摘要:目的探討芪術(shù)方對(duì)非酒精性脂肪性肝?。∟AFLD)小鼠模型的療效及作用機(jī)制。方法60只雄性C57BL/6J小鼠隨機(jī)分為正常組,模型組,芪術(shù)方低(4.75 g/kg)、中(9.50 g/kg)、高劑量組(19.00 g/kg),多唏磷脂酰膽堿組(磷脂組)(228 mg/kg),每組10只。高脂高膽固醇飼料和20%果糖水造模16周后,各組給予相應(yīng)藥物干預(yù),每天給藥1次,連續(xù)8周。檢測(cè)血清ALT、AST、TC、TG、LDL;酶聯(lián)免疫吸附法(ELISA)檢測(cè)血清游離脂肪酸(FFA)、腫瘤壞死因子-α(TNF-α)、白細(xì)胞介素-1β(IL-1β)、超氧化物歧化酶(SOD)、丙二醛(MDA);蘇木素-伊紅(HE)和油紅O染色觀察肝組織病理變化;蛋白免疫印跡法(Western Blot)檢測(cè)微管相關(guān)蛋白輕鏈3B(LC3BⅡ/Ⅰ)、螯合體(p62/SQSTM1)、Beclin-1、動(dòng)力相關(guān)蛋白1(Drp1)表達(dá)。實(shí)時(shí)熒光定量PCR(Real-time PCR)檢測(cè)Drp1、Beclin-1、p62/SQSTM1 mRNA表達(dá)水平。計(jì)量資料多組間比較采用單因素方差分析,進(jìn)一步兩兩比較采用LSD-t檢驗(yàn)。結(jié)果與正常組比較,模型組血清TG、TC、ALT、AST、LDL、FFA、TNF-α、IL-1β、MDA水平均升高,SOD水平降低(P值均lt;0.05)。HE染色結(jié)果顯示,模型組小鼠肝組織可見肝細(xì)胞脂肪變及大量脂肪空泡;油紅O染色結(jié)果顯示,模型組小鼠肝細(xì)胞內(nèi)有大量大小不一紅色脂滴沉積,油紅O染色面積百分比較正常組升高(Plt;0.05)。Real-time PCR結(jié)果顯示,與正常組比較,模型組肝組織中Drp1、Beclin-1 mRNA升高,p62/SQSTM1 mRNA降低(P值均lt;0.05)。Western Blot結(jié)果顯示,與正常組比較,模型組肝組織中Drp1、Beclin-1、LC3BⅡ/Ⅰ蛋白表達(dá)水平升高,p62/SQSTM1蛋白表達(dá)水平降低(P值均lt;0.05)。與模型組比較,部分劑量芪術(shù)方組和磷脂組血清TG、TC、ALT、AST、LDL、FFA、TNF-α、IL-1β、MDA水平均降低,SOD水平升高(P值均lt;0.05)。與模型組比較,各用藥組肝組織脂肪變改善明顯,且油紅O染色面積百分比降低(P值均lt;0.05);Drp1、Beclin-1 mRNA降低,p62/SQSTM1 mRNA升高(P值均lt;0.05);Drp1、Beclin-1、LC3BⅡ/Ⅰ蛋白表達(dá)水平降低,部分用藥組p62/SQSTM1蛋白表達(dá)水平升高(P值均lt;0.05),且芪術(shù)方中、高劑量效果更明顯(P值均lt;0.01)。結(jié)論芪術(shù)方改善NAFLD小鼠肝脂質(zhì)代謝及炎癥水平可能與調(diào)控肝細(xì)胞線粒體自噬有關(guān)。
關(guān)鍵詞:非酒精性脂肪性肝病;芪術(shù)方;線粒體自噬;脂質(zhì)代謝;炎癥
基金項(xiàng)目:上海市2021年度“科技創(chuàng)新行動(dòng)計(jì)劃”生物醫(yī)藥科技支撐專項(xiàng)(21S1900400);安徽省自然科學(xué)基金(2308085MH293);安徽省高校科學(xué)研究重大項(xiàng)目(2023AH040098);安徽省衛(wèi)生健康科研重點(diǎn)項(xiàng)目(AHWJ2023A10035);國(guó)家中醫(yī)藥管理局高水平中醫(yī)藥重點(diǎn)學(xué)科建設(shè)項(xiàng)目(中醫(yī)肝膽病學(xué))(zyyzdxk-2023060)
Effect of Qizhu prescription on a mouse model of non-alcoholic fatty liver disease incluced by high-fat,high-fructose,and high-cholesterol diet and its mechanism
CHEN Jiahao1a,ZHOU Zhenhua1b,2.(1.a.Cellular Immunity Laboratory,b.Department of Hepatology,Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine,Shanghai 201203,China;2.Department of Hepatology,Anhui Hospital,Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine,Hefei 230011,China)
Corresponding author:ZHOU Zhenhua,jinghua1220@163.com(ORCID:0000-0002-5639-3857)
Abstract:Objective To investigate the therapeutic effect and mechanism of action of Qizhu prescription in mice withnon-alcoholic fatty liver disease(NAFLD).Methods A total of 60 male C57BL/6J mice were randomly divided into normal group,model group,low-dose Qizhu prescription group(4.75 g/kg),middle-dose Qizhu prescription group(9.50 g/kg),high-dose Qizhu prescription group(19.00 g/kg),Yishanfu group(228 mg/kg),with 10 mice in each group.After 16 weeks of modeling with a high-fat high-cholesterol diet and 20%fructose water,each group was given the corresponding drug once a day for 8 weeks.The serum levels of alanine aminotransferase(ALT),aspartate