b>0)上,M(x0,y0)是AB的中點(diǎn),則有x1+x2=2x0①y1+y2=2y0②x21a2+y21b2=1③x22a2+y22b2=1④由③-④得x21-x22a2+y21-y22b2=0,即(x1-x2)(x1+x2)a2+(y1-"/>
  • 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      圓錐曲線的中點(diǎn)弦方程和中點(diǎn)弦長(zhǎng)公式

      2008-12-09 03:32:30關(guān)
      中學(xué)數(shù)學(xué)研究 2008年8期
      關(guān)鍵詞:弦長(zhǎng)端點(diǎn)雙曲線

      關(guān) 忠

      設(shè)A(x1,y1),B(x2,y2)兩點(diǎn)在橢圓x2a2+y2b2=1(a>b>0)上,M(x0,y0)是AB的中點(diǎn),則有x1+x2=2x0 ①

      y1+y2=2y0 ②

      x21a2+y21b2=1 ③

      x22a2+y22b2=1 ④由③-④得

      x21-x22a2+y21-y22b2=0,即(x1-x2)(x1+x2)a2+(y1-y2)(y1+y2)b2=0,①,②代入得x0(x1-x2)a2+y0(y1-y2)b2=0⑤

      即x0a2+y0b2?y1-y2x1-x2=0(x1≠x2) ⑥

      ⑥就是過(guò)AB的中點(diǎn)弦方程.

      再由①、②代入⑤消去x2,y2得x0(x1-x0)a2+y0(y1-y0)b2=0,即弦AB的端點(diǎn)A、B和中點(diǎn)M都滿(mǎn)足直線方程x0(x-x0)a2+y0(y-y0)b2=0.

      同樣的方法可得雙曲線和拋物線弦AB的端點(diǎn)A、B和中點(diǎn)M都滿(mǎn)足的直線方程.

      一般地,設(shè)M(x0,y0)是圓錐曲線的弦AB的中點(diǎn),則橢圓x2a2+y2b2=1(a>b>0)的中點(diǎn)弦方程為x0(x-x0)a2+y0(y-y0)b2=0,化為點(diǎn)斜式就是y-y0=-b2x0a2y0(x-x0)(y0≠0);

      雙曲線x2a2-y2b2=1(a>0,b>0)的中點(diǎn)弦方程為x0(x-x0)a2-y0(y-y0)b2=0,化為點(diǎn)斜式就是y-y0=b2x0a2y0(x-x0)(y0≠0);

      拋物線y2=2px(p>0)的中點(diǎn)弦方程為﹜0(y-y0)=p(x-x0),化為點(diǎn)斜式就是

      y-y0=py0(x-x0)(y0≠0).

      上面中點(diǎn)弦方程記住后可直接使用,也可按下面方式直接得到:把圓錐曲線方程中常數(shù)項(xiàng)換為0,x2,y2分別換為2x0(x-x0),2y0(y-y0);x,y分別換為x-x0,y-y0.

      圓錐曲線中點(diǎn)弦方程在解中心對(duì)稱(chēng),軸對(duì)稱(chēng)以及中點(diǎn)問(wèn)題中有奇效.下面用圓錐曲線中點(diǎn)弦方程推導(dǎo)用弦的中點(diǎn)坐標(biāo)表示的弦長(zhǎng)公式(本文僅給出橢圓中點(diǎn)弦長(zhǎng)公式的推導(dǎo),雙曲線和拋物線讀者可仿此相應(yīng)給出).

      注:“本文中所涉及到的圖表、注解、公式等內(nèi)容請(qǐng)以PDF格式閱讀原文?!?/p>

      猜你喜歡
      弦長(zhǎng)端點(diǎn)雙曲線
      非特征端點(diǎn)條件下PM函數(shù)的迭代根
      淺談圓錐曲線三類(lèi)弦長(zhǎng)問(wèn)題
      不等式求解過(guò)程中端點(diǎn)的確定
      弦長(zhǎng)積分的極限性質(zhì)與不等式
      弦長(zhǎng)積分的極限性質(zhì)與不等式
      參數(shù)型Marcinkiewicz積分算子及其交換子的加權(quán)端點(diǎn)估計(jì)
      把握準(zhǔn)考綱,吃透雙曲線
      一道雙曲線題的十變式
      基丁能雖匹配延拓法LMD端點(diǎn)效應(yīng)處理
      雙曲線的若干優(yōu)美性質(zhì)及其應(yīng)用
      澄城县| 咸阳市| 若羌县| 巴楚县| 山西省| 响水县| 万盛区| 红安县| 澄迈县| 昌江| 股票| 社会| 禹州市| 婺源县| 平乡县| 新津县| 满城县| 商南县| 盐边县| 监利县| 麟游县| 石柱| 新丰县| 沛县| 塔城市| 萨迦县| 吴桥县| 满洲里市| 西林县| 积石山| 林周县| 融水| 张北县| 阿拉善左旗| 都兰县| 迁安市| 高尔夫| 昆明市| 牡丹江市| 靖江市| 深水埗区|