宋曉新, 王紅菲
(1.河南大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院,河南開封 475001; 2.河南大學(xué)應(yīng)用數(shù)學(xué)研究所,河南開封 475001; 3.開封大學(xué)五年制工作部,河南開封 475004)
關(guān)于 Kaehler-Einstein流形上Rastogi聯(lián)絡(luò)的一點(diǎn)注記
宋曉新1,2, 王紅菲3
(1.河南大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院,河南開封 475001; 2.河南大學(xué)應(yīng)用數(shù)學(xué)研究所,河南開封 475001; 3.開封大學(xué)五年制工作部,河南開封 475004)
研究Kaehler-Einstein流形M上Rastogi;聯(lián)絡(luò)的擬共形曲率張量場Wˉ,證明了若Wˉ是平行的,則 M是擬共形對稱的.也得到關(guān)于M共圓對稱的對應(yīng)條件和結(jié)果,推廣了Rastogi,賈興琴等的工作.
Kaehler-Einstein流形;對稱度量聯(lián)絡(luò);擬共形曲率張量場
致謝 本文得到巴黎大學(xué)博士吳報(bào)強(qiáng)教授指點(diǎn)與幫助,謹(jǐn)致深切的謝意!
[1] Golab S.On semi-symmetric and quarter symmetric limear connections[J].Tensor,N.S.,1975,29:249-254.
[2] M ishra R S and Pardey SN.On quarter symmetric metric F-connections[J].Tenso r,N.S.,1980,34:1-7.
[3] Yano K and Imai T.Quarter symmetric connections and their curvature tenso rs[J].Tensor N.S.,1982,38: 13-18.
[4] Rastogi SC.On quarter-symmetric metric connection[J].Comp tes Rendus de lacad Bulgar des Science,1978,31: 811-814.
[5] Rastogi SC.On quarter-symmetric metric connection[J].Comp tes Rendus de lacad Bulgar des Science,1985,38: 985-988.
[6] Rastogi SC.On quarter symmetric-metric connection[J].Tensor N.S.,1987,44:133-141.
[7] Desai P and Amur K.On symmetric spaces[J].Tensor N.S.,1975,29:119-124.
[8] 宋曉新,賈興琴.關(guān)于 Kaehler-Einstein流形上的Rastogi聯(lián)絡(luò)[J].河南大學(xué)學(xué)報(bào),2007,2:441-443.
A Remark on Rastogi Connections in Kaehler-Einstein Man ifolds
SONG Xiao-xin1,2, WANG Hong-fei3
(1.College of Mathematics and Info rmation Science,Henan Univ.,Kaifeng 475001,China;
2.Institute of App lied Mathematics,Henan University,Kaifeng 475001,China;
3.Dep t.of 5 years Work,Kaifeng Univ.,Kaifeng 475004,China)
Quasi conformal curvature tensor fieldsˉW of Rastogi Connections in Kaehler-Einstein Manifolds M has been studied.We p roved that M is of quasi conformal symmetric ifˉW is of parallel.The corresponding condition and Result on concircular symmetric is also obtained.Works of Rastogi.Jai Xinqin have been generalized.
Kaehler-Einstein manifolds;quarter symmetric metiic connections;quasi conformal curvature tenso r
O186.16
A
1672-1454(2010)03-0060-04
2007-10-05
河南省教育廳自然科學(xué)基金(2008B110002,200510475038);河南大學(xué)自然科學(xué)基金(2004YB12W 042)