摘要: 將納米甲殼素與纖維素復(fù)合可解決再生纖維素制品力學(xué)性能偏低的問題,但因復(fù)合過程納米顆粒易團(tuán)聚限制了其增強(qiáng)效果。為提升分散效果,本文研究了納米甲殼素在水(H2O)、四乙基氫氧化銨水溶液(TEAOH/H2O)、不同質(zhì)量分?jǐn)?shù)尿素水溶液(Urea/H2O)、二甲基亞砜(DMSO)等試劑中的分散性,發(fā)現(xiàn)DMSO對(duì)納米甲殼素的分散相對(duì)更優(yōu)。將不同質(zhì)量分?jǐn)?shù)納米甲殼素/DMSO添加到纖維素/TEAOH/H2O溶液中制備得到再生纖維素復(fù)合膜,并對(duì)復(fù)合膜的結(jié)構(gòu)、形貌、力學(xué)性能進(jìn)行表征。結(jié)果表明,當(dāng)納米甲殼素添加量為9%時(shí),復(fù)合膜力學(xué)性能最佳,斷裂強(qiáng)度和斷裂伸長(zhǎng)率較空白樣增長(zhǎng)54%和150%;9%納米甲殼素的添加有助于復(fù)合膜引入酰胺基團(tuán)和提高結(jié)晶度,且納米甲殼素在復(fù)合膜中總體分散較均勻,無明顯聚集現(xiàn)象。
關(guān)鍵詞: 納米甲殼素;二甲基亞砜;分散性;四乙基氫氧化銨;再生纖維素復(fù)合膜
中圖分類號(hào): TS102.51
文獻(xiàn)標(biāo)志碼: A
文章編號(hào): 10017003(2024)12期數(shù)0088起始頁碼08篇頁數(shù)
DOI: 10.3969/j.issn.1001-7003.2024.12期數(shù).009(篇序)
近年來,高結(jié)晶度、高強(qiáng)度的納米甲殼素(Nano-Chitin,NC)因具備良好的可再生性、生物降解性、生物相容性等諸多優(yōu)良特性而備受矚目。此外,因其化學(xué)結(jié)構(gòu)與纖維素結(jié)構(gòu)相似,常被用于增強(qiáng)纖維素復(fù)合材料的機(jī)械性能,如纖維素復(fù)合薄膜[1]、纖維素復(fù)合纖維[2]、纖維素復(fù)合水凝膠[3]等。納米甲殼素的增強(qiáng)作用與其在復(fù)合材料中的均勻分散性密切相關(guān)。當(dāng)納米填料均勻分散在聚合物基體中時(shí),它們會(huì)形成糾纏網(wǎng)絡(luò),在微觀和宏觀層面上呈現(xiàn)均勻的分散體,這有助于延長(zhǎng)復(fù)合材料的使用壽命;當(dāng)納米填料分散性差而團(tuán)聚時(shí),在聚合物基體內(nèi)引入應(yīng)力點(diǎn)并減小表面積,最終導(dǎo)致復(fù)合材料機(jī)械性能的降低[4]。
因此,復(fù)合過程中必須保證納米甲殼素的均勻分散,但未經(jīng)表面改性的納米甲殼素常常受到pH值、離子強(qiáng)度、溫度和濃度的影響[5],容易發(fā)生團(tuán)聚而影響后續(xù)應(yīng)用。為了減少納米甲殼素的團(tuán)聚,研究人員常采用表面改性引入帶電基團(tuán)或接枝長(zhǎng)鏈聚合物,通過靜電互斥或空間位阻效應(yīng)提高其分散性,如引入羧基、吸附十六烷基三甲基溴化銨等[6-7]。但化學(xué)改性過程中可能會(huì)破壞納米甲殼素的優(yōu)良性能,且操作較復(fù)雜。
相比之下,利用適宜的分散劑分散納米甲殼素操作更簡(jiǎn)單、高效。水是最常見的分散劑之一,由于納米甲殼素表面氨基或羧基等離子基團(tuán)的解離,其可以在水中形成穩(wěn)定的分散體[8]。然而,當(dāng)納米甲殼素水分散液質(zhì)量分?jǐn)?shù)達(dá)到0.5%~0.6%時(shí),水分散液中的納米甲殼素會(huì)發(fā)生嚴(yán)重聚集[9]。已有研究顯示,在水溶液中添加7 M尿素,可以有效延緩甲殼素離子衍生物的聚集[10];尿素能夠?qū)崿F(xiàn)高濃度納米材料(即原始氮化硼納米片、石墨烯納米板和碳納米管)在纖維素水溶液中的均勻分散和長(zhǎng)期穩(wěn)定[11];此外,具有羧酸鈉基團(tuán)的TEMPO氧化納米纖維素可以利用有機(jī)溶劑(二甲基亞砜等)進(jìn)行納米級(jí)分散[12]。但在目前的研究中,關(guān)于尿素、二甲基亞砜對(duì)納米甲殼素懸浮液的分散性研究仍相對(duì)較少。
