王建東,胡秋菊,朱飛鵬,常雙會,張 帆,周曉軍,盧光明*
干細(xì)胞、祖細(xì)胞等多種細(xì)胞治療在臨床的應(yīng)用越來越廣泛[1-6]。無創(chuàng)性活體示蹤接種的治療細(xì)胞,對接種細(xì)胞的存活、分化以及在損傷的組織器官定位進(jìn)行長期監(jiān)控,成為治療成功的關(guān)鍵之一。磁共振成像技術(shù)(MRI)具有高度時間和空間分辨力,同時可以提供機體解剖和功能方面的信息,目前已經(jīng)成為活體示蹤細(xì)胞的重要手段。超順磁性納米鐵顆粒(superparamagnetic iron oxide, SPIO)標(biāo)記是磁共振活體示蹤細(xì)胞的主要方法,被廣泛應(yīng)用于基礎(chǔ)科研和臨床前研究[7-12]。但SPIO標(biāo)記的細(xì)胞隨著細(xì)胞分裂和鐵顆粒的代謝降解,磁共振信號逐漸減弱,直至消失,無法長期示蹤治療細(xì)胞。鐵蛋白廣泛存在于生物細(xì)胞內(nèi),參與機體鐵代謝,具有儲存鐵的功能。近年來,有關(guān)鐵蛋白基因作為磁共振報告基因的研究備受關(guān)注[13-16]。其原理是:人工將鐵蛋白基因?qū)爰?xì)胞使細(xì)胞高表達(dá)鐵蛋白,高表達(dá)的鐵蛋白將機體細(xì)胞外內(nèi)源性鐵捕獲,在細(xì)胞內(nèi)形成具有超順磁性的結(jié)晶鐵,在磁共振下產(chǎn)生對比。但是,鐵蛋白產(chǎn)生的磁共振信號非常弱,很難應(yīng)用于臨床。本研究探討鐵蛋白與SPIO在細(xì)胞內(nèi)的相互作用,以及在磁共振細(xì)胞活體示蹤中的應(yīng)用。
鼠膠質(zhì)瘤C6細(xì)胞常規(guī)培養(yǎng)于F12 Kaighn's培養(yǎng)基中(Gibico, Invitrogen,美國),培養(yǎng)基添加1 mM L-谷氨酰胺,15%馬血清(Hyclone, Thermo Scientific,美國),2.5%胎牛血清(Gibico), 100 U/ml青霉素和100 mg/ml鏈霉素。細(xì)胞培養(yǎng)條件為37℃,95%空氣,5% CO2。
應(yīng)用Trizol試劑(Invitrogen,美國)從小鼠肌肉組織提取總RNA。在Oligo(dT)引物作用下,利用逆轉(zhuǎn)錄試劑(Promega,美國)將mRNA逆轉(zhuǎn)成cDNA。根據(jù)鼠鐵蛋白重鏈基因序列(GenBank,序列號NM-010239)設(shè)計含有NotI 和BamHI限制性內(nèi)切酶位點的聚合酶鏈?zhǔn)椒磻?yīng)(PCR)引物,PCR擴增出鼠鐵蛋白重鏈全基因片段(Fth)。應(yīng)用NotI和BamHI(大連寶生物公司)對全基因片段和pcDNA3.1(Invitrogen)載體DNA進(jìn)行消化,通過QIAquck PCR純化試劑盒(QIAGEN,德國)對消化產(chǎn)物進(jìn)行純化。經(jīng)T4連接酶(大連寶生物公司)將鐵蛋白全基因插入載體形成鐵蛋白重鏈全基因質(zhì)粒(Fth-pcDNA3.1)。
轉(zhuǎn)染前一天,將105C6細(xì)胞接種于500 μl不含抗生素的F12 Kaighn's培養(yǎng)基中,培養(yǎng)于24孔塑料培養(yǎng)板使細(xì)胞達(dá)到90%融合度。鐵蛋白重鏈質(zhì)粒FthpcDNA3.1與Lipofectamine 2000(Invitrogen)混合后,在室溫孵育20 min加入細(xì)胞培養(yǎng)孔,輕輕混勻培養(yǎng)過夜。轉(zhuǎn)染24 h后消化細(xì)胞進(jìn)行1:10傳代,加入G418(Gibico)進(jìn)行篩選,G418終濃度為500 μg/ml。
將轉(zhuǎn)染鐵蛋白基因質(zhì)粒的C6細(xì)胞和對照C6細(xì)胞培養(yǎng)黏附于多聚賴氨酸包被的玻片上。用10%中性福爾馬林固定細(xì)胞30 min,PBS緩沖液清洗。特異性兔抗鼠鐵蛋白重鏈的多克隆抗體(Santa Cruz,美國)1:100稀釋后加于細(xì)胞上,4℃條件下孵浴過夜。PBS緩沖液清洗,加第二抗體(Dako,丹麥)后,室溫下孵浴30 min。用二氨基聯(lián)苯顯色,蘇木精復(fù)染細(xì)胞核。
