郭占昌,張 丹,郜江瑞,翟澤輝
雙共振II類倍頻過程中自發(fā)對稱破缺的實(shí)驗(yàn)研究
郭占昌,張 丹,郜江瑞,翟澤輝*
(山西大學(xué)物理電子工程學(xué)院山西太原030006)
對雙共振II類倍頻過程中泵浦光的兩個偏振模之間的自發(fā)對稱破缺現(xiàn)象進(jìn)行了實(shí)驗(yàn)研究,即當(dāng)泵浦功率達(dá)到一定強(qiáng)度時,輸出的兩個基頻光場不再平衡.此現(xiàn)象表明系統(tǒng)的非線性相互作用強(qiáng)度達(dá)到了光學(xué)參量振蕩器(OPO)的閾值,為進(jìn)一步的實(shí)驗(yàn)奠定了基礎(chǔ).
光學(xué)參量振蕩器;II類倍頻;自發(fā)對稱破缺;閾值
光學(xué)參量下轉(zhuǎn)換過程和倍頻過程是量子光學(xué)和非線性光學(xué)的基本元素.它們在連續(xù)變量壓縮態(tài)與糾纏態(tài)的產(chǎn)生[1-5],光學(xué)頻率轉(zhuǎn)換[6,7]等方面具有重要的意義.另一方面,它豐富的動態(tài)特性也對各種光學(xué)現(xiàn)象的研究提供了依據(jù),特別是II類相位匹配非線性過程,基頻光的矢量疊加使其產(chǎn)生的現(xiàn)象更加豐富多彩[8-15]. II類相位匹配倍頻過程是由一對偏振互相垂直、頻率同為ω的光束泵浦非線性晶體產(chǎn)生頻率2ω光束的過程,可以看作是由I類倍頻過程和I類光學(xué)下轉(zhuǎn)換過程在同一塊非線性晶體內(nèi)同時產(chǎn)生的[9].很多文獻(xiàn)對這一系統(tǒng)的輸出光場的壓縮與糾纏特性,穩(wěn)態(tài)特性以及在全光觸發(fā)操作、全光圖像處理等方面可能的應(yīng)用進(jìn)行了大量的理論與實(shí)驗(yàn)研究.它的一個重要的動態(tài)特征是當(dāng)泵浦功率達(dá)到一定強(qiáng)度時基頻光會發(fā)生叉式分岔,即輸出的兩個基頻光場不再平衡.這類似于用力從一根木棍的兩端擠壓木棍,當(dāng)力增大到一定程度時木棍將偏向一邊,也就是說系統(tǒng)發(fā)生了自發(fā)對稱破缺現(xiàn)象[10].自發(fā)對稱破缺現(xiàn)象可用于全光信息數(shù)字處理中的觸發(fā)操作和比特存儲.在橫模簡并光學(xué)腔中也可用于光學(xué)圖像的邊界識別和反襯度增強(qiáng)[11-13].這一現(xiàn)象已由C.Fabre小組[14,15]在三共振II類倍頻系統(tǒng)中觀察到.本文采用僅有基頻光共振而無倍頻光共振的雙共振光學(xué)腔觀測了II類倍頻過程的自發(fā)對稱破缺現(xiàn)象.
雙共振II類倍頻過程駐波腔模型如圖1(P225)所示,頻率為ω,偏振正交的兩個基頻光場^a1,^a2泵浦一個單端駐波腔,腔內(nèi)放置有一塊II類相位匹配非線性晶體(如KTP晶體)的,通過腔內(nèi)的非線性相互作用產(chǎn)生倍頻光^a0.考慮失諧的情況下,在海森堡表象中可以得到三個內(nèi)腔模的運(yùn)動方程:
圖1 II類倍頻過程駐波腔模Fig.1 Scheme of the cavity in second-harmonic genration(SHG)
本文僅考慮泵浦光完全對稱的情況,即α1in2=α2in2=Iin,由方程(3)有(γ2+Δ2-μ2I1I2)(I1-I2)=0.該式表明方程組(3)有兩組解,對稱解和非對稱解.泵浦功率低于特定功率(Iin 當(dāng)泵浦功率足夠強(qiáng)(Iin>Ith)時,腔內(nèi)的兩個偏振的基頻光功率不再相等,方程(3)有非對稱解,滿足: 相應(yīng)的解為: 關(guān)于這一系統(tǒng)發(fā)生的自發(fā)對稱破缺現(xiàn)象有多個文獻(xiàn)從不同的方面進(jìn)行了討論和解釋[10-13].II類倍頻過程可看作為I類倍頻和I類下轉(zhuǎn)換過程在一個腔內(nèi)同時發(fā)生的過程.運(yùn)轉(zhuǎn)于自發(fā)對稱破缺閾值以下時,腔內(nèi)產(chǎn)生的倍頻光強(qiáng)度還不足以在同一腔中發(fā)生下轉(zhuǎn)換.泵浦功率增強(qiáng)達(dá)到閾值以上時,倍頻光的強(qiáng)度達(dá)到同一腔的光學(xué)參量振蕩(OPO)閾值,腔內(nèi)開始發(fā)生參量下轉(zhuǎn)換過程,產(chǎn)生的下轉(zhuǎn)換光的偏振與泵浦光的偏振垂直,導(dǎo)致它們在兩個本征模上的投影的不再相等.圖2(P226)給出了基頻光(實(shí)線)和倍頻光(虛線)強(qiáng)度隨基頻光失諧量Δ的變化關(guān)系.當(dāng)失諧量Δ較大時泵浦功率低于閾值,輸出的兩個偏振的基頻光功率基本相等.當(dāng)失諧量減小時系統(tǒng)閾值也減小,失諧量小于某個特定值時,泵浦功率大于系統(tǒng)閾值,兩個偏振模功率不再相等.表現(xiàn)為在原來透射峰的基礎(chǔ)上,一個模在中間產(chǎn)生凹陷,另一個模在中間形成凸起. 實(shí)驗(yàn)裝置如圖3(P226)所示,基頻光由自制的單頻Nd:YVO4激光器(波長為1 064 nm)產(chǎn)生,倍頻腔采用半整塊腔型結(jié)構(gòu)以增強(qiáng)穩(wěn)定性,非線性晶體為臨界匹配的KTP晶體,各拋光面的鍍膜見圖3.基頻光在腔內(nèi)共振,倍頻光經(jīng)晶體的另一面反射后輸出,輸入輸出耦合鏡曲率半徑為20 mm,對基頻光透射率是5%,總腔長為21 mm,晶體長度為7.5 mm.泵浦光的偏振與KTP的晶軸成45度角以保證兩個模^ain1和^ain2的功率大致相等.