周雅涵,羅 楊,曾凱芳,2,*
(1.西南大學食品科學學院,重慶 400715;2.重慶市特色食品工程技術(shù)研究中心,重慶 400715)
拮抗酵母菌對果蔬采后病害生防增效途徑及機理研究進展
周雅涵1,羅 楊1,曾凱芳1,2,*
(1.西南大學食品科學學院,重慶 400715;2.重慶市特色食品工程技術(shù)研究中心,重慶 400715)
本文在總結(jié)拮抗酵母菌特點的基礎(chǔ)上,針對限制其商業(yè)化應(yīng)用的主要原因,重點闡述增強拮抗酵母菌對果蔬采后病害生防效力的途徑及機理,最后進一步提出拮抗酵母菌增效技術(shù)未來的研究方向。以此,為拮抗酵母菌的商業(yè)化推廣和應(yīng)用及生物防治技術(shù)在控制采后果蔬病害中的應(yīng)用提供指導。
拮抗酵母菌;生物防治;果蔬;采后病害;增效
新鮮果蔬在采后貯運保鮮過程中,由于病原物侵染、生理失調(diào)、機械損傷及成熟衰老等原因極易導致腐爛變質(zhì),引起巨大損失,其中侵染性病害是引起新鮮果蔬腐爛變質(zhì)的主要原因[1]。控制果蔬采后病害最常用的方法是使用化學殺菌劑,但隨著人們環(huán)保意識的增強和對食品安全的持續(xù)關(guān)注,利用拮抗微生物替代傳統(tǒng)化學殺菌劑控制果蔬采后病害已成為研究熱點[2]。拮抗酵母菌具有遺傳穩(wěn)定,抑菌譜廣;營養(yǎng)要求低,生長快的特點;一般不產(chǎn)生對人和寄主有害的代謝產(chǎn)物;對多種脅迫條件和逆境具有較強的耐受力,對多數(shù)化學殺菌劑不敏感,能與多種化學物質(zhì)及物理方法結(jié)合使用,因而作為采后生物防治的重要研究對象被廣泛關(guān)注[3]。然而與傳統(tǒng)的化學殺菌劑比較,拮抗酵母菌具有成本較高,使用不方便,不能有效控制采前已潛伏在果蔬表面的病原菌,并且受病原物濃度、果實生理狀態(tài)和環(huán)境因素等方面的影響,防治效果往往達不到要求或不穩(wěn)定,這些都限制了拮抗酵母菌的商業(yè)化應(yīng)用[4]。因此如何利用有效的方法提高拮抗酵母菌的生防效力是影響其商業(yè)化推廣應(yīng)用的關(guān)鍵性問題。
多年來的研究表明,不同種屬的拮抗酵母菌能和多種物理、化學或生物方法有效組合,通過對病原菌、酵母菌、寄主三者發(fā)揮不同的作用來強化對病害的抑制,產(chǎn)生附加甚至協(xié)同增效的作用效果。
1.1 與直接殺菌的方法結(jié)合
臭氧處理、紫外線照射、化學殺菌劑等單獨使用都對侵染果蔬的病原菌有直接殺滅作用,拮抗酵母菌與這些具有直接殺菌作用的物理化學方法聯(lián)合運用能顯著提高酵母的生防效力[5-7]。有研究表明,臭氧處理能顯著增強羅倫隱球酵母(Cryptococcus laurentii)對草莓灰霉病的控制效果[5]。Stevens等[6]發(fā)現(xiàn)用低劑量紫外線(254nm,UV-C)與Hansen隱球酵母(Debaryomyes hansenii)聯(lián)合處理黃桃果實的效果與應(yīng)用化學殺菌劑苯菌靈處理的效果相當。Lima等[7]將對殺菌劑有抗性的生防酵母(Rhodosporidium KratochvilovaeLS11和Cryptococcus laurentiiLS28)復合低劑量的殺菌劑Boscalid和Cyprodinil處理蘋果果實,不但能有效控制擴展青霉(Penicillum expansum)對果實的侵染,減少果實表面殺菌劑的殘留量,而且降低了展青霉毒素對果實的污染,二者在病害控制上展現(xiàn)出協(xié)同作用。
1.2 與抑制病原菌孢子萌發(fā)和芽管增長的方法結(jié)合