培養(yǎng)細(xì)胞和組織細(xì)胞中鐵原子濃度利用電感耦合等離子波譜儀(TJA IRIS Advantage/1000 Radial ICAP,Thermo Scientific,美國)分析。培養(yǎng)細(xì)胞用0.05%胰蛋白酶-EDTA(Gibico)消化后,加入PBS緩沖液清洗3次。離心后收集細(xì)胞。培養(yǎng)的細(xì)胞和組織中加入70%濃硝酸,90℃消化1 h,用純水補足體積至5 ml。同時測定純水空白管和含鐵原子0.1、1、10和100 ppm的標(biāo)準(zhǔn)管,鐵原子濃度通過標(biāo)準(zhǔn)曲線計算出。
轉(zhuǎn)染鐵蛋白重鏈質(zhì)粒的C6細(xì)胞和對照C6細(xì)胞兩組都標(biāo)記SPIO。培養(yǎng)細(xì)胞中加入SPIO(Ocean Nanotech,美國)使其終濃度為60 μg/ml,輕輕混勻后置37℃的CO2培養(yǎng)箱中培養(yǎng)過夜。培養(yǎng)細(xì)胞用PBS緩沖液清洗3次,胰蛋白酶消化后,PBS緩沖液清洗,血球計數(shù)板計算細(xì)胞數(shù)目。將106細(xì)胞懸浮在30 μl PBS緩沖液中,置冰上備用。6~10周的裸鼠經(jīng)異氟烷吸入麻醉后,在兩后腿皮下分別接種細(xì)胞。
在細(xì)胞接種后不同時間點,進(jìn)行GE 7 T磁共振掃描。掃描序列為快速旋轉(zhuǎn)回波(fast spin echo, FSE)T2加權(quán),具體參數(shù)為:TR=4000 ms,TE=40 ms,F(xiàn)OV=40 mm,Echo Train Length=8 ms。
使用SPSS 10.5軟件對數(shù)據(jù)進(jìn)行統(tǒng)計學(xué)處理,結(jié)果以均值±標(biāo)準(zhǔn)差表示,不同組之間的磁共振信號強度,細(xì)胞、組織鐵原子濃度之間的差異通過t檢驗分析。P<0.05認(rèn)為有統(tǒng)計學(xué)意義。
鼠鐵蛋白重鏈基因質(zhì)粒轉(zhuǎn)染C6細(xì)胞,通過G418進(jìn)行篩選。應(yīng)用特異性抗小鼠鐵蛋白重鏈抗體進(jìn)行細(xì)胞免疫化學(xué)染色,證實轉(zhuǎn)染鐵蛋白基因的C6細(xì)胞高表達(dá)鐵蛋白重鏈(圖1)。
轉(zhuǎn)染鐵蛋白質(zhì)粒的C6細(xì)胞和對照C6細(xì)胞,使用常規(guī)F12 Kaighn's培養(yǎng)基培養(yǎng),細(xì)胞的鐵原子來源于15%的馬血清和2.5%的胎牛血清。這兩組細(xì)胞內(nèi)鐵原子的含量,通過ICP檢測發(fā)現(xiàn)雖然轉(zhuǎn)染鐵蛋白基因的細(xì)胞鐵原子濃度略高,但兩組之間沒有明顯差異(n=3,P=0.068;圖2A)。
當(dāng)細(xì)胞培養(yǎng)基中加入0.2 mM 枸櫞酸銨鐵(ferric ammonium citrate, FAC)作為細(xì)胞外源性鐵時,轉(zhuǎn)染鐵蛋白基因的C6細(xì)胞內(nèi)鐵原子濃度明顯高于對照組C6細(xì)胞(n=3,P=0.001;圖2A)。在培養(yǎng)基中加入不同濃度的FAC時(0.25、0.5、1.0和1.5 mM),轉(zhuǎn)染鐵蛋白基因的C6細(xì)胞內(nèi)鐵原子濃度與對照C6細(xì)胞相比,都明顯升高(n=3,P=0.004、0.021、0.06和0.012;圖2B)。
圖1 細(xì)胞免疫組織化學(xué)染色和普魯士藍(lán)鐵染色。a:對照C6細(xì)胞,b:轉(zhuǎn)染鐵蛋白重鏈基因C6細(xì)胞。利用特異性鼠鐵蛋白重鏈多克隆抗體對細(xì)胞進(jìn)行免疫組織化學(xué)染色,轉(zhuǎn)染鐵蛋白基因的C6細(xì)胞胞漿呈現(xiàn)棕黃色,為強陽性。對找組細(xì)胞呈淡黃色,為弱陽性。c:對照C6細(xì)胞標(biāo)記SPIO。d:轉(zhuǎn)染鐵蛋白基因的C6細(xì)胞標(biāo)記SPIO。