagnetic radiation pollution control and protection technology[M]. Beijing:China Building Materials Press,2016.

      [2]LIU TT,CAO MQ,F(xiàn)ANG YS,et al. Green building materials lit up by electromagnetic absorption function:a review[J]. Journal of Materials Scienceamp;Technology,2022,112:329-344.

      [3]朱連誠(chéng). 石膏基3D周期結(jié)構(gòu)吸波材料設(shè)計(jì)及性能研究[D]. 北京:中國(guó)建筑材料科學(xué)研究總院,2020.

      ZHU LC. Design and performance of gypsum based wave-absorbing materials with 3D periodic structure[D]. Beijing:China Building Materials Academy,2020.

      [4]郭錚錚. 多級(jí)結(jié)構(gòu)石墨烯納米復(fù)合材料的制備及電磁屏蔽性能研究[D]. 西安:西安理工大學(xué),2020.

      GUO ZZ. Study on fabrication and electromagnetic shieding properties of multi-layered graphene nanocomposites[D]. Xi’an:Xi’an University of Technology,2020.

      [5]SIT T,XIE S,JIZ J,et al. Synergistic effects of carbon black and steel fibers on electromagnetic wave shielding and mechanical properties of graphite/cement composites[J]. Journal of Building Engineering,2022,45:103561.

      [6]LIU Y,JIC,LULL,et al. Facile synthesis and electromagnetic wave absorption properties of silver coated porous carbon composite materials[J]. Journal of Alloys and Compounds,2021,856:158194.

      [7]YUZ,ZHOUR,MAMW,et al. ZnO/nitrogendoped carbon nanocomplex with controlled morphology for highly efficient electromagnetic wave absorption[J]. Journal of Materials Scienceamp;Technology,2022,114:206-214.

      [8]LIANGHS,XINGH,QIN M,et al. Bamboo-like short carbon fibers@Fe3O4@phenolic resin and honeycomb-like shortcarbon fibers@Fe3O4@FeO composites as high-performance electromagnetic wave absorbing materials[J]. Composites Part A:Applied Science and Manufacturing,2020,135:105959.

      [9]蘇曉悅,劉平江,張曄,等. 超細(xì)石墨復(fù)合改性水泥石的導(dǎo)熱性能[J]. 中國(guó)粉體技術(shù),2023,29(6):61-71.

      SU XY,LIU PJ,ZHANG Y,et al. Thermal conductivity of cement stone modified with superfine graphite[J]. China Powder Science and Technology,2023,29(6):61-71.

      [10]FANG X,PAN LM,YAO J,et al. Controllable dielecric properties and strong electromagnetic wave absorption propertiesof SiC/spherical graphite AlN microwave-attenuating composite ceramics[J]. Ceramics International,2021,47(16):22636-22645.

      [11]韓彩霞,沈文婷,甘延玲,等. 石墨-石膏基吸波復(fù)合材料的制備與性能[J]. 硅酸鹽通報(bào),2017,36(8):2583-2588. HAN CX,SHEN WT,GAN YL,et al. Preparation and properties of graphite-gypsum absorbing composite materials[J].

      Bulletin of the Chinese Ceramic Society,2017,36(8):2583-2588.

      [12]金天. 輕質(zhì)抹灰脫硫石膏砂漿的研究[J]. 江西建材,2022(1):24-26.

      JIN T. Influence of activator on the strength of copper tailings powder composite cementitious materials[J]. Jiangxi Build-ing Materials,2022(1):24-26.

      [13]鄧國(guó)志. 脫硫石膏現(xiàn)澆式墻體材料性能的研究與優(yōu)化[D]. 河北:河北工業(yè)大學(xué),2013.

      DENG GZ. The research and optimization of the desulfurization gypsum cast-in-side type wall material[D]. Hebei:Hebei University of Technology,2013.

      [14]孫明,孫叢濤,張鵬,等. 氯離子摻入方式及偏高嶺土對(duì)砂漿氯離子結(jié)合性能的影響[J]. 硅酸鹽通報(bào),2021,40(4):1154-1161.

      SUN M,SUN CT,ZHANG P,et al. Effects of chloride introduced way and metakaolin on chloride binding capacity of mortar[J]. Bulletin of the Chinese Ceramic Society,2021,40(4):1154-1161.

      [15]WANG Z,WANG Z,NING M. Optimization of electromagnetic wave absorption bandwidth of cement-based composites with doped expanded perlite[J]. Construction and Building Materials,2020,259:119863.