多數(shù)體外實驗表明,不同濃度的乳鏈球菌素、丙酸鈣、碳酸氫鈉、殼聚糖等物質(zhì),能夠抑制多種病原菌孢子的萌發(fā)和芽管的增長。在復合物濃度對拮抗酵母菌生長無明顯抑制作用的前提下,酵母菌與這些物質(zhì)復合使用能顯著提高其生防效力。如將復合乳鏈球菌素的嗜油假絲酵母(Candida oleophila)細胞懸浮液先于病原菌Botrytis cinerea和Penicillum expansum接種于蘋果傷口,果實發(fā)病率僅為4.7%,顯著低于對照組和單獨處理組的發(fā)病率[8]。有研究證實羅倫隱球酵母(C.laurentii)與碳酸氫鈉復合使用對番茄采后灰霉病和綿腐病有良好的控制效果[9],碳酸氫鈉不但能抑制病原菌孢子的萌發(fā)和芽管的延長,還可改變果實傷口的pH值,病原菌比拮抗菌對這些改變更敏感,因此進一步減弱了病原菌的生存能力。鉬酸銨和酵母菌復合使用能提高酵母菌對金冠蘋果和葡萄采后腐爛的控制水平[10-11],鉬酸銨能夠強烈抑制磷酸酪氨酸磷酸酶(PTPase)的活性,從而影響對細胞代謝調(diào)節(jié)起重要作用的磷酸化和去磷酸化過程。殼聚糖作為一種可生物降解的天然物質(zhì)單獨使用能直接抑制擴展青霉在蘋果傷口處的侵染,與羅倫隱球酵母(C.laurentii)復合使用在病害控制上表現(xiàn)出協(xié)同作用[12]。此外,微波短時加熱處理也能通過相同的作用機制來提高羅倫隱球酵母(C.laurentii)對梨青霉病的控制水平[13]。
1.3 與病原菌分泌的水解酶活性的抑制方法結(jié)合
采后病原菌的致病機理復雜而眾多,它們可以通過分泌不同的細胞壁水解酶直接突破果蔬表皮的防御機制。病原菌分泌降解寄主細胞壁水解酶的順序為:果膠酶→半纖維素酶→纖維素酶,不同降解酶作用于不同細胞壁組分,協(xié)同降解果蔬細胞壁成分[14]。研究表明,鈣離子、氣調(diào)貯藏(controlled atmosphere storage,CA)能抑制病原菌分泌的果膠溶解酶,如多聚半乳糖醛酸酶(polygalacturonase PG)的活性[15-16]。它們與羅倫隱球酵母(C.laurentii)及梅奇酵母(Metschnikowia pulcherrima)結(jié)合使用,能顯著提高酵母對梨果實采后灰霉病,蘋果果實采后青霉病的控制水平[17-19]。
2.1 增強酵母菌在逆境中的生存能力
現(xiàn)有研究表明,酵母菌可以通過逆境和誘導培養(yǎng),或復合脫脂乳、蛋白胨等保護性物質(zhì),來增強自身對各種脅迫的適應(yīng)性,提高其拮抗效力。如清酒假絲酵母(Candida sake)在低水分活度的液體培養(yǎng)基培養(yǎng)后,細胞內(nèi)會累積較高的海藻糖和糖醇,其在逆境中的存活能力和對蘋果青霉病的控制效力都明顯增強[20-21]。酵母細胞內(nèi)海藻糖的累積對細胞質(zhì)膜和胞內(nèi)敏感蛋白具有保護作用,能增強細胞對多種脅迫的適應(yīng)性;而內(nèi)源性糖醇的累積能夠在降低細胞質(zhì)水分活度的同時,不破壞酶的結(jié)構(gòu)和功能,使細胞代謝活動能夠在水分脅迫的條件下正常進行[22-23]。Li等[24]發(fā)現(xiàn)海藻糖作為內(nèi)源或外源保護因子對拮抗酵母菌C.laurentii和R.glutinis在速凍,慢凍和冷凍干燥脅迫下都顯示出保護作用,并且內(nèi)外源海藻糖產(chǎn)生了協(xié)同作用。
在對生防酵母(Cytofilobasidicum infirmominiatum)的研究中發(fā)現(xiàn),甜菜堿誘導培養(yǎng)酵母細胞,不但能提高細胞自身抗氧化酶系統(tǒng)的活性,增強酵母對氧化脅迫的適應(yīng)性,還促進了酵母細胞在蘋果傷口處的快速生長[25]。外源性保護劑如脫脂乳、蛋白胨、麥芽糖等,因富含蛋白質(zhì)、維生素、糖等,添加在活細胞制品中不僅可以修復細胞質(zhì)膜的損傷,而且能為細胞抵抗?jié)B透應(yīng)力的損傷提供保護。嗜油假絲酵母(Candida oleophila(strain O))與這些外源性保護劑結(jié)合使用,能顯著增強酵母細胞在干燥或缺水的條件下對蘋果青霉病的控制力[26]。