為了進(jìn)一步研究納米甲殼素的分散劑對(duì)其分散性及對(duì)再生纖維素薄膜的增強(qiáng)作用,本文首先通過透光率、濁度測(cè)試、離心沉降實(shí)驗(yàn)探究了納米甲殼素在水(H2O)、四乙基氫氧化銨水溶液(TEAOH/H2O)、不同質(zhì)量分?jǐn)?shù)尿素水溶液(Urea/H2O)、二甲基亞砜(DMSO)等試劑中的分散性,選取相對(duì)最優(yōu)的分散劑用于分散納米甲殼素。隨后,選取季銨堿體系中的四乙基氫氧化銨水溶液(TEAOH/H2O)為纖維素溶劑,其可實(shí)現(xiàn)室溫下高效快捷地溶解纖維素且溶解度較高。將不同質(zhì)量分?jǐn)?shù)納米甲殼素/分散劑添加到纖維素溶液中制備再生纖維素復(fù)合膜,通過改變納米甲殼素添加量研究對(duì)復(fù)合膜力學(xué)性能的增強(qiáng)作用,對(duì)促進(jìn)再生纖維素復(fù)合膜材料的研究與發(fā)展、拓寬其應(yīng)用范疇有重要意義。
1 實(shí) 驗(yàn)
1.1 試劑與儀器
聚合度504棉漿粕(山東英力實(shí)業(yè)有限公司),2,2,6,6-四甲基哌啶-1-氧化物(TEMPO)(上海麥克林生化科技有限公司),甲殼素、溴化鈉(NaBr)(上海百靈威化學(xué)技術(shù)有限公司),含有效氯>5%次氯酸鈉溶液(NaClO)、尿素(Urea)、氫氧化鈉(NaOH)、無水硫酸鈉(Na2SO4)、濃硫酸(H2SO4)(國(guó)藥集團(tuán)化學(xué)試劑有限公司),25%四乙基氫氧化銨水溶液(TEAOH/H2O)(上海阿拉丁生化科技股份有限公司),二甲基亞砜(DMSO)(上海泰坦科技股份有限公司)。以上試劑均為分析純,所用溶液使用去離子水配置。
DS-L30型超聲波清洗機(jī)(上海生析超聲儀器有限公司),TG16-W型臺(tái)式離心機(jī)(上海盧湘儀離心機(jī)儀器有限公司),RV3FLEX型旋轉(zhuǎn)蒸發(fā)儀(德國(guó)艾卡公司),TB100型濁度計(jì)(上海般特儀器有限公司),TU-1810型紫外分光光度計(jì)(北京普析通用儀器有限責(zé)任公司),SU8100型場(chǎng)發(fā)射掃描電子顯微鏡、SDD型電制冷能譜儀(日本日立株式會(huì)社),MIT-1TN型電子萬能試驗(yàn)機(jī)(常州三豐儀器科技有限公司),Nicolet is10型傅里葉紅外光譜儀(美國(guó)賽默飛世爾科技有限公司),BruckerD8型X射線衍射儀(德國(guó)布魯克AXS有限公司)。
1.2 實(shí)驗(yàn)樣品制備
納米甲殼素水分散液的制備:根據(jù)Fan等[13]的研究方法制備納米甲殼素,稱取1.0 g甲殼素、0.016 gTEMPO、0.1 gNaBr,100 g水,室溫下充分?jǐn)嚢杌旌虾?,逐滴滴加一定量的NaClO溶液,氧化反應(yīng)過程中通過滴加NaOH溶液維持混合溶液pH值為10左右,6 h后反應(yīng)結(jié)束。將甲殼素離心洗滌至中性后分散在適量去離子水中,超聲處理30 min,獲得質(zhì)量分?jǐn)?shù)為0.2%的納米甲殼素水分散液,其中納米甲殼素標(biāo)記為NC。
納米甲殼素/分散劑的制備:取15 gNC水分散液分散在6 gDMSO中,超聲分散混合均勻,旋蒸去除所有水分,獲得質(zhì)量分?jǐn)?shù)為0.5%的NC/DMSO懸浮液。再分別稱取15 gNC水分散液分散在6 g的H2O、35%TEAOH/H2O、20%Urea/H2O、25%Urea/H2O、30%Urea/H2O中,旋蒸去除部分水分,使得NC質(zhì)量占懸浮液總質(zhì)量的0.5%,最終制得質(zhì)量分?jǐn)?shù)為0.5%的NC/分散劑懸浮液。