普魯士藍(lán)染色顯示在兩組細(xì)胞內(nèi)都有內(nèi)吞的鐵顆粒,細(xì)胞內(nèi)的鐵顆粒在兩組細(xì)胞間沒有明顯差異Fig 1 . Immunohistochemical stain and Prussian blue iron stain in cells. Immunohistochemical stain was conducted in ferritin transfected and parental C6 cells with a specif i c polyclonal antibody against murine H-chain of ferritin. It showed that a week positive stain (brown particles)in cytoplasm of parental C6 cells (a)and strong positive stain in ferritin transfected C6 cells (b).There was no obvious difference in cellular SPIO label between parental C6 cells (c)and ferritin transfected C6 cells (d)after Prussian blue iron stain.
圖2 細(xì)胞和腫瘤組織內(nèi)鐵濃度測定。a: C6和C6-Fth細(xì)胞在普通培養(yǎng)基和加入Fe離子培養(yǎng)條件下,細(xì)胞內(nèi)鐵濃度測定。b: C6和C6-Fth 加入不同濃度Fe離子后培養(yǎng),細(xì)胞內(nèi)鐵濃度測定。相同顏色表示同樣濃度。c: C6和C6-Fth細(xì)胞標(biāo)記SPIO后連續(xù)6次傳代,測定細(xì)胞鐵濃度。d: C6和C6-Fth細(xì)胞以及標(biāo)記SPIO后皮下接種裸鼠左右后腿,13天后取組織進(jìn)行鐵濃度測定Fig 2 . Intracellular iron concentration in C6 cells and xenografts measured by using ICP. (a)There was a minimal increasing of intracellular iron concentration in ferritin transfected C6 cells compared to parental C6 cells (n=3, P=0.684); the ferritin transfected C6 cells accumulated signif i cantly more iron compared to parental C6 cells after incubated with Fe supplement(n=3, P=0.015). (b)Incubating cells with Fe supplement at different concentrations, transfected C6 cells substantially accumulated more iron than parental C6 cells (n=3, P=0.004, 0.021, 0.06, and 0.012, respectively). (c)The transfected and parental C6 cells both labeled with SPIO were passaged successively. C6 cells overexprssed ferritin accumulated signif i cantly more iron than C6 control cells from second passage (n=3, P=0.03, 0.02, 0.004, 0.002, and 0.002 respectively). There was no signif i cant difference at fi rst passage (n=3, P=0.383). (d)No signif i cant difference of the iron concentration was detected between xenografts derived from transfected C6 and parental C6 cells (n=4, P=0.129), while significant difference was showed in xenografts both labeled with SPIO (n=5, P=0.034).