2.2 激發(fā)酵母產(chǎn)生有拮抗作用的物質(zhì)
通過在培養(yǎng)基中添加相應(yīng)的物質(zhì)誘導培養(yǎng)酵母細胞,能刺激酵母自身分泌有拮抗效力的物質(zhì)。Calvente等[27]發(fā)現(xiàn),通過誘導培養(yǎng)粘紅酵母(Rh o d o t o r u la glutinis),可使細胞內(nèi)大量累積一種與鐵高度親和的低分子有機物——粘紅酵母酸(rhodotorulic acid)。病原菌孢子的萌發(fā)需要大量吸納鐵離子,粘紅酵母酸的存在能延緩病原菌孢子的萌發(fā)。Sansone等[28]用粘紅酵母結(jié)合粘紅酵母酸使用,能顯著提高酵母對撲海因抗性菌株Botrytis cinerea的控制效力。也有研究表明,幾丁質(zhì)誘導培養(yǎng)羅倫隱球酵母(C.laurentii),能刺激酵母細胞分泌幾丁質(zhì)酶的活性,顯著提高酵母對梨青霉病的抑制效果[29]。
3.1 與強化果蔬固有抗性的物質(zhì)復合
細胞壁的結(jié)構(gòu)組成在果蔬的天然抗性方面起到一定作用,通過復合相應(yīng)的化學物質(zhì),能增強果蔬細胞壁和膜結(jié)構(gòu)的完整性,強化果蔬固有的結(jié)構(gòu)抗性。Ca2+可以與細胞壁中的果膠相結(jié)合,在果膠酸之間或果膠酸與其他帶羧基的多糖之間形成交叉鏈橋,增強寄主細胞壁的強度和膜結(jié)構(gòu)的完整性,使病原菌分泌的果膠酶軟化細胞壁的能力降低[30]。研究表明,用季也蒙假絲酵母(Candida guilliermondii)和膜醭畢赤酵母(Pichia membranefaciens)復合氯化鈣處理桃果實,能顯著增強酵母對葡莖根霉菌(Rbizopus stolonifer)的生防效力[31]。孫萍等[32]在控制柑橘采后青霉病的研究中也發(fā)現(xiàn)粘紅酵母(R.glutinis)復合Ca2+使用對病害具有良好的控制效果。
3.2 與誘導果蔬抗病性的方法結(jié)合
作為生物性激發(fā)子,拮抗酵母菌單獨使用對采后果蔬的抗病誘導能力有限,研究發(fā)現(xiàn)拮抗酵母菌與非生物性物理化學誘抗因子相互配合,如結(jié)合熱處理或復合水楊酸(SA)、吲哚-3-乙酸(IAA)、赤霉素(GA3)、茉莉酸甲酯(MeJA)等處理果蔬,通過調(diào)節(jié)果蔬組織活性氧代謝,刺激果蔬防御酶的活性,能顯著增強酵母的抗病誘導能力。
3.2.1 調(diào)節(jié)果蔬組織活性氧代謝
果蔬組織受到病菌或誘導因子的誘導能短時間內(nèi)產(chǎn)生大量的活性氧,此時必須通過活性氧清除系統(tǒng)來保持體內(nèi)活性氧水平的動態(tài)平衡。研究發(fā)現(xiàn)果蔬組織在受到拮抗酵母菌和非生物誘抗因子的雙重誘導時,其體內(nèi)的活性氧代謝相關(guān)酶類,如過氧化物酶(POD)、超氧化物歧化酶(SOD)、過氧化氫酶(CAT)、多酚氧化酶(PPO)的活性會顯著提高。這些酶能專一性的清除果蔬體內(nèi)活性氧或阻止活性氧的形成,對果蔬組織起到保護作用[33]。研究表明,IAA結(jié)合羅倫隱球酵母(C.laurentii)使用能不同程度刺激梨和蘋果果實CAT、POD、PPO、SOD活性的增強,復合處理強化了對果實青霉病和灰霉病的抗病誘導能力[34-35]。