再生纖維素膜及復(fù)合膜的制備:稱取1.9 g纖維素加入30 gTEAOH/H2O(35%),室溫下機(jī)械攪拌15 min,將不同混合比例的NC/DMSO懸浮液與纖維素溶液混合,具體混合比例如表1所示,機(jī)械攪拌20 min使NC分散均勻。混合溶液靜置脫泡后,在室溫條件下倒入聚四氟乙烯模具中鋪膜,浸入10%H2SO4/20%Na2SO4凝固浴中再生后,去離子水反復(fù)洗滌,室溫條件下自然風(fēng)干24 h,即得到固含量為5%的再生纖維素膜與復(fù)合膜,分別標(biāo)記為RC、RC-1%NC、RC-5%NC、RC-9%NC、RC-13%NC、RC-17%NC。
1.3 測(cè)試與表征
1.3.1 濁度測(cè)試
利用TB100型濁度計(jì)進(jìn)行NC/分散劑懸浮液濁度測(cè)試,將濁度計(jì)調(diào)零與校準(zhǔn)后進(jìn)行測(cè)試,每個(gè)樣品設(shè)置3組平行樣,測(cè)試取平均值。6種分散劑的濁度值在0~0.28 NTU,排除原料中的雜質(zhì)及配置過程的污染,濁度值近似為0 NTU。
1.3.2 透光率測(cè)試
利用TU-1810型紫外可見分光光度計(jì)進(jìn)行NC/分散劑懸浮液透光率測(cè)試,以分散劑為參考背景掃描,依次對(duì)NC/分散劑懸浮液進(jìn)行透光性掃描。每個(gè)樣品設(shè)置3組平行樣,測(cè)試取平均值。
1.3.3 離心沉降實(shí)驗(yàn)
利用TG16-WS型臺(tái)式離心機(jī)將NC/分散劑經(jīng)過8 000 r/min離心5 min,收集下層沉淀,烘干后稱重。
1.3.4 傅里葉紅外光譜(FTIR)表征
利用Nicolet is10型傅里葉紅外光譜測(cè)試儀對(duì)NC、甲殼素、再生纖維素膜及復(fù)合膜進(jìn)行測(cè)試,測(cè)試范圍從4 000~500 cm-1,分辨率為2 cm-1。
1.3.5 X射線衍射(XRD)表征
利用BruckerD8型X射線衍射儀對(duì)NC、甲殼素、再生纖維素膜及復(fù)合膜進(jìn)行測(cè)試,掃描2θ角度范圍從5°至50°,掃描速度3°/min。使用Jade軟件處理XRD圖譜,并計(jì)算各特征衍射面的衍射峰面積,根據(jù)下式求得結(jié)晶度值(CrI)。
CrI/%=FKFK+FA×100(1)
式中:FK表示結(jié)晶區(qū)面積;FA表示非結(jié)晶區(qū)面積。
1.3.6 掃描電子顯微鏡、能譜儀(SEM、EDS)表征
利用SU8100型冷場(chǎng)發(fā)射掃描電子顯微鏡對(duì)NC的形貌進(jìn)行表征:將質(zhì)量分?jǐn)?shù)0.01%納米甲殼素水分散液滴在單晶硅片上,60 ℃烘干、噴金后觀察,NC的長(zhǎng)度和寬度利用Image J軟件通過計(jì)數(shù)至少500個(gè)納米纖維測(cè)量;
利用SU8100型冷場(chǎng)發(fā)射掃描電子顯微鏡對(duì)再生纖維素膜及復(fù)合膜表面、斷面的形貌進(jìn)行表征:制樣時(shí)采用液氮對(duì)薄膜脆斷,將表面與斷面噴金后觀察;
利用SDD型電制冷能譜儀對(duì)復(fù)合膜中氮元素的分布與含量進(jìn)行表征:掃描選定區(qū)域獲得元素Mapping圖,并進(jìn)行EDS能譜觀察,重點(diǎn)標(biāo)記氮元素。
1.3.7 力學(xué)性能測(cè)試
利用MIT-1TN型電子萬能試驗(yàn)機(jī)測(cè)定再生膜干態(tài)、濕態(tài)下的力學(xué)性能,測(cè)試前將再生膜在恒溫恒濕箱中預(yù)調(diào)濕24 h。測(cè)定干態(tài)強(qiáng)度時(shí),將試樣裁剪至40 mm×10 mm,夾持距離設(shè)置為20 mm,拉伸速度設(shè)置為20 mm/min;測(cè)定濕態(tài)強(qiáng)度時(shí),將復(fù)合膜裁剪至40 mm×10 mm后,浸入去離子水中10 min,擦去表面水分后迅速在萬能試驗(yàn)機(jī)上進(jìn)行拉伸測(cè)試。每個(gè)樣
品設(shè)置5組平行樣,取其平均值。
2 結(jié)果與分析