      [16]SHEN YN,LI QH,XU SL,et al. Electromagnetic wave absorption of multifunctional cementitious composites incorpo?rating polyvinyl alcohol(PVA)fibers and fly ash:effects of microstructure and hydration[J]. Cement andConcrete Research,2021,143:106389.

      [17]呂興軍. 石墨烯/水泥基復(fù)合材料制備與吸波性能研究[D]. 大連:大連理工大學(xué),2020.

      LV XJ. Preparation and microwave absorbing properties of graphene/cement-based materials[D]. Dalian:Dalian Uni?versity of Technology,2020.

      [18]張萌. 電磁波吸收石膏板的制備與性能研究[D]. 北京:北京工業(yè)大學(xué),2014.

      ZHANG M. Preparation and properties of electromagnetic wave absorbing gypsum board[D]. Beijing:Beijing University of Technology,2014.

      [19]董振平,劉俊德,紫民,等. 氯鹽侵蝕和碳化作用下遷移型阻銹劑的阻銹性能[J]. 材料保護(hù),2020,53(2):119-125.

      DONG ZP,LIU JD,ZI M,et al. Corrosion resistance of migrating corrosion inhibitor under chloride attack and carbon?ation[J]. Materials Protection,2020,53(2):119-125.

      Effect of graphite powder absorbing agent on gypsum plaster properties

      JING Min1,WEI Qin1a,CHEN Xi2,LIU Jingyu1a,YANG Shuo1a,WANG Yanan1a,SUN Congtao3

      1a. School of Materials Science and Engineering,1b. Jinan Key Laboratory of Green Building Materials and Renewable Energy,Shandong Jianzhu University,Jinan 250101,China;2. The Second Construction Limited Company of China Construction

      Eighth Engineering Division,Jinan 250100,China;3. Key Laboratory of Marine Environmental Corrosion and Bio-fouling,Institute of Oceanology,Chinese Academy of Sciences,Qingdao 266071,China

      Abstract

      ObjectiveWith the increasing use of radio,television,mobile phones,computers,artificial intelligence,and 5G technology,our lives have become more convenient,but it has also inevitably resulted in indoor electromagnetic radiation pollution. Theincrease in electromagnetic density has changed our indoor electromagnetic environment,potentially leading to serious electro?magnetic interference,damage to buildings,harm to electrical equipment,and even health risks posed to humans. Therefore,it is necessary to develop building materials to reduce electromagnetic radiation and improve indoor electromagnetic environment. Generally,electromagnetic shielding and absorbing materials are used. Shielding materials only reflect electromagnetic waves without weakening or eliminate them,while electromagnetic wave-absorbing materials convert the energy from electromagnetic waves into other forms such as heat during internal transmission,thereby attenuating the waves and improving building safety. For civil constructions,the requirements for effective electromagnetic wave-absorbing materials should be inexpensive and easy for construction. Graphite,abundant in nature,inexpensive,and exhibiting good electrical and thermal properties,emerges as the main candidate as awave absorbing agent in construction. Plaster,which is neither load-bearing like concrete nor decorative like architectural paint,is particularly well-suited as asubstrate due to its thick application,large surface area coverage,and ease of construction.

      MethodsTo prepare cost-effective wave-absorbing materials for civil buildings,different types of graphite powders,including natural flake graphite,graphite microchips,and homemade expanded crushed graphite,were mixed into gypsum plaster. Their effects on physical properties,strength,and wave absorption were compared. The structure of the graphite-gypsum plaster com?posites was characterized using X-ray diffraction(XRD),scanning electron microscopy(SEM),and vector network analysis.