凹面鏡安裝在壓電陶瓷上以掃描腔長從而實(shí)現(xiàn)對基頻光腔失諧量Δ的連續(xù)掃描.采用控溫儀調(diào)節(jié)KTP晶體的溫度以使兩個偏振模在腔內(nèi)同時共振.用偏振分束棱鏡和雙色反射鏡將倍頻光、晶軸方向的兩個偏振垂直的基頻光分開并分別探測后用示波器監(jiān)視.圖4圖5是我們在實(shí)驗(yàn)上測得的結(jié)果:在泵浦功率為1.83 W的情況下,當(dāng)掃描腔長到接近共振的一段區(qū)域(Δ =0附近),圖4中基頻光1與基頻光2的光功率不相等,即兩個偏振的基頻光功率不再平衡,也就是發(fā)生了自發(fā)對稱破缺.在圖5中我們可以看到,二次諧波在近共振區(qū)域出現(xiàn)凹陷,此時倍頻光發(fā)生泵浦耗散.與圖2中的理論曲線有所區(qū)別,由于溫度控制的不穩(wěn)定使兩個偏振模的失諧量并未控制到完全相等,導(dǎo)致每次記錄的數(shù)據(jù)差別較大.但是曲線中的凹陷表明系統(tǒng)發(fā)生了自發(fā)對稱破缺現(xiàn)象. 圖2 基頻光(實(shí)線)和倍頻光(虛線)強(qiáng)度隨基頻光失諧量Δ的變化關(guān)系,其中各參數(shù)值取為γ=0.03,γc=0.005,μ=10,Iin=0.015Fig.2 Intensities of the fundamental frequency field(solid curie)and harmonic frequency field(dashed curve)as a function of detuningΔwithr=0.03,rc=0.05,μ=10,Iin=0.015 圖3 實(shí)驗(yàn)裝置示意圖.HR:高反鍍膜,AR:增透鍍膜Fig.3 Experimental setup HR: high-reflection coating,AR:iantirefiection 我們從實(shí)驗(yàn)上觀察了雙共振II類倍頻過程中的自發(fā)對稱破缺現(xiàn)象,透射峰中出現(xiàn)明顯的凹陷表明系統(tǒng)的非線性相互作用強(qiáng)度達(dá)到了II類倍頻閾值以上的區(qū)域,為進(jìn)一步的進(jìn)行倍頻過程中的各種量子特性的研究提供了依據(jù). 圖4 泵浦光的兩個基頻模重合時,在腔掃描狀態(tài)下,觀察到的自發(fā)對稱破缺.當(dāng)腔掃描到共振處時兩個基頻光的功率將不再相等Fig.4 Spontaneous symmetry breaking is observed when the cality length is scanned in time,The intensities of the extraordinary and oridinary fundamental frequency fields are not equal with double resonance 圖5 泵浦光的兩個基頻模重合時,在腔掃描狀態(tài)下,觀察到的自發(fā)對稱破缺.當(dāng)腔掃描到共振處時倍頻光的功率曲線也會有凹陷存在Fig.5 Spontaneous symmetry breaking is observed when the cavity length is scanned in time There is a hdlow in the harmonic intencity curve withΔ=0 [1] LAWRENCE M J,BYER R L,J EJ ER M M,et al.Squeezed Singly Resonant Second-harmonic Generation in Periodically Poled Lithium Niobate[J].J Opt Soc A m B,2002,19:1592-1598. [2] SU X L,TAN A H,J IA X J,ZHANG J.Experimental Preparation of Quadripartite Cluster and Greenberger-Horne-Zeilinger Entangled States for Continuous Variables[J].Phys Rev Lett,2007,98:070502. [3] LUO Yu,LI Ying,Xie Chang-de,et al.Simultaneous Experimental Generation of Vacuum Squeezing and Bright Amplitude Squeezing From a Frequency Doubler[J].Opt Lett,2005,30:1491-1493. [4] ANDERSEN,ULRIK L,BUCHHAVE,PREBEN.Squeezing and Entanglement in Doubly Resonant,type II,Second-harmonic Generation[J].J Opt Soc A m B,2003,20:1947-1958. [5] ZHAI Ze-hui,LI Yong-ming,GAO Jiang-rui.Entanglement Characteristics of Subharmonic Modes Reflected From a Cavity for Type-II Second-harmonic Generation[J].Phys Rev A,2004,69:044301. [6] KOZLOVSKY W J,NABORS C D,BYER R L.Efficient Second