2.1 納米甲殼素的結(jié)構(gòu)表征
由圖1(a)FTIR圖可知,納米甲殼素的光譜與原始甲殼素粉末的光譜基本吻合,—OH的伸縮振動(dòng)吸收峰(3 442 cm-1)、—NH的伸縮振動(dòng)吸收峰(3 257 cm-1)、—CH的伸縮振動(dòng)吸收峰(2 932 cm-1和2 876 cm-1)。此外,1 660 cm-1和1 622 cm-1處特征吸收峰與α-甲殼素乙酰胺基團(tuán)的酰胺Ⅰ區(qū)相關(guān),1 556 cm-1處吸收峰與酰胺Ⅱ區(qū)相關(guān),1 315 cm-1處吸收峰與酰胺Ⅲ區(qū)相關(guān)[14]。
由圖1(b)XRD圖可知,NC在2θ=9.4°、12.7°、19.3°、20.8°、23.2°、26.2°處有明顯的甲殼素特征衍射峰,分別對(duì)應(yīng)著(020)(021)(110)(120)(130)和(013)晶面。NC結(jié)晶度約為70%,甲殼素結(jié)晶度約為38%,這說明氧化去除非晶區(qū)的過程中并未嚴(yán)重破壞結(jié)晶區(qū),使得NC保持了高結(jié)晶度狀態(tài)。由圖1(c)的SEM圖可知,NC呈現(xiàn)短棒狀,長(zhǎng)度為(1700±80.5)nm,寬度為(28.6±7.1)nm。
2.2 納米甲殼素在不同分散劑中的分散性
2.2.1 透光率、濁度測(cè)試
納米甲殼素的分散性主要指是納米甲殼素在介質(zhì)(如氣體、液體或固體)中分布的均勻程度及這種分布狀態(tài)隨時(shí)間的
變化情況。納米甲殼素在分散劑中均勻分散的狀態(tài)有助于降低團(tuán)聚現(xiàn)象,對(duì)于后續(xù)充分利用其優(yōu)異的物理化學(xué)性能至關(guān)重要,本文首先采用透光率、濁度作為評(píng)價(jià)指標(biāo),分析納米甲殼素在不同分散劑中分布的均勻程度。
圖2為NC在H2O、TEAOH/H2O、20%Urea/H2O、25%Urea/H2O、30%Urea/H2O、DMSO中形成的懸浮液在波長(zhǎng)800 nm處的初始透光率與初始濁度。由圖2(a)可知,當(dāng)分散劑為DMSO時(shí),透光率可達(dá)92%,濁度值為52 NTU,表明NC在DMSO中呈良好分散的狀態(tài)。圖3為隨放置時(shí)間延長(zhǎng),NC/分散劑懸浮液透光率與濁度的變化情況。隨著放置時(shí)間的延長(zhǎng),NC/DMSO懸浮液的透光率仍保持較高水平(90%~92%),濁度保持在50 NTU左右,說明NC在DMSO中具有較好的分散性。而當(dāng)分散劑為H2O、TEAOH/H2O、20%Urea/H2O、25%Urea/H2O、30%Urea/H2O時(shí),透光率分別為84%、54%、85%、87%、89%,濁度分別為164.7、411.1、1512、1301、140.4 NTU。由此可見,其他分散劑對(duì)NC的分散情況遠(yuǎn)不如DMSO。
2.2.2 離心沉降測(cè)試
分散性不僅涉及物質(zhì)在空間上的分布狀態(tài),還與時(shí)間因素密切相關(guān),以考察物質(zhì)能否長(zhǎng)時(shí)間保持其分散狀態(tài),即分散穩(wěn)定性。為了能夠有效地評(píng)估納米甲殼素在溶劑中的分散穩(wěn)定性,最簡(jiǎn)單的方法之一是靜置沉降法,可以直接觀測(cè)到納米甲殼素的分散狀態(tài)。但由于其耗時(shí)較長(zhǎng)、進(jìn)程緩慢,并且實(shí)驗(yàn)結(jié)果難以進(jìn)行精確量化,本文采用離心沉降法加快沉降過程,作為分析顆粒在溶劑中分散穩(wěn)定性的一個(gè)輔助手段。