3.2.2 刺激果蔬防御酶的活性
β-1,3-葡聚糖酶和幾丁質(zhì)酶作為果蔬體內(nèi)典型的病程相關(guān)蛋白,在分解真菌細胞壁組分、保護寄主組織上有明顯的協(xié)同作用[36]。Cao等[37-38]研究發(fā)現(xiàn)茉莉酸甲酯(MeJA)和氯化鈣復合膜醭畢赤酵母(P. membranifaciens)使用,能誘導枇杷果實β-1,3-葡聚糖酶和幾丁質(zhì)酶的活性顯著提高,增強拮抗酵母菌對枇杷炭疽病的控制效果。熱處理結(jié)合季也蒙假絲酵母(C.guilliermondii)和膜醭畢赤酵母(P. membranifaciens)聯(lián)合運用也能顯著誘導番茄果實中這兩類防御酶活性的升高[39]。
苯丙氨酸解氨酶(PAL)、PPO、POD作為重要的防御酶,參與果蔬體內(nèi)酚類化合物、植保素、木質(zhì)素等多種抗性物質(zhì)的合成。研究表明拮抗酵母菌通過與其他激發(fā)子結(jié)合使用能顯著刺激這些酶的活性,提高酵母的生防效力。在羅倫隱球酵母(C.laurentii)生防效力改良的研究中發(fā)現(xiàn),酵母與SA、GA3、MeJA復合處理櫻桃、蘋果、梨、桃果實后,能不同程度地誘導果實POD、PPO、PAL活性的上升,復合處理在對果實病害的抗性誘導方面展現(xiàn)出良好的協(xié)同效應(yīng)[40-43]。
3.3 與延緩果蔬成熟衰老的方法結(jié)合
果蔬在采后成熟衰老過程中,其組成抗病性機制和可誘導的抗性反應(yīng)能力都會不斷弱化,從而導致果蔬組織對病原菌的敏感性不斷提高[44]。脂氧合酶(LOX)參與O2-·和單線態(tài)氧等自由基的形成和膜脂過氧化過程,能導致植物組織膜脂的損傷和乙烯的生成,因此與采后衰老關(guān)系密切。研究發(fā)現(xiàn),將拮抗酵母菌與氣調(diào)貯藏[45]、熱處理[46]等物理因子整合或復合相應(yīng)化學物質(zhì)[47-48]使用,能延緩果蔬組織成熟衰老,提高酵母菌對病害的控制力。在增強羅倫隱球酵母(C.laurentii)對擴展青霉(P.expansum)生防效力的研究中發(fā)現(xiàn),酵母復合6-BA處理蘋果果實或復合GA3處理梨果實都能抑制果實LOX的活性和丙二醛(MDA)含量的上升,延緩細胞質(zhì)過氧化[47-48]。
控制果蔬采后腐爛是一個涉及采后生理、采后病理及貯藏技術(shù)等多方面的綜合技術(shù)。拮抗酵母菌與相應(yīng)的物理、化學、生物方法有效組合能很好的解決酵母單獨應(yīng)用時高效性和持久性欠缺的問題,為拮抗酵母菌的商業(yè)化應(yīng)用和推廣提供技術(shù)支持。
拮抗酵母菌生防效力的提高涉及多重機制的聯(lián)合作用,然而,現(xiàn)在大多數(shù)研究僅停留在增效作用抗病效果的研究上,缺乏對相關(guān)機理的深入研究和探討。因此,進一步開展生防酵母增效機理的研究,并以此為依據(jù)探索提高酵母菌拮抗效力的新途徑、新技術(shù)、新方法;利用基因工程技術(shù)或蛋白質(zhì)組學技術(shù)篩選與酵母拮抗效力有密切關(guān)系的關(guān)鍵基因和蛋白質(zhì),或在分子水平上定向改造酵母菌,提高其生防效力等都將為發(fā)展以酵母為核心的采后病害生物學控制技術(shù)提供堅實的理論基礎(chǔ)和實踐保障。
[1] TIAN Shiping, CHAN Zhulong. Potential of induced resistance in postharvest diseases control of fruits and vegetables[J]. Acta Phytopathologica Sinica, 2004, 34(5): 385-394.