aminotransferase(AST),total cholesterol(TC),triglyceride(TG),and low-density lipoprotein(LDL)were measured;ELISA was used to measure the serum levels of free fatty acid(FFA),tumor necrosis factor-α(TNF-α),interleukin-1β(IL-1β),superoxide dismutase(SOD),and malondialdehyde(MDA);HE staining and oil red O staining were used to the pathological changes of liver tissue;Western blot was used to measure the protein expression levels of LC3BⅡ/Ⅰ,p62/SQSTM1,Beclin-1,and Drp1,and real-time PCR was used to measure the mRNA expression levels of Drp1,Beclin-1,and p62/SQSTM1.A one-way analysis of variance was used for comparison of continuous data between multiple groups,and the least significant difference t-test was used for further comparison between two groups.Results Compared with the normal group,the model groups had significant increases in the serum levels of TG,TC,ALT,AST,LDL,F(xiàn)FA,TNF-α,IL-1β,and MDA and a significant reduction in the serum level of SOD(Plt;0.05).HE staining showed that the mice in the model group had hepatocyte steatosis and a large number of fat vacuoles in liver tissue,and oil red O staining showed that the mice in the model group had a large number of red lipid droplets of varying sizes in hepatocytes,with a significant increase in the percentage of oil red O staining area compared with the normal group(Plt;0.05).Real-time PCR showed that compared with the normal group,the model group had significant increases in the mRNA expression levels of Drp1 and Beclin-1 and a significant reduction in the mRNA expression level of p62/SQSTM1 in liver tissue(all Plt;0.05),and Western blot showed that compared with the normal group,the model group had significant increases in the protein expression levels of Drp1,Beclin-1,and LC3BⅡ/Ⅰand a significant reduction in the protein expression level of p62/SQSTM1 in liver tissue(all Plt;0.05).Compared with the model group,some Qizhu prescription groups and the Yishanfu group had significant reductions in the serum levels of TG,TC,ALT,AST,LDL,F(xiàn)FA,TNF-α,IL-1β,and MDA and a significant increase in the serum level of SOD(all Plt;0.05).Compared with the model group,each administration group had a significant improvement in steatosis of liver tissue,a significant reduction in the percentage of oil red O staining area,significant reductions in the mRNA expression levels of Drp1 and Beclin-1,and a significant increase in the mRNA expression level of p62/SQSTM1(all Plt;0.05);there were significant reductions in the protein expression levels of Drp1,Beclin-1,and LC3BⅡ/Ⅰ,while some administration groups had a significant increase in the protein expression level of p62/SQSTM1(all Plt;0.05),with a significantly better effect in the middle-and high-dose Qizhu prescription groups(all Plt;0.01).Conclusion Qizhu prescription improves lipid metabolism and inflammation in mice with NAFLD possibly by regulating hepatocyte mitophagy.