納米甲殼素/分散劑離心前、后的實(shí)物如圖4所示,NC/H2O、NC/TEAOH/H2O、NC/Urea/H2O、NC/DMSO高速離心后的沉降率分別為9.6%、95.6%、0%、0%。經(jīng)過高速離心后,NC/H2O、NC/TEAOH/H2O中的NC團(tuán)聚形成細(xì)小沉淀,少部分沉淀懸浮在上清液中,這導(dǎo)致NC/H2O、NC/TEAOH/H2O透光率的明顯下降;NC/Urea/H2O未產(chǎn)生明顯的沉淀,但透光率明顯下降,這可能是由于在離心作用下上層清液中的NC也發(fā)生一定程度的聚集;NC/DMSO不僅沒有出現(xiàn)明顯的團(tuán)聚和沉降現(xiàn)象,而且透光率也幾乎沒有變化,這說明NC在DMSO中分散的最穩(wěn)定,Urea/H2O次之,H2O、TEAOH/H2O最差。分析認(rèn)為,具體的分散機(jī)理是:在水溶液中,由于重復(fù)單元(不僅是N-乙?;?d-氨基葡萄糖)之間的氫鍵和疏水相互作用的組合,甲殼素離子衍生物可能會(huì)發(fā)生聚集現(xiàn)象,而Urea恰好可以破壞甲殼素之間的氫鍵并且削弱水溶液中的疏水相互作用,有助于抑制甲殼素的聚集[10],從而提高NC的分散穩(wěn)定性;在有機(jī)溶劑DMSO中,DMSO的化學(xué)結(jié)構(gòu)、介電常數(shù)和黏度可能對(duì)NC的靜電排斥、滲透效應(yīng)有一定的影響[12],從而對(duì)于NC的分散性也產(chǎn)生影響。
2.3 納米甲殼素添加量對(duì)復(fù)合膜結(jié)構(gòu)與性能的影響
2.3.1 復(fù)合膜化學(xué)結(jié)構(gòu)分析
圖5為再生纖維素膜、復(fù)合膜及NC的FTIR圖。對(duì)比再生纖維素膜與復(fù)合膜的FTIR圖,兩者具有相似的吸收峰,3 440、2 910、1 632 cm-1吸收峰分別為纖維素的—OH拉伸振動(dòng)吸收峰、—CH的拉伸振動(dòng)吸收峰、吸附水中—OH的彎曲振動(dòng)吸收峰[15]。唯一不同的是,復(fù)合膜在1 550 cm-1附近出現(xiàn)較弱的吸收峰,該峰隸屬于甲殼素酰胺Ⅱ,隨著NC添加量的增加,該特征峰的強(qiáng)度逐漸增強(qiáng)。
2.3.2 復(fù)合膜結(jié)晶結(jié)構(gòu)分析
圖6為再生纖維素膜、復(fù)合膜及NC的XRD圖譜。再生纖維膜表現(xiàn)出明顯的纖維素Ⅱ晶體結(jié)構(gòu),在2θ=12.2°、22.1°處有明顯的衍射峰,分別對(duì)應(yīng)著(110)和(110)/(020)重疊晶面,復(fù)合膜與再生纖維素膜的XRD特征峰位置基本一致,但衍射峰強(qiáng)度有明顯的波動(dòng)。當(dāng)NC添加量為1%、5%時(shí),復(fù)合膜(110)/(020)重疊晶面的衍射峰強(qiáng)度有小幅增強(qiáng);當(dāng)NC添加量為9%時(shí),隨著晶面(110)、(110)/(020)重疊晶面兩處的衍射峰強(qiáng)度的顯著增強(qiáng),結(jié)晶度也顯著提高;然而,繼續(xù)提高添加量到13%、17%,各衍射峰強(qiáng)度緩慢減弱,伴隨著結(jié)晶度的降低。這可能是由于適量NC加入有助于誘導(dǎo)纖維素基體結(jié)晶,使復(fù)合膜結(jié)晶度有所提高,而一旦NC過量可能會(huì)產(chǎn)生聚集,其與纖維素分子之間的相互作用對(duì)分子結(jié)構(gòu)排列產(chǎn)生一定影響,從而導(dǎo)致結(jié)晶度的下降。
2.3.3 復(fù)合膜形貌結(jié)構(gòu)分析及元素分析
圖7為再生纖維素膜與復(fù)合膜的表面、斷面SEM圖。由圖7(a~d)可見,再生纖維素膜的表面呈現(xiàn)相對(duì)平滑的形態(tài),適量NC的添加(1%、9%)增加了復(fù)合膜表面的粗糙度和不均勻性,但整體看來沒有明顯缺陷、較為平整。由圖7(e~h)可見,再生纖維素膜的斷面結(jié)構(gòu)無明顯孔隙,總體較平整;當(dāng)NC添加量為9%時(shí),復(fù)合膜的斷面結(jié)構(gòu)呈現(xiàn)更加致密、均勻的結(jié)構(gòu),這有利于復(fù)合膜力學(xué)性能的增強(qiáng);當(dāng)添加量增加至17%時(shí),復(fù)合膜斷面出現(xiàn)明顯的分層,這可能是因?yàn)榛w溶液是黏度較高的黏稠液體,納米甲殼素含量過高時(shí)易分散不勻、粒子部分團(tuán)聚,從而造成復(fù)合膜的均勻性有所下降[16]。