[2] JANISIEWICZ W J, KORSTEN L. Biological control of postharvest diseases of fruits[J]. Annual Review of Phytopathology, 2002, 40: 411- 441.
[3] SPADARO D, GULLINO M L. State of the art and future prospects of the biological control of postharvest fruit diseases[J]. International Journal of Food Microbiology, 2004, 91(2): 185-194.
[4] DROBY S, WSINIEWSKI M, EI-GHAOUTH A, et al. Biological control postharvest diseases of fruit and vegetables: current achievements and future challenges[J]. Acta Horticulturae, 2003, 628: 703-713.
[5] 張紅印, 馬傳龍, 姜松, 等. 臭氧結(jié)合拮抗酵母對草莓采后灰霉病的控制[J]. 農(nóng)業(yè)工程學報, 2009, 25(5): 258-263.
[6] STEVENS C, KHAN V A, LU J Y, et al. Integration of ultraviolet (UV-C) light with yeast treatment for control of postharvest storage rots of fruits and vegetables[J]. Biological Control, 1997, 10: 98-103.
[7] LIMA G, CASTORIA R, de CURTIS F, et al. Integrated control of blue mould using new fungicides and biocontrol yeasts lowers levels of fungicide residues and patulin contamination in apples[J]. Postharvest Biology and Technology, 2011, 60(2): 164-172.
[8] EN-NESHAWY S M, WILSON C L. Nisin enhancement of biocontrol of postharvest diseases of apple withCandida oleophila[J]. Postharvest Biology and Technology, 1997, 10(1): 9-14.
[9] 習柳, 田世平. 酵母拮抗菌與碳酸氫鈉配合對番茄果實采后病害的防治效果研究[J]. 中國農(nóng)業(yè)科學, 2005, 38(5): 950-955.
[10] NUNES C, USALL J, TEIXIDO N, et al. Improvement ofCandida sakebiocontrol activity against post-harvest decay by the addition of ammonium molybdate[J]. Journal of Applied Microbiology, 2002, 92(5): 927-935.
[11] LIU H M, GUO J H, LUO L, et al. Improvement ofHanseniaspora uvarumbiocontrol activity against gray mold by the addition of ammonium molybdate and the possible mechanisms involved[J]. Crop Protection, 2010, 29(3): 277-282.
[12] YU Ting, LI Hongye, ZHENG Xiaodong. Synergistic effect of chitosan andCryptococcus laurentiion inhibition ofPenicillium expansuminfections[J]. International Journal of Food Microbiology, 2007, 114: 261-266.
[13] ZHANG Hongying, ZHENG Xiaodong, SU Dongmin. Postharvest control of blue mold rot of pear by microwave treatment andCryptococcus laurentii[J]. Journal of Food Engineering, 2006, 77: 539-544.
[14] 高必達, 陳捷. 生理植物病理學[M]. 北京: 科學出版社, 2006: 34-35.
[15] DROBY S, WISNIEWSKI M E, COHEN L, et al. Influence of CaCl2onPenicillium digitatum, grapefruit peel tissue, and biocont- rol activity ofPichia guilliermondii[J]. Phytopathology, 1997, 87: 310-315.
[16] EDNEY K L. The effect of the composition of the storage atmosphere on the development of rotting of Cox,s Orange Pippin apples and the production of pectolytic enzymes byGloeosporiumspp.[J]. Annals of Applied Biology, 1964, 54(3): 327-334.
[17] ZHANG Hongying, ZHENG Xiaodong, FU Chengxin, et al. Postharvest biological control of gray mold rot of pear withCryptococcus laurentii[J]. Postharvest Biology and Technology, 2005, 35: 79-86.
[18] QIN Guozheng, TIAN Shiping, LIU Haibo, et al. Biocontrol efficacy of three antagonistic yeasts againstPenicillium expansumin harvested apple fruits[J]. Acta Botanica Sinica, 2003, 45(4): 417-421.
[19] CONWAY W S, JANISIEWICZ W J, LEVERENTZ B, et al. Control of bule mold of apple by combining controlled atmosphere, an antagonist mixture, and sodium bicarbonate[J]. Postharvest Biology and Technology, 2007, 45: 326-332.