Key words:Non-alcoholic Fatty Liver Disease;Qi Zhu Formula;Mitophagy;Lipid Metabolism;Inflammation
Research funding:Shanghai 2021“Science and Technology Innovation Action Plan”Biomedical Science and Technology Support Special Project(21S1900400);Natural Science Foundation of Anhui Province(2308085MH293);Key Scientific Research Project of Anhui Province(2023AH040098);Health as a key project of scientific research in anhui province(AHWJ2023A10035);The state administration of traditional Chinese medicine high level key discipline construction project of traditional Chinese medicine(TCM liver epidemiology)(zyyzdxk-2023060)
非酒精性脂肪性肝?。∟AFLD)是世界范圍內(nèi)最常見的慢性肝病,在全球普通人群中的患病率高達(dá)38%[1-2]。因此,早期預(yù)防和阻斷NAFLD意義重大。
脂肪在肝臟中不斷沉積導(dǎo)致脂質(zhì)代謝紊亂與脂肪酸氧化應(yīng)激產(chǎn)生的炎癥因子共同構(gòu)成NAFLD肝細(xì)胞損傷的主要病理環(huán)節(jié)[3]。肝脂質(zhì)代謝紊亂可導(dǎo)致線粒體功能障礙,進(jìn)而引起肝損傷。肝臟線粒體自噬在清除肝細(xì)胞受損線粒體,肝臟保護(hù)方面起著重要作用[4]。隨著中醫(yī)藥研究的不斷深入,中藥復(fù)方在減輕肝炎癥狀、改善肝功能、肝脂肪變性以及延緩肝纖維化等方面療效顯著[5]。已成為當(dāng)前研究熱點(diǎn)。本課題組前期研究[6]表明,芪術(shù)方可減輕高脂高膽固醇飲食誘導(dǎo)的NASH小鼠肝損傷。為進(jìn)一步探索其作用機(jī)制,本研究通過建立高脂高膽固醇高果糖飲食NAFLD小鼠模型,為芪術(shù)方的臨床運(yùn)用提供更多實(shí)驗(yàn)基礎(chǔ)。
1材料與方法
1.1實(shí)驗(yàn)動(dòng)物與飼料60只SPF級(jí)雄性C57BL/6J小鼠,6~8周齡,體質(zhì)量20~25 g,購(gòu)自上海斯萊克實(shí)驗(yàn)動(dòng)物有限責(zé)任公司,實(shí)驗(yàn)動(dòng)物生產(chǎn)許可證編號(hào):SCXK(滬)2022-0004。實(shí)驗(yàn)動(dòng)物使用許可證編號(hào):SCXK(滬)2020-0009。小鼠飼養(yǎng)于上海中醫(yī)藥大學(xué)實(shí)驗(yàn)動(dòng)物中心。溫度20~24℃、濕度45%~55%、12 h光暗周期。高脂高膽固醇飼料由江蘇省協(xié)同醫(yī)藥生物工程有限責(zé)任公司提供,許可證號(hào):蘇飼證(2019)01008。果糖由南通特洛菲飼料科技有限公司提供。
1.2藥物組成與制備芪術(shù)方:生黃芪15 g(上海虹橋中藥飲片有限公司,220919)、虎杖9 g(上??禈蛑兴庯嬈邢薰?,221105)、杠板歸9 g、澤蘭9 g、蒼術(shù)9 g(上海萬仕誠(chéng)藥業(yè)有限公司,20221006-1、20220923-1、20220821-1)、廣陳皮6 g(上海養(yǎng)和堂中藥飲片有限公司,2022092407)。
提取工藝:將所有飲片加入藥品體積12倍純水中浸泡1 h,煮沸后提取濾液,共提取3次,加熱濃縮至含生藥0.475、0.95、1.90 g/mL的濃縮液。將多唏磷脂酰膽堿(北京賽諾菲制藥有限公司,H20059010,CBJD471)溶于純水中,質(zhì)量濃度為22.8 g/L,藥液于4℃冰箱存放備用。多唏磷脂酰膽堿及中藥飲片均購(gòu)自上海中醫(yī)藥大學(xué)附屬曙光醫(yī)院,由王衛(wèi)東主管藥師鑒定,符合2020年版《中華人民共和國(guó)藥典》標(biāo)準(zhǔn)。
