陳一鳴, 徐增輝, 趙所所, 周志全
(燕山大學(xué) 理學(xué)院 河北 秦皇島 066004)
具有混合時滯隨機離散神經(jīng)網(wǎng)絡(luò)的漸近穩(wěn)定性分析
陳一鳴, 徐增輝, 趙所所, 周志全
(燕山大學(xué) 理學(xué)院 河北 秦皇島 066004)
研究了一類具有離散和分布時滯的隨機離散神經(jīng)網(wǎng)絡(luò)的模型,通過構(gòu)造新的Lyapunov-Krasovskii函數(shù),給出了模型漸近穩(wěn)定性的定理.以線性矩陣不等式形式給出的定理,易于用Matlab的 LMI工具箱求解.最后通過仿真實例證明了定理的有效性.
隨機神經(jīng)網(wǎng)絡(luò); 混合時滯; 線性矩陣不等式; 漸近穩(wěn)定性
近幾年,神經(jīng)網(wǎng)絡(luò)在模式識別、聯(lián)想記憶等諸領(lǐng)域的廣泛運用,吸引了越來越多學(xué)者的關(guān)注和研究.但目前學(xué)術(shù)界比較偏重于連續(xù)性神經(jīng)網(wǎng)絡(luò)的研究[1-2],而對離散性神經(jīng)網(wǎng)絡(luò)的關(guān)注不夠.二者的研究方法存在著顯著的差異性,對離散性神經(jīng)網(wǎng)絡(luò)的研究具有重要的現(xiàn)實意義[3-4].文獻[5]研究了離散時滯神經(jīng)網(wǎng)絡(luò)的穩(wěn)定性,但它沒有考慮分布時滯的情況;文獻[6]研究了不確定離散時滯神經(jīng)網(wǎng)絡(luò)的穩(wěn)定性,但它沒有考慮隨機現(xiàn)象.基于以上考慮,作者研究了一類具有離散和分布時滯的隨機離散神經(jīng)網(wǎng)絡(luò)模型的漸近穩(wěn)定性問題,所給的定理能夠很容易地利用LMI工具箱進行檢驗.
具有離散和分布時滯的隨機離散神經(jīng)網(wǎng)絡(luò)模型如下:
(1)
式中:x(k)=(x1(k),x2(k),…,xn(k))T是神經(jīng)元狀態(tài)向量;A=diag{a1,a2,…,an}是狀態(tài)反饋系數(shù)矩陣;B=[bij]n×n,C=[cij]n×n,D=[dij]n×n分別代表連接權(quán)矩陣、離散時滯連接權(quán)矩陣和分布時滯連接權(quán)矩陣;τ(k)代表時變時滯且滿足τm≤τ(k)≤τM,k∈N,其中,τm和τM是已知正整數(shù);F(x(k))=[f1(x1(k)),f2(x2(k)),…,fn(xn(k))]T,G(x(k))=[g1(x1(k)),g2(x2(k)),…,gn(xn(k))]T和H(x(k))=[h1(x1(k)),h2(x2(k)),…,hn(xn(k))]T代表神經(jīng)元激勵函數(shù);μm(m=1,2,…)是標量.
假設(shè)1對i∈{1,2,…,n},神經(jīng)元激活函數(shù)fi(·),gi(·),hi(·)是連續(xù)且有界的.
假設(shè)3存在兩個正常數(shù)ρ1,ρ2,滿足σT(k,x(k),x(k-τ(k)))σ(k,x(k),x(k-τ(k)))≤ρ1xT(k)x(k)+ρ2xT(k-τ(k))x(k-τ(k)).
定理1如果存在ρ1>0,ρ2>0,對角矩陣Λ=diag{λ1,λ2,…,λn}>0,Γ=diag{γ1,γ2,…,γn}>0和Δ=diag{δ1,δ2,…,δn}>0,正定矩陣P,T,N,Q,S滿足線性矩陣不等式:
其中,
Φ11=ATPA+(τM-τm+1)T-P+ρ1I-ΛL1-Γγ1-ΔΣ1,Φ33=(τM-τm+1)N+(τM-τm+1)Q-Γ,
則系統(tǒng)(1)是全局漸近穩(wěn)定的.
證明引入如下Lyapunov-Krasovskii函數(shù):
由假設(shè)2知V5(k)是收斂的.
ΔV(k)=ΔV1(k)+ΔV2(k)+ΔV3(k)+ΔV4(k)+ΔV5(k),
其中,
其中,
Ω11=ATPA+(τM-τm+1)T-P+ρ1I,
Ω33=(τM-τm+1)N+(τM-τm+1)Q.
也就是
同理
由于Ω<0,因此,存在λ>0滿足ΔV(k)≤-λ‖x(k)‖2.
由Lyapunov穩(wěn)定性理論,得到系統(tǒng)(1)是漸近穩(wěn)定的.
下面通過一個例子說明定理的有效性,考慮具有如下參數(shù)的系統(tǒng)(1):
應(yīng)用Matlab的LMI工具箱,得到可行解如下:
由定理1知,系統(tǒng)(1)是全局漸近穩(wěn)定的.
[1] Zhou Wuneng,Lu Hongqian,Duan Chunmei.Exponential stability of hybrid stochastic neural networks with mixed time delays and nonlinearity[J].Neurocomputing,2009,72(13/15):3357-3365.
[2] Su Weiwei,Chen Yiming.Global robust exponential stability analysis for stochastic interval neural networks with time-varying delays[J]. Communications in Nonlinear Science and Numerical Simulation,2009,14(5):2293-2300.
[3] Zhang Yijun,Xu Shenyuan,Zeng Zhenping.Novel robust stability criteria of discrete-time stochastic recurrent neural networks with time delay[J]. Neurocomputing,2009,72(13/15):3343-3351.
[4] Zhang Yijun,Yue Dong,Tian Engang.Robust delay-distribution-dependent stability of discrete-time stochastic neural networks with time-varying delay[J]. Neurocomputing,2009,72(4/6):1265-1273.
[5] Wu Zhengguang,Su Hongyu,Chu Jian,et al. Improved result on stability analysis of discrete stochastic neural networks with time delay[J].Physics Letters A,2009,373(17):1546-1552.
[6] Wu Zhengguang,Su Hongyu,Chu Jian,et al. New results on robust exponential stability for discrete recurrent neural networks with time-varying delays[J]. Neurocomputing,2009,72(13/15):3337-3342.
AsymptoticStabilityforDiscrete-timeStochasticNeuralNetworkswithMixedTime-delays
CHEN Yi-ming, XU Zeng-hui, ZHAO Suo-suo, ZHOU Zhi-quan
(CollegeofScience,YanshanUniversity,Qinhuangdao066004,China)
A class of stochastic neural networks with discrete and distributed time-varying delays was studied.By constructing a new Lyapunov-Krasovskii function,the theorem was achieved to ensure the asymptotic stability. The theorem was obtained in the form of linear matrix inequality,which could be calculated by LMI toolbox in Matlab. An example was provided to show the effectiveness of the theorem.
stochastic neural network; mixed time-delay; linear matrix inequality; asymptotic stability
TP 183
A
1671-6841(2011)04-0033-06
2011-06-01
河北省自然科學(xué)基金資助項目,編號E2009000365.
陳一鳴(1957-),男,教授,博士,主要從事神經(jīng)網(wǎng)絡(luò)及控制理論研究,E-mail:chenym@ysu.edu.cn;通訊作者:徐增輝(1986-),女,碩士,主要從事神經(jīng)網(wǎng)絡(luò)及魯棒控制研究,E-mail:xuzenghui5566@163.com.