[20] TEIXIDO N, VINAS I, USALL J, et al. Improving ecological fitness and environmental stress tolerance of the biocontrol yeastCandida sakeby manipulation of intracelluar sugar alcohol and sugar content[J]. Mycological Research, 1998, 102(11): 1409-1417.
[21] TEIXIDO N, VINAS I, USALL J, et al. Control of blue mold of apple by preharvest application ofCandida sakegrown in media with different water activity[J]. Phytopathology, 1998, 88(9): 960-964.
[22] SOTO T, FERNANDEZ J, VICENTE-SOLER J, et al. Accumulation of trehalose by overexpression oftps1, Coding for trehalose-6-phosphate synthase, causes increased resistance to multiple stresses in the fission yeastSchizosaccharomyces pombe[J]. Applied and Environmental Microbiology, 1999, 65(5): 2020-2024.
[23] KWON H B, YEO E T, HAHN S E, et al. Cloning and characterization of genes encoding trehalose-6-phosphate synthase(TPS1) and trehalose-6-phosphate phosphatase(TPS2) fromZygosaccharomyce rouxii[J].FEMS Yeast Research, 2003, 3(4): 433-440.
[24] LI B Q, ZHOU Z W, TIAN S P. Combined effects of endo- and exogenous trehalose on stress tolerance and biocontrol effcacy of two antagonistic yeasts[J]. Biological Control, 2008, 46: 187-193.
[25] LIU J, WINSNIEWSKI M, DROBY S, et al. Glycine betaine improves oxidative stress tolerance and biocontrol effcacy of the antagonistic yeastCystofilobasidium infirmominiatum[J]. International Journal of Food Microbiology, 2011, 146(1): 76-83.
[26] LAHLALI R, JIJAKLI M H. Enhancement of the biocontrol agentCandida oleophila(strain O) survival and control effciency under extreme conditions of water activity and relative humidity[J]. Biological Control, 2009, 51:403-408.
[27] CALVENTE V, de ORLLANO M E, SANSONE G, et al. Effect of nitrogen source and pH on siderophore production byRhodotorulastrains and their application to biocontrol phytopathogenic mouds[J]. Journal of Industrial Microbiology and Biotechnology, 2001, 26: 226-229.
[28] SANSONE G, REZZA I, CALVENTE V, et al. Control ofBotrytis cinereastrains resistant to iprodione in apple with rhodotorulic acid and yeasts[J]. Postharvest Biology and Technology, 2005, 35: 245-251.
[29] YU Ting, WANG Lianping, YIN Yun, et al. Effect of chitin on the antagonistic activity ofCryptococcus laurentiiagainstPenicillium expansumin pear fruit[J]. International Journal of Food Microbiology, 2008, 122: 44-48.
[30] MARTIN-DIANA A B, RICO D, FRIAS J M, et al. Calcium for extending the shelf life off resh whole and minimally proeessed fruits and vegetables:a review[J]. Trends in Food Science and Technology, 2007, 18: 210-218.
[31] TIAN S P, FAN Q, XU F, et al. Effects of calcium on biocontrol activity of yeast antagonists against the postharvest fungal pathogenRhizopus stolonifer[J]. Plant Pathology, 2002, 51: 352-358.
[32] 孫萍, 鄭曉冬, 張紅印, 等. 粘紅酵母與金屬離子結(jié)合使用對柑橘采后青霉病的抑制效果[J]. 果樹學報, 2003, 20(2): 169-172.
[33] MEHDY M C. Active oxygen species in plant defense against pathogens[J]. Plant Physiology, 1994, 105(2): 467-472.
[34] YU Ting, ZHENG Xiaodong. Indole-3-acetic acid enhances the biocontrol ofPenicillium expansumandBotrytis cinereaon pear fruit byCryptococcus laurentii[J]. FEMS Yeast Research, 2007, 7: 459-464.
[35] YU Ting, ZHANG Hongying, LI Xiaoling, et al. Biocontrol ofBotrytis cinereain apple fruit byCryptococcus laurentiiand indole-3-acetic acid[J]. Biological Control, 2008, 46: 171-177.
[36] SCHLUMBAUM A, MAUCH F, VOGELI U, et al. Plant chitinase are potent inhibitors of fungal growth[J]. Nature, 1986, 324: 365-367.
[37] CAO Shifeng, ZHENG Yonghua, WANG Kaituo, et al. Effect of yeast antagonist in combination with methyl jasmonate treatment on postharvest anthracnose rot of loquat fruit[J]. Biological Control, 2009, 50: 73-77.