轉(zhuǎn)染鐵蛋白基因的C6細(xì)胞和對照C6細(xì)胞兩者標(biāo)記SPIO后,進(jìn)行連續(xù)傳代,并對每次傳代細(xì)胞進(jìn)行ICP測定細(xì)胞內(nèi)鐵原子濃度。在第一代時,兩組細(xì)胞內(nèi)鐵原子濃度沒有明顯差異(n=3,P=0.383)。但從第二代開始,轉(zhuǎn)染鐵蛋白基因并標(biāo)記SPIO的C6細(xì)胞,其鐵原子濃度比沒有轉(zhuǎn)染鐵蛋白基因但標(biāo)記SPIO的C6細(xì)胞的鐵原子濃度明顯增加(n=3,P=0.03、0.02、0.004、0.002和0.002;圖2C)。
圖3 C6SPIO和C6-FthSPIO細(xì)胞接種后形成的腫瘤組織病理學(xué)檢查和普魯氏鐵染色。 a:C6-Fth 細(xì)胞接種后組織學(xué)檢查,HE染色顯示腫瘤細(xì)胞。b: C6 細(xì)胞接種后組織學(xué)檢查,HE染色顯示腫瘤細(xì)胞。c:C6-Fth SPIO接種后組織鐵染色,藍(lán)色顆粒較多。d:C6-Fth SPIO接種后組織鐵染色,藍(lán)色顆粒較少。Fig 3 . Xenografts were histologically examined by HE stain (a. ferritin transfected C6 cells with SPIO labeling; b. parental C6 cells with SPIO labeling). Prussian blue iron stain shows that overexpressed ferritin proteins in C6 cells labeled with SPIO accumulate more iron (c)compared to parental C6 cells labeled with SPIO (d).
轉(zhuǎn)染鐵蛋白基因的C6細(xì)胞和對照C6細(xì)胞,標(biāo)記SPIO或者不標(biāo)記SPIO,分別皮下接種兩組裸鼠后腿兩側(cè)。為了探索高表達(dá)的鐵蛋白在活體內(nèi)對內(nèi)源性鐵和從SPIO降解出鐵原子的捕獲作用,在動物接種細(xì)胞后13天處死裸鼠,收集腫瘤組織,稱重后進(jìn)行ICP組織細(xì)胞鐵原子含量分析。轉(zhuǎn)染鐵蛋白基因但沒有進(jìn)行SPIO標(biāo)記的C6細(xì)胞來源的腫瘤組織,其細(xì)胞內(nèi)鐵原子含量比與對照C6細(xì)胞來源的腫瘤組織相比,雖然濃度略有增加,但沒有明顯差異(n=4,P=0.129;圖2D)。轉(zhuǎn)染鐵蛋白基因同時標(biāo)記SPIO的C6細(xì)胞來源的腫瘤組織,其細(xì)胞內(nèi)鐵原子的濃度,與標(biāo)記SPIO的對照C6細(xì)胞來源的腫瘤組織相比,明顯升高(n=5,P=0.034;圖2D)。腫瘤組織同時進(jìn)行病理學(xué)檢查和普魯士藍(lán)鐵染色。轉(zhuǎn)染鐵蛋白基因同時標(biāo)記SPIO的C6細(xì)胞來源的腫瘤組織中鐵顆粒比對照C6細(xì)胞標(biāo)記SPIO來源的腫瘤多(圖3)。
利用GE 7T小動物磁共振儀,采用T2加權(quán)序列在腫瘤接種后的第2、6和13天,對裸鼠進(jìn)行掃描。分析磁共振信號強度,比較實驗組和對照組的差異。轉(zhuǎn)染鐵蛋白基因而沒有標(biāo)記SPIO的C6細(xì)胞來源的腫瘤,與對照C6細(xì)胞來源的腫瘤相比,不同時間點磁共振信號強度差異不明顯(n=4,第2天:P=0.379;第6天:P=0.105;第13天:P=0.056;圖4)。而轉(zhuǎn)染鐵蛋白基因同時標(biāo)記SPIO的C6細(xì)胞來源的腫瘤,與對照C6標(biāo)記SPIO來源的腫瘤相比,不同時間點的磁共振信號強度存在明顯差異(n=5,第2天:P=0.012;第6天:P=0.003;第13天:P=0.021;圖4)。