圖8為復(fù)合膜中的氮元素EDS掃描圖。由圖8可見,復(fù)合膜中存在微量的氮元素表明了NC的存在,其中復(fù)合膜RC-1%NC、RC-9%NC、RC-17%NC表面的氮元素含量分別為76%、8.7%、9.6%,斷面的氮元素含量分別為5.6%、7.2%、8.1%,這表明NC更傾向于分布在復(fù)合膜的表面。在1%NC添加量條件下,氮元素分散較稀疏,隨著NC添加量的增加(9%、17%),氮元素分散更加緊密,同時(shí)呈現(xiàn)相對(duì)均勻的分布,這表明NC在復(fù)合膜中相對(duì)分散較均勻,表面分布稍多一些。但當(dāng)添加量過大(17%)時(shí),有輕微聚集現(xiàn)象,與SEM的分析結(jié)果相一致。
2.3.4 復(fù)合膜力學(xué)性能分析
圖9為再生纖維素膜和復(fù)合膜在干態(tài)和濕態(tài)下的斷裂強(qiáng)度和斷裂伸長(zhǎng)率。由圖9(a)可見,干態(tài)下固含量為5%的純?cè)偕w維素膜力學(xué)性能較差,斷裂強(qiáng)度僅為64.2 MPa,斷裂伸長(zhǎng)率只有5.7%。添加NC后力學(xué)性能顯著提高,當(dāng)添加量為9%時(shí),干態(tài)下復(fù)合膜斷裂強(qiáng)度達(dá)到最大值98.8 MPa,斷裂伸長(zhǎng)率達(dá)14.3%。此外,由圖9(b)可見,適量NC的添加一定程度上也增強(qiáng)了復(fù)合膜的濕強(qiáng)度。當(dāng)添加量為1%~9%時(shí),由于NC和纖維素基體間的強(qiáng)相互作用及良好的界面性質(zhì),使得應(yīng)力能夠?qū)崿F(xiàn)從弱的纖維素基體到強(qiáng)NC的有效轉(zhuǎn)移[17],同時(shí)又因?yàn)榻Y(jié)晶度及表面、斷面均勻性的提高,所以在NC添加量較低時(shí)就能極大地提高復(fù)合膜的力學(xué)性能。但當(dāng)NC添加量大于9%,逐漸增加至13%、17%時(shí),斷裂強(qiáng)度和斷裂伸長(zhǎng)率輕微下降,這可能是因?yàn)镹C發(fā)生團(tuán)聚造成薄膜均勻性有所下降,從而導(dǎo)致力學(xué)性能下降。
3 結(jié) 論
本文通過透光率、濁度測(cè)試、離心沉降實(shí)驗(yàn)等探究了NC在H2O、TEAOH/H2O、20%Urea/H2O、25%Urea/H2O、30%Urea/H2O、DMSO六種分散劑中的分散性,并考察了NC添加量對(duì)復(fù)合膜的化學(xué)結(jié)構(gòu)、結(jié)晶結(jié)構(gòu)、微觀形貌、力學(xué)性能的影響,發(fā)現(xiàn)并得出以下結(jié)論:
1) TEMPO氧化法制備的NC在DMSO中的分散性最好,0.5%NC/DMSO懸浮液在800 nm處的初始透光率可達(dá)91.9%,放置72 h后仍有86.2%,濁度維持在52.5~69.0 NTU水平,且經(jīng)高速離心后無明顯沉淀。
2) FTIR譜圖顯示,隨著NC添加量的增加,復(fù)合膜中出現(xiàn)隸屬于甲殼素酰胺Ⅱ鍵的紅外特征吸收峰且強(qiáng)度逐漸增強(qiáng);XRD譜圖顯示,添加適量NC有助于提高復(fù)合膜的結(jié)晶度;SEM、EDS圖顯示,NC添加量為9%時(shí),NC在復(fù)合膜中總體分散較均勻,無明顯聚集現(xiàn)象。
3) 適量NC的加入有助于改善復(fù)合膜的力學(xué)性能,當(dāng)NC添加量為9%時(shí),再生纖維素復(fù)合膜力學(xué)性能最佳,干態(tài)下其斷裂強(qiáng)度為98.8 MPa,斷裂伸長(zhǎng)率為14.3%,顯著高于空白樣(64.2 MPa,5.7%)。
參考文獻(xiàn):
[1]徐龍, 劉云, 吳志強(qiáng), 等. 南極磷蝦甲殼素納米晶須的制備與應(yīng)用[J]. 功能材料, 2023, 54(6): 6021-6027.