[38] CAO Shifeng, ZHENG Yonghua, TANG Shuangshuang, et al. Improved control of anthracnose rot in loquat fruit by a combination treatment ofPichia membranifacienswith CaCl2[J]. International Journal of Food Microbiology, 2008, 126: 216-220.
[39] ZONG Yuanyuan, LIU Jia, LI Boqiang, et al. Effects of yeast antagonists in combination with hot water treatment on postharvest diseases of tomato fruit[J]. Biological Control, 2010, 54: 316-321.
[40] QIN Guozheng, TIAN Shiping, XU Yong, et al. Enhancement of biocontrol effcacy of antagonistic yeasts by salicylic acid in sweet cherry fruit[J].Physiological and Molecular Plant Pathology, 2003, 62: 147-154.
[41] YU Ting, ZHENG Xiaodong. Salicylic acid enhances biocontrolCryptococcus laurentiiin apple fruit[J]. Journal of Plant Growth Regulation,2006, 25: 166-174.
[42] YU Ting, WU Pinggu, QI Jiongjiong, et al. Improved control of postharvest blue mold rot in pear fruit by a combination ofCryptococcus laurentiiand gibberellic acid[J]. Biological Control, 2006, 39: 128-134.
[43] YAO H J, TIAN S P. Effects of a biocontrol agent and methyl jasmonate on effects of a biocontrol agent and methyl jasmonate on postharvest diseases of peach fruit and the possible mechanisms involved[J]. Journal of Applied Microbiology, 2005, 98: 941-950.
[44] PRUSKY D, LICHTER A. Activation of quiesecent infections by postharvest pathogens during transition from the biotrophic to the necrotrophic stage[J]. FEMS Microbiology Letters, 2007, 268: 1-8.
[45] QIN Guozheng, TIAN Shiping, XU Yong. Biocontrol of postharvest diseases on sweet cherries by four antagonistic yeasts in different storage conditions[J]. Postharvest Biology and Technology, 2004, 31: 51-58.
[46] CONWAY W S, LEVERENTZ B, JANISIEWICZ W J, et al. Improving biocontrol using antagonist mixtures with heat and/or sodium bicarbonate to control postharvest decay of apple fruit[J]. Postharvest Biology and Technology, 2005, 36: 235-244.
[47] ZHENG Xiaodong, YU Ting, CHEN Rongle, et al. InhibitingPenicillium expansuminfection on pear fruit byCryptococcus laurentiiand cytokinin[J]. Postharvest Biology and Technology, 2007, 45: 221-227.
[48] YU Ting, WU Pinggu, QI Qiongqiong, et al. Improved control of postharvest blue mold rot in pear fruit by a combination ofCryptococcus laurentiiand gibberellic acid[J]. Biological Control, 2006, 39: 128-134.
Recent Advances in Research on Approaches and Mechanisms of Improving Biocontrol Efficacy of Antagonistical Yeasts against Postharvest Diseases of Fruits and Vegetables
ZHOU Ya-han1,LUO Yang1,ZENG Kai-fang1,2,*
(1. College of Food Science, Southwest University, Chongqing 400715, China;2. Chongqing Special Food Programme and Technology Research Center, Chongqing 400715, China)
Based on the characteristics of antagonistical yeasts and the major reasons for the limitation in commercial application,the current approaches and mechanisms of improving biocontrol efficacy of antagonistical yeasts against postharvest diseases of fruits and vegetables are discussed. Prospective directions for research on technologies for improving the biocontrol efficacy of antagonistical yeasts are also put forward. This paper will provide some guidance for the commercialization of antagonistical yeasts and the application of biological technology in postharvest disease control of fruits and vegetables.
antagonistical yeasts;biological control;fruits and vegetables;postharvest disease;synergism
S609.3;S667.7
A
1002-6630(2011)17-0362-04
2011-06-16
國家自然科學基金項目(31071618);中央高校基本科研業(yè)務(wù)費專項資金項目(XDJK2010B001)
周雅涵(1988—),女,碩士研究生,研究方向為果蔬采后生物技術(shù)。E-mail:zhouyahan@126.com
*通信作者:曾凱芳(1972—),女,教授,博士,研究方向為食品貯藏工程。E-mail:zengkaifang@163.com