由于磁共振具有較高的時間和空間分辨力、無創(chuàng)傷性、可以提供解剖結(jié)構(gòu)信息等優(yōu)點,它已經(jīng)被用于干細(xì)胞研究的成像[7,10-12,17]。目前磁共振活體示蹤主要是通過細(xì)胞內(nèi)吞超順磁性納米鐵顆粒(SPIO),利用T2或者T2*序列進(jìn)行磁共振掃描時產(chǎn)生對比度。SPIO標(biāo)記細(xì)胞后,隨著細(xì)胞分裂,細(xì)胞內(nèi)的濃度會逐漸降低。其原理:一是由于SPIO顆粒本身隨著細(xì)胞分裂而分裂,物理性稀釋;二是SPIO顆粒與溶酶體等酸性物質(zhì)結(jié)合后,發(fā)生化學(xué)降解,釋放出游離鐵原子。在分裂較快的細(xì)胞,8次傳代后,SPIO顆粒就在細(xì)胞內(nèi)消失了。分裂較慢或不分裂的細(xì)胞,在細(xì)胞內(nèi)也只能保留2個月左右。所以,用納米鐵顆粒進(jìn)行細(xì)胞活體示蹤的最大缺陷是無法長期跟蹤接種的治療細(xì)胞。鐵蛋白作為細(xì)胞本身的一種物質(zhì),在機體鐵代謝中主要作用為儲存鐵原子,是一種內(nèi)源性磁共振報告基因[14-16,18-20]。鐵蛋白攝取內(nèi)源性鐵形成超順磁性納米鐵產(chǎn)生磁共振信號,由于機體內(nèi)源性鐵濃度較低,所以依靠鐵蛋白形成的磁共振信號較弱。本研究中,我們首先人工導(dǎo)入鐵蛋白重鏈基因,使C6細(xì)胞高表達(dá)鐵蛋白,再用SPIO標(biāo)記該細(xì)胞,觀察高表達(dá)的鐵蛋白是否能夠?qū)⒓?xì)胞內(nèi)降解的SPIO鐵原子作為額外鐵源進(jìn)行攝取,從而增強磁共振信號。
高表達(dá)鐵蛋白重鏈基因的C6細(xì)胞在體外培養(yǎng)時,如果使用常規(guī)培養(yǎng)基,以胎牛血清和馬血清中的鐵為外源性鐵源,培養(yǎng)一定時間后,細(xì)胞內(nèi)的鐵濃度和對照C6細(xì)胞相比沒有明顯增加。但如果在培養(yǎng)基中加入枸櫞酸銨鐵作為鐵源,轉(zhuǎn)染基因的C6細(xì)胞比對照組細(xì)胞攝取的鐵原子明顯增加,而且隨著外源性鐵濃度增加,細(xì)胞內(nèi)的鐵濃度也增加。這部分體外試驗結(jié)果證實,我們構(gòu)建的鐵蛋白重鏈具有攝取和儲存鐵原子的作用,但如果細(xì)胞外鐵濃度低,其攝取儲存鐵的作用無法充分顯示。轉(zhuǎn)染鐵蛋白重鏈基因的C6細(xì)胞和對照C6細(xì)胞標(biāo)記SPIO后進(jìn)行連續(xù)傳代,在第一次傳代,兩者的子細(xì)胞內(nèi)鐵濃度沒有差異,這可能是由于兩組細(xì)胞內(nèi)的鐵濃度非常高,鐵蛋白攝取的鐵與細(xì)胞內(nèi)吞的鐵濃度相差太大,無法顯示。從第二代子細(xì)胞開始,兩組細(xì)胞內(nèi)鐵濃度開始產(chǎn)生差異,說明隨著細(xì)胞分裂,細(xì)胞內(nèi)的SPIO迅速被稀釋和降解,同時證實在培養(yǎng)條件下,鐵蛋白具有回吸收和利用SPIO降解的鐵功能。