XU L, LIU Y, WU Z Q, et al. Preparation and application of chitin nano-whiskers derived from Antarctic krill[J]. Journal of Functional Materials, 2023, 54(6): 6021-6027.
[2]CHEN J, LIU J, YUAN T, et al. Comparison of cellulose and chitin nanocrystals for reinforcing regenerated cellulose fibers[J]. Journal of Applied Polymer Science, 2017, 134(22): 44880.
[3]LIU L, CHEN H, ZOU Y, et al. Zwitterionic chitin nanocrystals mediated composite and self-assembly with cellulose nanofibrils[J]. International Journal of Biological Macromolecules, 2022, 223: 108-119.
[4]SHARMA A, MANDAL T, GOSWAMI S. Dispersibility and stability studies of cellulose nanofibers: Implications for nanocomposite preparation[J]. Journal of Polymers and the Environment, 2021(29): 1516-1525.
[5]WIJESENA R N, TISSERA N D, RATHNAYAKA V W S G, et al. Colloidal stability of chitin nanofibers in aqueous systems: Effect of pH, ionic strength, temperature & concentration[J]. Carbohydrate Polymers, 2020(235): 116024.
[6]WANG Q, YAN X X, et al. Fabrication and characterization of chitin nanofibers through esterification and ultrasound treatment[J]. Carbohydrate Polymers Scientific & Technological Aspects of Industrially Important Polysaccharides, 2018, 180: 81-87.
[7]SHANG Z, AN X Y, SETA F T, et al. Improving dispersion stability of hydrochloric acid hydrolyzed cellulose nano-crystals[J]. Carbohydrate Polymers, 2019(222): 115037.
[8]JUNJI N, TSUGUYUKI S, AKIRA L, et al. Simple freeze-drying procedure for producing nanocellulose aerogel-containing, high-performance air filters[J]. ACS Applied Materials & Interfaces, 2015, 7(35): 19809-19815.
[9]LIN N, ZHAO S S, GAN L, et al. Preparation of fungus-derived chitin nanocrystals and their dispersion stability evaluation in aqueous media[J]. Carbohydrate Polymers, 2017(173): 610-618.
[10]PHILIPPOVA O E, KORCHAGUNA E V, VOLKOV E V, et al. Aggregation of some water-soluble derivatives of chitin in aqueous solutions: Role of the degree of acetylation and effect of hydrogen bond breaker[J]. Carbohydrate Polymers, 2012, 87(1): 687-694.
[11]WU K, LIU D Y, GONG F, et al. Addressing the challenge of fabricating a high content regenerated cellulose/nanomaterial composite: The magical effect of urea[J]. Green Chemistry, 2020, 22(13): 4121-4127.
[12]OKITA Y, FUJISAWA S, SAITO T, et al. TEMPO-oxidized cellulose nanofibrils dispersed in organic solvents[J]. Biomacromolecules, 2011, 12(2): 518-522.
[13]FAN Y M, SAITO T, ISOGAI A, et al. Chitin nanocrystals prepared by TEMPO-mediated oxidation of alpha-chitin[J]. Biomacromolecules, 2008, 9(1): 192-198.
[14]NGASOTTER S, XAVIER K A M, PORAYIL L, et al. Optimized high-yield synthesis of chitin nanocrystals from shrimp shell chitin by steam explosion[J]. Carbohydrate Polymers, 2023(316): 121040.