Harmonic Generation of a Diode-laser-pumped cw Nd: YAGLaser using Monolithic MgO:LiNbO3External Resonant Cavities[J].I EEE J Quantum Electron,QE-1988,24:913-919. [7] OU Z Y,PEREIRA S F,POLZIK E S,KIMBLE H J.85%Efficiency for Cwfrequency Doubling from 1.08 to 0.54μm [J].Opt Lett,1992,17:640-642. [8] LAURAT J,COUDREAU T,KELL ER G,et al.Effects of Mode Coupling on the Generation of Quadrature Einstein-Podolsky-Rosen Entanglement in a Type-II optical Parametric Oscillator Below Threshold[J].Phys Rev A,2005,71: 022313. [9] OU Z Y.Quantum-nondemolition Measurement and Squeezing in Type-II Harmonic Generation with Triple Resonance [J].Phys Rev A,1994,49:4902-4911. [10] JACK M W,COLLETT M J,WALLS D F.Asymmetrically Pumped Nondegenerate Second-harmonic Generation Inside a Cavity[J].Phys Rev A,1994,53:1801-1811. [11] JACOBO A,COL ET P,SCOTTO P,et al.Use of Nonlinear Properties of Intracavity Type II Second Harmonic Generation for Image Processing[J].A ppl Phys B,2005,81:955-962. [12] SCOTTO P,COL ET P,MIGUEL M S.All-optical Image Processing with Cavity Type II Second-harmonic Generation [J].Opt Lett,2003,28:1695-1697. [13] KOLOBOV M I.Quantum Imaging[M].Springer publishing house,2007. [14] PESCHEL U,ETRICH C,L EDERER F.Symmetry Breaking and Self-oscillations in Intracavity Vectorial Second-harmonic Generation[J].Opt Lett,1998,23:500-502. [15] LONGCHAMBON L,TREPS N,COUDREAU T.Experimental Evidence of Spontaneous Symmetry Breaking in Intracavity Type II Second-harmonic Generation with Triple Resonance[J].Opt Lett,2005,30:284-286. Experimental Investigation of Spontaneous Symmetry Breaking in Doubly Resonant,Type II,Second-harmonic Generation GUO Zhan-chang,ZHANG Dan,GAO Jiang-rui,ZHAI Ze-hui We show the experimental observation of symmetry breaking phenomenon in intracavity type II second-harmonic generation(SHG),that is,when the pumping power reach some critical value,the two reflected fundamental field from the cavity are not symmetric anymore.It turns out that the nonlinear strength is strong enough to reach the threshold,which is important for our future study. OPO;type II SHG;spontaneous symmetry breaking;threshold O431 A 0253-2395(2010)02-0224-04 2009-12-15; 2010-01-28 國家自然科學(xué)青年基金(60708010);國家基礎(chǔ)科學(xué)人才培養(yǎng)基金(J0730317) 郭占昌(1980-),男,山西和順人,在讀研究生,助教,從事量子光學(xué)方面研究.E-mail:zhzehui@sxu.edu.cn2 實(shí)驗(yàn)裝置及其結(jié)果
3 小結(jié)
(School ofPhysics and Electronics Engineering,S hanxi University,Taiyuan030006,China)