圖4 細(xì)胞接種不同時間點進(jìn)行磁共振掃描。a:C6細(xì)胞和轉(zhuǎn)染鐵蛋白重鏈基因的C6細(xì)胞皮下接種裸鼠左右后腿后不同時間點磁共振掃描的T2*信號強度。左側(cè)為C6-Fth細(xì)胞,右側(cè)為C6細(xì)胞。b:與a組對應(yīng)的磁共振圖像。c: C6細(xì)胞和轉(zhuǎn)染鐵蛋白重鏈基因的C6細(xì)胞標(biāo)記SPIO后。皮下接種裸鼠左右后腿后不同時間點磁共振掃描的T2*信號強度。左側(cè)為C6-Fth細(xì)胞SPIO,右側(cè)為C6細(xì)胞SPIO。d: 與c組對應(yīng)的磁共振圖像。Fig 4 . In vivo MRI. C6 cells overexpressing ferritin protein showed minimal reducing signal intensity compared to parental C6 cells at different time points (Figure a; n=4; P=0.379, 0.105 and 0.056 on day-2, 6 and 13, respectively). Overexpressed ferritin proteins in C6 cells labeled with SPIO signif i cantly reduced signal intensity in T2-weighted images for MRI (Figure c; P=0.012, 0.003 and 0.021 on day-2, 6 and 13, respectively). Data are presented as mean ± s.d. Figure b and d shows representative T2-weighted fast spin echo images of xenografts on day2, 6, and 13.
體內(nèi)實驗結(jié)果表明,當(dāng)高表達(dá)鐵蛋白重鏈的C6細(xì)胞接種后13天,其腫瘤細(xì)胞內(nèi)的鐵濃度與沒有轉(zhuǎn)染鐵蛋白基因的C6相比,雖然略有增加,但不明顯。該現(xiàn)象可以解釋為:鐵蛋白重鏈可以攝取一定的內(nèi)源性鐵,但由于這種鐵濃度非常低,所以鐵蛋白無法在細(xì)胞內(nèi)通過攝取內(nèi)源性鐵而存儲較多的鐵。當(dāng)轉(zhuǎn)染鐵蛋白重鏈基因同時標(biāo)記SPIO后,C6細(xì)胞接種后13天形成的腫瘤細(xì)胞,其細(xì)胞內(nèi)鐵濃度比僅標(biāo)記SPIO的C6細(xì)胞明顯增加。我們的研究結(jié)果證實,高表達(dá)的鐵蛋白可以將SPIO降解的鐵作為額外的鐵源攝取和儲存在細(xì)胞內(nèi)。細(xì)胞接種后不同時間點的磁共振掃描信號強度,與細(xì)胞內(nèi)鐵原子濃度結(jié)果相符。腫瘤細(xì)胞組織普魯士藍(lán)鐵染色,進(jìn)一步證實了這一結(jié)果。
本研究證實,鐵蛋白可以與細(xì)胞標(biāo)記的SPIO作用,延長SPIO活體示蹤細(xì)胞的時間;同時降解的SPIO可以加強鐵蛋白報告基因的信號強度。兩者聯(lián)合使用,可以增強對標(biāo)記細(xì)胞的活體示蹤時間和磁共振信號強度。本研究結(jié)果對于進(jìn)行臨床細(xì)胞治療和基因治療,對治療細(xì)胞的定位、存活和生長情況實時監(jiān)測具有一定的應(yīng)用價值。本研究的局限性在于實驗鼠樣本較少,在待擴大樣本進(jìn)一步證實的該結(jié)論的可靠性。
[1]Savitz SI. Introduction to cellular therapy: the next frontier for stroke therapeutics. Stroke, 2009, 40(3 Suppl): S141-S142.