[15]周逸, 魏潔, 呂妍妍, 等. 竹漿纖維素納米纖維對(duì)硝化纖維素膜的增強(qiáng)作用[J]. 含能材料, 2019, 27(8): 671-678.
ZHOU Y, WEI J, L Y Y, et al. Enhancement of nitrocellulose by bamboo pulp cellulose nanofibers[J]. Chinese Journal of Energy Materials, 2019, 27(8): 671-678.
[16]周可可. 基于溶解再生工藝?yán)w維素包裝膜的制備與研究[D]. 無錫: 江南大學(xué), 2020.
ZHOU K K. Preparation and Research of Cellulose Packaging Film Based on Dissolution and Regeneration Process[D]. Wuxi: Jiangnan University, 2020.
[17]ZHAO J Q, HE X, WANG Y R, et al. Reinforcement of all-cellulose nanocomposite films using native cellulose nanofibrils[J]. Carbohydrate Polymers, 2014(104): 143-150.
Study on the dispersibility of nano-chitin and its enhancement performance onregenerated cellulose films
ZHANG Chi, WANG Xiangrong
PENG Weifang, WANG Wencong
(College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China)
Abstract: Nano-chitin is a nanoscale material derived from natural polysaccharide chitin, and has various excellent properties such as biocompatibility, biodegradability and high specific surface area. This makes it have broad application potential in various fields such as biomedicine, food, cosmetics, environmental protection, textiles and packaging. However, one of major challenges for the nano-chitin is its poor dispersibility. Due to the high specific surface area and surface activity of nanoparticles, they are prone to agglomerate in solution and form larger aggregates, which limits their uniform distribution in composite materials and hinders their reinforcement effect. The aggregation of nano-chitin can lead to the deterioration in composite materials properties, such as mechanical strength, optical properties and antibacterial effects. To improve the dispersibility of nano-chitin, the following strategies are usually adopted: increasing surface charge or introducing hydrophilic groups through chemical modification can enhance the stability of nanoparticles in aqueous media; adding appropriate dispersants or surfactants can help stabilize nanoparticles and prevent aggregation; utilizing the cavitation effect of ultrasound can disrupt the attraction between particles and promote the uniform dispersion of nano-chitin in solution. Almong these strategies, using dispersants to disperse nano-chitin is relatively simpl and efficient. Therefore, a suitable dispersant DMSO (dimethyl sulfoxide) was selected in this article for uniform dispersion of nano-chitin, and then the enhancement effect of nano-chitin on regenerated cellulose films was further studied.
To improve the dispersion effect of nano-chitin, firstly a series of techniques such as transmittance, turbidity testing and centrifugal sedimentation experiments were adopted to investigate the dispersibility of nano-chitin in water (H2O), tetraethylammonium hydroxide aqueous solution (TEAOH/H2O), urea aqueous solution of different mass fractions (Urea/H2O), and dimethyl sulfoxide (DMSO). It was found that DMSO had a relatively good ability to disperse nano-chitin. The initial transmittance of 0.5% nano-chitin/DMSO suspension at 800 nm could reach 91.9% and it still maintained 86.2% after 72 hours. The turbidity remained at the level of 52.569.0 NTU and there was no obvious precipitation after high-speed centrifugation. Therefore, DMSO was selected as the nano-chitin dispersant and different mass fractions of nano-chitin/DMSO were added to cellulose/TEAOH/H2O solution to prepare regenerated cellulose composite films. The structure, morphology and mechanical properties of the composite films were characterized. The results showed that the mechanical properties of the composite films were optimal and the fracture strength and elongation at break increased by 54% and 150% compared to the pure cellulose films, when the amount of nano-chitin added was 9%. The addition of 9% nano-chitin helped to introduce amide groups and improveed crystallinity in the composite films. The surface and cross-sectional structure of the composite films were dense and homogenous without obvious lamination and pores, and nano-chitin was generally evenly dispersed in the composite film without obvious aggregation.
This study improves the dispersion and aggregation problems of nano-chitin in the preparation of regenerated cellulose films and significantly enhances the comprehensive performance of regenerated cellulose composite films by using DMSO as a dispersion medium. This study helpes to expand the application fields of nano-chitin in high value-added materials and has important theoretical value and application prospects. Future research will further explore the effects of different additives on the dispersion of nano-chitin and the properties of composite materials with the aim of developing regenerated cellulose composite materials with better performance.
Key words: nano-chitin; dimethyl sulfoxide; dispersibility; tetraethyl ammonium hydroxide; regenerated cellulose composite films