1.3試劑ChamQ Universal SYBR qPCR Master Mix、Freezol Reagent RNA逆轉(zhuǎn)錄試劑盒、提取試劑盒(南京諾唯贊生物科技股份有限公司,Q711-03、R223-01、R711-02);PCR引物均由上海生工生物工程股份有限公司合成;TNF-α、IL-1β、游離脂肪酸(FFA)(上海圓創(chuàng)生物科技有限公司,202308-M028、202308-M009、YCM4328);超氧化物歧化酶(SOD)、丙二醛(MDA)(ELISA)試劑盒(上海威奧生物科技有限公司,ET0012M、ET0001M);山羊抗兔免疫球蛋白(Ig)G(H+L)抗體、BCA蛋白濃度測(cè)定試劑盒、組織線粒體分離試劑盒、PMSF(上海碧云天生物技術(shù)有限公司,A0208、P0009-1、C3606、ST506);LC3B抗體、p62/SQSTM1抗體、Beclin-1抗體(杭州華安生物技術(shù)有限公司,ET1701-65、HA721171、HA721216)、動(dòng)力相關(guān)蛋白1(Drp1)、GAPDH、β-actin(武漢三鷹技術(shù)有限公司,12957-1-AP、60004-1-Ig、23660-1-AP)
1.4儀器QuantStudio 6 Pro型聚合酶鏈?zhǔn)椒磻?yīng)(PCR)擴(kuò)增儀、TSX600型?80℃超低溫冰箱(美國(guó)Thermo Scientific公司);AMG-2201-023型全自動(dòng)酶標(biāo)儀(美國(guó)BioTek公司);1658034型電泳轉(zhuǎn)膜儀ChemiDocMP型凝膠成像儀(美國(guó)Bio-Rad公司);Centrifuge 5430R型臺(tái)式高速離心機(jī)(德國(guó)Eppendorf公司)。
1.5方法
1.5.1造模、分組及給藥60只C57BL/6J雄性小鼠于動(dòng)物房適應(yīng)性喂養(yǎng)1周后,隨機(jī)分為正常組(n=10)、模型組(n=10)和給藥組(n=40)。正常組小鼠予正常飼料和飲水,模型組和給藥組給予高脂高膽固醇飼料和20%果糖水[6-7]。造模16周后開始給藥,給藥組分為芪術(shù)方低、中、高劑量組、多唏磷脂酰膽堿組(磷脂組)。根據(jù)《中藥藥理實(shí)驗(yàn)方法學(xué)》中人與小鼠藥物換算方式和本課題組前期研究[6],得出芪術(shù)方低、中、高劑量組給藥劑量為4.75、9.50、19.00 g/kg,成人體質(zhì)量(按60 kg計(jì)算)日服劑量的5、10、20倍,磷脂組給藥劑量為228 mg/kg(成人日服劑量的10倍)。第17周起,正常組和模型組每日給予純水灌胃,其余各組給予對(duì)應(yīng)藥物灌胃,每日1次,持續(xù)8周。末次給藥后,腹腔注射1%戊巴比妥鈉(40 mg/kg)麻醉小鼠,眼眶后靜脈叢取血收集血清和肝組織樣本。
1.5.2肝組織線粒體提取稱取新鮮肝臟100 mg,按說明書加入試劑勻漿。3 000 r/min,4℃,10 min離心后,將上清轉(zhuǎn)移至另一離心管中。12 000 r/min,4℃,10 min,沉淀即為線粒體。存放于?80℃冰箱備用。
1.5.3生化指標(biāo)檢測(cè)血清委托上海中醫(yī)藥大學(xué)附屬曙光醫(yī)院檢驗(yàn)科檢測(cè)肝功能及血脂。
1.5.4 HE染色固定好的肝組織石蠟包埋,切片,放入二甲苯脫蠟、梯度乙醇脫水;蘇木素、伊紅染色5 min,沖水后無水乙醇浸泡脫水,二甲苯透明,中性樹膠封片,鏡下觀察各組小鼠肝組織。
1.5.5油紅O染色冰凍切片復(fù)溫干燥后固定液浸泡15 min,純水洗后晾干;油紅染液浸染10 min后60%異丙醇分化,自來水沖洗;蘇木素染色,純水浸洗,甘油明膠封片劑封片;鏡下觀察各組小鼠肝脂質(zhì)沉積。
1.5.6透射電鏡觀察肝組織超微結(jié)構(gòu)將新鮮肝組織切至1 mm3,放入2.5%戊二醛中固定2 h,清洗3次后放入1%餓酸中固定,清洗3次后,梯度乙醇脫水,丙酮浸透后包埋,半薄定位切片后采用醋酸雙氧鈾-檸檬酸鉛雙染法染色,鏡下觀察肝組織超微結(jié)構(gòu)。
1.5.7 ELISA法檢測(cè)炎癥因子、脂質(zhì)代謝、氧化應(yīng)激相關(guān)分子水平將存放于?80℃冰箱的血清取出,依據(jù)試劑盒說明書進(jìn)行操作,檢測(cè)小鼠血清中TNF-α、IL-1β、FFA、MDA含量和SOD酶活力。
1.5.8實(shí)時(shí)熒光定量PCR(Real-time PCR)檢測(cè)Drp1、p62/SQSTM1、Beclin-1 mRNA表達(dá)按照RNA提取試劑盒說明書提取肝組織RNA,用HiScriptⅡQ RT SuperMix for qPCR試劑盒進(jìn)行逆轉(zhuǎn)錄合成cDNA。將cDNA與ChamQ Universal SYBR qPCR Master Mix混合后進(jìn)行Real-time PCR擴(kuò)增(反應(yīng)條件參考說明書),以GAPDH為內(nèi)參,采用相對(duì)定量2?ΔΔCt法進(jìn)行分析。PCR引物均由生工生物工程(上海)股份有限公司設(shè)計(jì)提供。序列見表1。
1.5.9 Western Blot檢測(cè)肝組織線粒體p62/SQSTM1、Drp1、Beclin-1、LC3BⅡ/Ⅰ蛋白表達(dá)使用BCA法檢測(cè)線粒體蛋白濃度,配置蛋白樣品。上樣,電泳,轉(zhuǎn)膜,封閉。分別加入一抗p62/SQSTM1、Drp1、Beclin-1、LC3B(1∶1 000),4℃孵育過夜后TBST洗膜3次分別加入二抗GAPDH、β-actin(1∶5 000),室溫孵育1 h,TBST洗膜3次后ECL法顯影,凝膠成像系統(tǒng)拍攝。以β-Actin和GAPDH為內(nèi)參,采用Image J進(jìn)行蛋白質(zhì)表達(dá)定量。