[2]Mansour S, Roy DC, Lemieux B, et al. Stem cell therapy for the broken heart: mini-organ transplantation.Transplant Proc, 2009, 41(8): 3353-3357.
[3]Kolli S, Ahmad S, Lako M, et al. Successful clinical implementation of corneal epithelial stem cell therapy for treatment of unilateral limbal stem cell deficiency. Stem Cells, 2010, 28(3): 597-610.
[4]Kitamura H, Okudela K, Yazawa T, et al. Cancer stem cell:implications in cancer biology and therapy with special reference to lung cancer. Lung Cancer, 2009, 66(3): 275-281.
[5]Gonez LJ, Knight KR. Cell therapy for diabetes: Stem cells, progenitors or beta-cell replication? Mol Cell Endocrinol, 2010, 323(1):55-61. [Epub 2009 Dec 21].
[6]Cartier N, Hacein-Bey-Abina S, Bartholomae CC, et al.Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science, 2009,326(5954): 818-823.
[7]Yamada M, Gurney PT, Chung J, et al. Manganese-guided cellular MRI of human embryonic stem cell and human bone marrow stromal cell viability. Magn Reson Med,2009, 62(4): 1047-1054.
[8]Modo M, Beech JS, Meade TJ, et al. A chronic 1 year assessment of MRI contrast agent-labelled neural stem cell transplants in stroke. Neuroimage, 2009, 47(Suppl 2):T133-T142.
[9]Liu J, Cheng EC, Long Jr RC, et al. Noninvasive Monitoring of Embryonic Stem Cells in vivo with MRI Transgene Reporter. Tissue Eng Part C Methods, 2009,15(4): 739-747.
[10]Chapon C, Jackson JS, Aboagye EO, et al. An in vivo multimodal imaging study using MRI and PET of stem cell transplantation after myocardial infarction in rats.Mol Imaging Biol, 2009, 11(1): 31-38.
[11]Wu X, Hu J, Zhou L, et al. In vivo tracking of superparamagnetic iron oxide nanoparticle-labeled mesenchymal stem cell tropism to malignant gliomas using magnetic resonance imaging. Laboratory investigation. J Neurosurg, 2008, 108(2): 320-329.
[12]Kraitchman DL, Gilson WD, Lorenz CH. Stem cell therapy: MRI guidance and monitoring. J Magn Reson Imaging, 2008, 27(2): 299-310.
[13]Cohen B, Ziv K, Plaks V, et al. MRI detection of transcriptional regulation of gene expression in transgenic mice. Nat Med, 2007, 13(4): 498-503.
[14]Deans AE, Wadghiri YZ, Bernas LM, et al. Cellular MRI contrast via coexpression of transferrin receptor and ferritin. Magn Reson Med, 2006, 56(1): 51-59.
[15]Genove G, DeMarco U, Xu H, et al. A new transgene reporter for in vivo magnetic resonance imaging. Nat Med, 2005, 11(4): 450-454.
[16]Cohen B, Dafni H, Meir G, et al. Ferritin as an endogenous MRI reporter for noninvasive imaging of gene expression in C6 glioma tumors. Neoplasia, 2005,7(2): 109-117.
[17]Brekke C, Williams SC, Price J, et al. Cellular multiparametric MRI of neural stem cell therapy in a rat glioma model. Neuroimage, 2007, 37(3): 769-782.
[18]Pawelczyk E, Arbab AS, Pandit S, et al. Expression of transferrin receptor and ferritin following ferumoxidesprotamine sulfate labeling of cells: implications for cellular magnetic resonance imaging. NMR Biomed,2006, 19(5): 581-592.
[19]Arosio P, Levi S. Ferritin, iron homeostasis, and oxidative damage. Free Radic Biol Med, 2002, 33(4): 457-463.
[20]Aisen P, Enns C, Wessling-Resnick M. Chemistry and biology of eukaryotic iron metabolism. Int J Biochem Cell Biol, 2001, 33(10): 940-959.