      Results and DiscussionXRD analysis showed that the characteristic diffraction peaks of the graphite powder were at 26. 5°and54. 7°,corresponding to the(002)and(004)crystal planes,respectively,but with variations in peak strengths and widths. Natural flake graphite exhibited strong and sharp diffraction peaks,indicating large grain size and complete crystallization. SEMimages confirmed its morphology of thick flakes around 100 um in size,made up of closely stacked layers resembling fish scales. XDR patterns of graphite microchips showed irregular,thin,curled,and fragmented particles with weak,broad diffractionpeaks,indicating incomplete crystallization. Expanded crushed graphite,consisting of granular particles with fragmented lamel?lae,demonstrated intermediate properties between the other two types of graphite. Incorporating graphite powder increased thestandard water consumption for gypsum plaster diffusivity. However,the extent of the increase varied depending on the type ofgraphite powder used. The difference was caused by variations in the specific surface area,particle size,and morphology. Also,their hydrophilicity differences caused by the varying number of surface oxides on the particles contributed to this varia?tion. Natural flake graphite,with its large grain size and compact structure,showed aslow increase in water consumption,whileexpanded crushed graphite,with smaller particles and aloose lamellae structure,showed arapid increase due to higher specificsurface area and surface oxides after chemical treatment and physical expansion. Graphite powder also accelerated the settingtime of gypsum plaster,shortening both the initial and final setting times,which would be disadvantageous for mortar construc?tion. To mitigate this,a retarder must be added to extend the setting time to meet the required standards. For instance,gypsumplaster mixed with 8%expanded crushed graphite powder had an initial setting time of only 20 minutes. However,after adding0. 1%wt citrate retarder,the initial setting time was extended to 115 minutes,and the final setting time to 240. 5 minutes,meet?ing theGB/T 28627―2023standards. The addition of graphite powder reduced the bulk density of gypsum plaster. When10wt. %natural flake graphite,10%microchips with particle sizes of 30-50 μm,or 5%expanded crushed graphite was added,the bulk density of the gypsum plaster fell below 1000 kg/m3,meeting the density requirements for lightweight base-layer gyp?sum plaster. Expanded crushed graphite demonstrated advantages as alightweight filler due to its loose graphite lamella struc?ture and low grain density,which was aresult the high-temperature expansion. However,the addition of graphite powder nega?tively impacted the mechanical properties of the gypsum plaster. The reduction in strength was attributed to increased porosityfrom higher water consumption and the poor bonding between graphite particles and calcium sulfate crystals. When less than5wt. %natural flake graphite or graphite microchips was added,the resulting gypsum plasterboards met the GB/T 28627―2023standards for heavyweight based-layer gypsum plaster,with flexural strengths above 2 MPa and compressive strengths above 4 MPa. When 5wt. %expanded crushed graphite was added,the resulting gypsum plasterboards almost reached the GB/T 28627―2023standards for lightweight gypsum plaster with more than 2. 5 MPa in compressive strengths and more than1MPa in flexuralstrengths,but not yet. It iwas agood attempt to strengthen the mechanical properties of the expanded crushed graphite/plaster bythe wire mesh. Graphite powder significantly improved the wave-absorbing properties of gypsum plasterboards. Compared tonatural flake graphite and graphite microchips,adding8%expanded crushed graphite to the plaster yielded the best wave-absorbing performance,achieving abandwidth of 10. 8 GHz with RLlt;-5 dB in 2-18 GHz frequency range,with at least 68. 38%of electromagnetic waves absorbed.

      ConclusionHomemade expanded crushed graphite powder is the most suitable,cost-effective wave absorber among the studied graphite powder for civil construction materials.

      Keywords:graphite powder;gypsum plaster;wave absorbing material;mechanical property

      (責(zé)任編輯:趙雁)

      猜你喜歡
      石墨粉力學(xué)性能
      石墨粉對(duì)磷石膏基自流平砂漿性能的影響
      反擠壓Zn-Mn二元合金的微觀組織與力學(xué)性能
      高溫氣冷堆核燃料元件用石墨粉粒度表征方法的研究
      Pr對(duì)20MnSi力學(xué)性能的影響
      云南化工(2021年11期)2022-01-12 06:06:14
      Mn-Si對(duì)ZG1Cr11Ni2WMoV鋼力學(xué)性能的影響
      山東冶金(2019年3期)2019-07-10 00:54:00
      可再生石墨粉染色圓領(lǐng)T恤
      光度法測(cè)定鐵礦石中二氧化硅方法的改進(jìn)
      兩種粒度鱗片石墨粉粉壓成型難易程度的研究
      MG—MUF包覆阻燃EPS泡沫及力學(xué)性能研究
      鍍鎳碳纖維/鍍鎳石墨粉填充PC/ABS復(fù)合材料導(dǎo)電性能研究
      保定市| 临沭县| 宜章县| 鄂伦春自治旗| 东台市| 通化县| 兴安县| 方城县| 白银市| 贺州市| 台州市| 独山县| 英吉沙县| 顺昌县| 务川| 休宁县| 尤溪县| 饶平县| 积石山| 周宁县| 东至县| 柘荣县| 双江| 满洲里市| 达拉特旗| 怀集县| 志丹县| 多伦县| 灵川县| 来安县| 阿鲁科尔沁旗| 贞丰县| 京山县| 荆门市| 绥宁县| 盐亭县| 宜城市| 晋城| 金秀| 大新县| 钟祥市|