1.6統(tǒng)計(jì)學(xué)方法采用SPSS 25.0統(tǒng)計(jì)軟件進(jìn)行數(shù)據(jù)分析。計(jì)量資料以±s表示,多組間比較采用單因素方差分析,進(jìn)一步兩兩比較采用LSD-t檢驗(yàn)。Plt;0.05為差異有統(tǒng)計(jì)學(xué)意義。
2結(jié)果
2.1芪術(shù)方對(duì)各組小鼠肝功能、血脂的影響與正常組相比,模型組小鼠AST、ALT、TC、TG、LDL水平均升高(P值均lt;0.05)。與模型組相比,各給藥組小鼠ALT、AST、TC、TG、LDL水平均降低(P值均lt;0.05)(表2)。
2.2芪術(shù)方對(duì)各組小鼠肝組織學(xué)變化的影響HE染色結(jié)果顯示:正常組小鼠肝小葉結(jié)構(gòu)正常,肝細(xì)胞邊界清晰,無脂肪空泡;模型組小鼠充斥大量脂肪變,伴炎癥細(xì)胞浸潤(rùn),肝細(xì)胞氣球樣變;與模型組比較,各用藥組均有不同程度改善,其中芪術(shù)方中、高劑量組脂肪變顯著減輕(圖1)。油紅O染色結(jié)果顯示:正常組小鼠肝細(xì)胞無紅色脂滴;模型組小鼠干細(xì)胞內(nèi)充斥大量形狀不規(guī)則紅色脂滴緊密排列,陽(yáng)性面積較正常組明顯增加(Plt;0.05);芪術(shù)方各劑量組干預(yù)后,較模型組顯著改善,其中芪術(shù)方中、高劑量組效果顯著(P值均lt;0.01)(圖2,表3)。
2.3芪術(shù)方對(duì)各組小鼠肝臟超微結(jié)構(gòu)的影響正常組小鼠肝細(xì)胞形態(tài)正常,細(xì)胞內(nèi)可見大量線粒體、內(nèi)質(zhì)網(wǎng)和少量微小脂滴。模型組可見受損肝細(xì)胞,大量脂滴,腫脹線粒體及自噬溶酶體。芪術(shù)方中、高劑量組與磷脂組細(xì)胞胞漿中脂質(zhì)空泡減少,其中芪術(shù)方中、高劑量組中可見自噬小體(圖3)。
2.4芪術(shù)方對(duì)各組小鼠肝臟TNF-α、IL-1β、FFA、MDA及SOD的影響ELISA結(jié)果顯示,與正常組相比,模型組小鼠血清中TNF-α、IL-1β、FFA、MDA表達(dá)水平提高,SOD表達(dá)水平降低(P值均lt;0.05);用藥組小鼠血清中TNF-α、IL-1β、MDA均有不同程度改善(P值均lt;0.05),IL-1β、FFA、MDA在芪術(shù)方中、高劑量組改善作用更為明顯(P值均lt;0.05),芪術(shù)方低、中、高劑量組的SOD酶活性較模型組顯著提高(P值均lt;0.05)(表4)。
2.5芪術(shù)方對(duì)各組小鼠肝組織Drp1、Beclin-1、p62/SQSTM1 mRNA的影響與正常組相較,模型組小鼠肝組織Drp1、Beclin-1 mRNA表達(dá)水平增加,p62/SQSTM1 mRNA表達(dá)水平降低(P值均lt;0.05);與模型組相比,各用藥組Drp1、Beclin-1 mRNA表達(dá)水平減少,芪術(shù)方中、高劑量組p62/SQSTM1 mRNA表達(dá)水平增加(P值均lt;0.05)(表5)。
2.6芪術(shù)方對(duì)各組小鼠肝組織線粒體Drp1、Beclin-1、p62/SQSTM1、LC3B蛋白表達(dá)影響與正常組相比,模型組小鼠肝組織線粒體LC3BⅡ/Ⅰ比值、Drp1、Beclin-1蛋白表達(dá)水平明顯增加,p62/SQSTM1蛋白表達(dá)水平減少(P值均lt;0.05);與模型組相比,各用藥組LC3BⅡ/Ⅰ比值、Drp1、Beclin-1蛋白表達(dá)水平降低,部分用藥組p62/SQSTM1蛋白表達(dá)水平上升(P值均lt;0.05),其中芪術(shù)方中、高劑量組作用更明顯(P值均lt;0.01)(圖4,表6)。
3討論
NAFLD患病率逐年上升,中醫(yī)藥治療NAFLD具有獨(dú)特優(yōu)勢(shì),芪術(shù)方是由上海中醫(yī)藥大學(xué)附屬曙光醫(yī)院肝病科研發(fā)治療NAFLD的有效驗(yàn)方,臨床療效好,為進(jìn)一步探索其作用機(jī)制,本實(shí)驗(yàn)通過建立高脂高膽固醇高果糖NAFLD小鼠模型,采用不同劑量芪術(shù)方干預(yù)8周,結(jié)果表明,芪術(shù)方可顯著降低NAFLD小鼠血脂、血清FFA,改善肝功能,減輕肝臟病理?yè)p傷及炎癥反應(yīng)。
NAFLD發(fā)病機(jī)制復(fù)雜,目前尚未完全闡明。隨著研究的深入,多重打擊學(xué)說被廣泛認(rèn)可,其中炎癥、肝脂肪變性、線粒體功能障礙和脂質(zhì)過氧化誘發(fā)氧化應(yīng)激在NAFLD發(fā)病中起重要作用[8]。炎癥作為NAFLD的關(guān)鍵加速因子,能促進(jìn)肝脂肪變性向肝纖維化進(jìn)展[9]。本研究結(jié)果顯示,芪術(shù)方能減少NAFLD小鼠血清TNF-α、IL-1β、MDA,促進(jìn)SOD表達(dá),表明芪術(shù)方能減輕NAFLD肝臟炎癥。芪術(shù)方由生黃芪、虎杖、杠板歸、澤蘭、蒼術(shù)、廣陳皮組成。黃芪中主要活性成分黃芪甲苷對(duì)自噬可表現(xiàn)出不同的調(diào)控作用。在大鼠心肌再灌注損傷模型中,黃芪甲苷通過降低PINK1/Parkin信號(hào)通路表達(dá),抑制線粒體自噬水平,發(fā)揮心肌細(xì)胞保護(hù)作用[10]。Su等[11]研究發(fā)現(xiàn),黃芪甲苷上調(diào)PINK1線粒體自噬水平,改善糖尿病大鼠線粒體功能障礙?;⒄戎械幕钚猿煞帜軌蚋纳埔葝u素抵抗、抗氧化應(yīng)激、調(diào)節(jié)脂質(zhì)代謝、改善內(nèi)質(zhì)網(wǎng)應(yīng)激、減輕炎癥浸潤(rùn)緩解NAFLD[12]?;⒄溶湛上抡{(diào)ATF6表達(dá)抑制自噬改善NAFLD[13]。蒼術(shù)苷可促進(jìn)AMPK活化,降低mTOR活性,誘導(dǎo)自噬體形成,從而加速肝臟中脂質(zhì)降解[14]。陳皮中的主要成分川陳皮素除了具有抑制炎癥反應(yīng)、抗腫瘤、改善代謝紊亂等藥理作用,也能促進(jìn)自噬。線粒體自噬是一種發(fā)生在線粒體中的高度保守的自我消化過程[15],介導(dǎo)受損線粒體的清除,是維持線粒體穩(wěn)態(tài)的重要環(huán)節(jié)。線粒體自噬功能失調(diào)與多種肝臟疾病的發(fā)生發(fā)展密切相關(guān)[16],是細(xì)胞為應(yīng)對(duì)氧化應(yīng)激、營(yíng)養(yǎng)缺乏、衰老等外界刺激的重要防御機(jī)制[17]。Drp1作為線粒體分裂的關(guān)鍵調(diào)控因子,能夠激活線粒體自噬。Li等[18]研究表明,柴胡疏肝散可抑制Drp1介導(dǎo)的線粒體過度自噬增強(qiáng)消化不良大鼠胃動(dòng)力。Drp1與LC3相互作用促進(jìn)線粒體自噬。LC3作為線粒體自噬標(biāo)志物,在線粒體自噬過程中發(fā)生泛素化,與自噬體的磷脂乙醇胺結(jié)合,在自噬體膜上形成LC3Ⅱ。LC3Ⅱ和LC3Ⅱ/LC3Ⅰ水平在一定程度上反映了線粒體自噬水平[19]。p62/SQSTM1是一種特異性的線粒體吞噬底物,是參與選擇性自噬重要的接頭蛋白,對(duì)于泛素化聚集體的形成及運(yùn)輸至關(guān)重要,能夠與LC3結(jié)合通過自噬選擇性降解,調(diào)節(jié)線粒體自噬活性,從而維持線粒體自噬穩(wěn)態(tài)[20-21]。本研究發(fā)現(xiàn)NAFLD小鼠肝組織線粒體中Drp1表達(dá)增加,芪術(shù)方可抑制Drp1在肝組織線粒體中表達(dá),調(diào)節(jié)自噬相關(guān)蛋白Beclin-1、p62/SQSTM1、LC3,電鏡中也觀察到模型組中線粒體數(shù)量減少,線粒體損傷明顯,可見自噬溶酶體;芪術(shù)方中、高劑量組可見自噬小體,線粒體嵴較為明顯,線粒體損傷緩解。因此,芪術(shù)方治療NAFLD的作用機(jī)制可能與調(diào)控Drp1介導(dǎo)的肝臟線粒體自噬相關(guān)。
綜上所述,芪術(shù)方能夠減輕NAFLD小鼠肝損傷,其機(jī)制與調(diào)控Drp1介導(dǎo)的肝臟線粒體自噬及減輕肝臟炎癥有關(guān)。然而,NAFLD引發(fā)肝臟線粒體自噬,以及進(jìn)一步導(dǎo)致肝損傷的機(jī)制尚未完全了解,還有待進(jìn)一步闡述。
倫理學(xué)聲明:本研究方案于2023年3月29日經(jīng)由上海中醫(yī)藥大學(xué)實(shí)驗(yàn)動(dòng)物倫理委員會(huì)審批,批號(hào):PZSHUTCM2304110001,符合實(shí)驗(yàn)室動(dòng)物管理與使用準(zhǔn)則。
利益沖突聲明:本文不存在任何利益沖突。
作者貢獻(xiàn)聲明:陳佳豪負(fù)責(zé)動(dòng)物相關(guān)實(shí)驗(yàn),數(shù)據(jù)統(tǒng)計(jì)及文章初稿;周振華負(fù)責(zé)擬定寫作思路,指導(dǎo)撰寫文章并最后定稿。
參考文獻(xiàn):
[1]QUEK J,CHAN KE,WONG ZY,et al.Global prevalence of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in the overweight and obese population:A systematic review and meta-analysis[J].Lancet Gastroenterol Hepatol,2023,8(1):20-30.DOI:10.1016/S2468-1253(22)00317-X.
[2]WONG VWS,EKSTEDT M,WONG GLH,et al.Changing epidemiol?ogy,global trends and implications for outcomes of NAFLD[J].J Hepatol,2023,79(3):842-852.DOI:10.1016/j.jhep.2023.04.036.
[3]CHEN JH,ZHOU ZH.Research progress of abnormal lipid metabo?lism and mitochondrial dysfunction in the pathogenesis and disease process of NAFLD[J].Chin Hepatol,2023,28(11):1372-1375.DOI:10.3969/j.issn.1008-1704.2023.11.027.
陳佳豪,周振華.肝細(xì)胞脂質(zhì)代謝異常與線粒體功能障礙在NAFLD發(fā)病和疾病進(jìn)程中的研究進(jìn)展[J].肝臟,2023,28(11):1372-1375.DOI:10.3969/j.issn.1008-1704.2023.11.027.
[4]REN QN,SUN QM,F(xiàn)U JF.Dysfunction of autophagy in high-fat diet-induced non-alcoholic fatty liver disease[J].Autophagy,2024,20(2):221-241.DOI:10.1080/15548627.2023.2254191.
[5]XIN YJ,CHEN YY,YANG HL,et al.Effect of Xuanfuhua Decoction on a mouse model of nonalcoholic steatohepatitis induced by high-fat,high-fructose,and high-cholesterol diet[J].J Clin Hepatol,2023,39(6):1340-1350.DOI:10.3969/j.issn.1001-5256.2023.06.014.
辛一敬,陳逸云,楊海琳,等.旋覆花湯對(duì)高脂高果糖高膽固醇飲食誘導(dǎo)非酒精性脂肪性肝炎小鼠模型的影響[J].臨床肝膽病雜志,2023,39(6):1340-1350.DOI:10.3969/j.issn.1001-5256.2023.06.014.
[6]ZHANG QY,ZHOU ZH.Mechanism of non-alcoholic steatohepatitis improved by Qizhu prescription based on AMPK signaling pathway[J].Chin J Exp Tradit Med Formulae,2024,30(8):49-56.DOI:10.13422/j.cnki.syfjx.20232237.
張秋怡,周振華.基于AMPK信號(hào)通路探討芪術(shù)方改善非酒精性脂肪性肝炎的機(jī)制[J].中國(guó)實(shí)驗(yàn)方劑學(xué)雜志,2024,30(8):49-56.DOI:10.13422/j.cnki.syfjx.20232237.
[7]FAKHOURY-SAYEGH N,TRAK-SMAYRA V,SAYEGH R,et al.Fruc?tose threshold for inducing organ damage in a rat model of nonalco?holic fatty liver disease[J].Nutr Res,2019,62:101-112.DOI:10.1016/j.nutres.2018.11.003.
[8]CHEN Z,TIAN RF,SHE ZG,et al.Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease[J].Free Radic Biol Med,2020,152:116-141.DOI:10.1016/j.freeradbiomed.2020.02.025.
[9]SCHUSTER S,CABRERA D,ARRESE M,et al.Triggering and reso?lution of inflammation in NASH[J].Nat Rev Gastroenterol Hepatol,2018,15(6):349-364.DOI:10.1038/s41575-018-0009-6.
[10]ZHANG DW,ZHAO HY,LI QS,et al.Effect of AstragalosideIV and ginsenoside Rg1 on autophagy of myocardial tissue injury induced by ischemia-reperfusion injury in hyperlipidemic mice[J].Chin Arch Tradit Chin Med,2020,38(3):60-64.DOI:10.13193/j.issn.1673-7717.2020.03.016.
張東偉,趙宏月,李全生,等.黃芪甲苷及人參皂苷Rg1對(duì)高脂大鼠心肌缺血再灌注損傷后心肌線粒體自噬的影響[J].中華中醫(yī)藥學(xué)刊,2020,38(3):60-64.DOI:10.13193/j.issn.1673-7717.2020.03.016.
[11]SU J,GAO CT,XIE L,et al.Astragaloside II ameliorated podocyte in?jury and mitochondrial dysfunction in streptozotocin-induced diabeticrats[J].Front Pharmacol,2021,12:638422.DOI:10.3389/fphar.2021.638422.
[12]LI SD,CHEN XJ,LIU JK,et al.Signaling pathways involved in the active components of Polygonum cuspidatum in treatment of nonal?coholic fatty liver disease and their interaction[J].J Clin Hepatol,2022,38(4):902-907.DOI:10.3969/j.issn.1001-5256.2022.04.033.
李淑娣,陳欣菊,劉江凱,等.虎杖活性成分治療非酒精性脂肪性肝病的相關(guān)信號(hào)通路及相互作用[J].臨床肝膽病雜志,2022,38(4):902-907.DOI:10.3969/j.issn.1001-5256.2022.04.033.
[13]WANG Y,YANG ZY,LI SQ,et al.Regulatory mechanism of Polygoni?dine on endoplasmic reticulum stress in non?alcoholic fatty hepato?cytes[J].Anatomy Research,2023,45(1):57-62.DOI:10.20021/j.cnki.1671-0770.2023.01.10.
王懿,楊志勇,李書芹,等.虎杖苷對(duì)非酒精性脂肪性肝細(xì)胞內(nèi)質(zhì)網(wǎng)應(yīng)激的調(diào)控機(jī)制[J].解剖學(xué)研究,2023,45(1):57-62.DOI:10.20021/j.cnki.1671-0770.2023.01.10.
[14]ZHANG PF,CHENG XY,SUN HM,et al.Atractyloside protect mice against liver steatosis by activation of autophagy via ANT-AMPK-mTORC1 signaling pathway[J].Front Pharmacol,2021,12:736655.DOI:10.3389/fphar.2021.736655.
[15]UENO T,KOMATSU M.Autophagy in the liver:Functions in health and disease[J].Nat Rev Gastroenterol Hepatol,2017,14(3):170-184.DOI:10.1038/nrgastro.2016.185.
[16]MA XW,MCKEEN T,ZHANG JH,et al.Role and mechanisms of mi?tophagy in liver diseases[J].Cells,2020,9(4):837.DOI:10.3390/cells9040837.
[17]LU YY,LI ZJ,ZHANG SQ,et al.Cellular mitophagy:Mechanism,roles in diseases and small molecule pharmacological regulation[J].Theranostics,2023,13(2):736-766.DOI:10.7150/thno.79876.
[18]LI L,JIA QL,WANG XX,et al.Chaihu Shugan San promotes gastric motility in rats with functional dyspepsia by regulating Drp-1-medi?ated ICC mitophagy[J].Pharm Biol,2023,61(1):249-258.DOI:10.1080/13880209.2023.2166966.
[19]LIU T,YU JN,LIU Y,et al.Effects of serum-free starvation on prolifera?tive capacity of muscle satellite cells and expression of autophagy-re?lated proteins LC3 and Beclin1[J].Chin J Tissue Eng Res,2019,23(11):1657-1661.DOI:10.3969/j.issn.2095-4344.1062.
劉通,于佳妮,劉悅,等.去血清饑餓條件下肌衛(wèi)星細(xì)胞增殖及自噬蛋白LC3、Beclin1的表達(dá)[J].中國(guó)組織工程研究,2019,23(11):1657-1661.DOI:10.3969/j.issn.2095-4344.1062.
[20]SUI XY,XU P,DUAN CZ,et al.Advances in molecular function of p62 protein and its role in diseases[J].Chin J Biotechnol,2023,39(4):1374-1389.DOI:10.13345/j.cjb.220681.
隋馨瑩,徐平,段昌柱,等.p62蛋白的分子功能及其在疾病中的研究進(jìn)展[J].生物工程學(xué)報(bào),2023,39(4):1374-1389.DOI:10.13345/j.cjb.220681.
[21]YAO RQ,REN C,XIA ZF,et al.Organelle-specific autophagy in in?flammatory diseases:A potential therapeutic target underlying the quality control of multiple organelles[J].Autophagy,2021,17(2):385-401.DOI:10.1080/15548627.2020.1725377.
收稿日期:2024-05-23;錄用日期:2024-07-11
本文編輯:王瑩
引證本文:CHEN JH, ZHOU ZH. Effect of Qizhu prescription on a mouse model of non-alcoholic fatty liver disease incluced by high-fat, high-fructose, and high-cholesterol diet and its mechanism[J]. J Clin Hepatol, 2024, 40(11): 2205- 2212.
陳佳豪, 周振華 . 芪術(shù)方對(duì)高脂高果糖高膽固醇誘導(dǎo)的非酒精性 脂肪性肝病小鼠模型的影響及其機(jī)制[J]. 臨床肝膽病雜志, 2024, 40(11): 2205-2212.