秦海強(qiáng),趙性泉,周萍,張寧,隋濱濱,王擁軍
年齡對頸動(dòng)脈血流動(dòng)力學(xué)影響的初步研究①
秦海強(qiáng)1a,趙性泉1a,周萍2,張寧1a,隋濱濱1b,王擁軍1a
目的 研究年齡對頸總動(dòng)脈血流動(dòng)力學(xué)參數(shù)的影響。方法47名不同年齡健康受試者的雙側(cè)頸動(dòng)脈分別被MR掃描,在頸動(dòng)脈分叉部位下2 cm頸總動(dòng)脈平面上,把頸總動(dòng)脈壁平均分為24等份,利用相位對比MRI和三維拋物面模型擬合的方法,計(jì)算每個(gè)空間位置一個(gè)心動(dòng)周期內(nèi)的平均剪切力以及空間位置上最小的剪切力。觀察年齡對頸動(dòng)脈血流動(dòng)力學(xué)參數(shù)的影響。結(jié)果有9名受試者的9條頸動(dòng)脈,因難以耐受較長時(shí)間的掃描或掃描結(jié)果有偽影,在分析時(shí)排除。余85條血管頸動(dòng)脈血管壁上平均剪切力及空間位置上最低剪切力分別為(7.45±2.12)dyne/cm2和(5.98±1.93)dyne/cm2,均與年齡負(fù)相關(guān)(P<0.05)。結(jié)論隨著年齡的增長,頸總動(dòng)脈總的平均剪切力和空間分布最低剪切力下降。
頸動(dòng)脈;血流動(dòng)力學(xué);年齡
在所有腦卒中中,缺血性腦卒中超過80%[1]。顱外頸動(dòng)脈粥樣硬化已被確認(rèn)為缺血性腦血管病的危險(xiǎn)因素[2-4]。約20%~25%的腦卒中是由于頸動(dòng)脈粥樣硬化性斑塊引起[5-6],頸動(dòng)脈易損斑塊易導(dǎo)致栓子脫落,隨血液循環(huán)阻塞遠(yuǎn)端血管,導(dǎo)致栓塞性腦卒中[7-8]。研究頸動(dòng)脈粥樣硬化性斑塊對卒中的影響及頸動(dòng)脈粥樣硬化的發(fā)生機(jī)理有重要的臨床意義,有助于卒中的病因、發(fā)病機(jī)制分析,并為個(gè)體化的診斷、治療和預(yù)防提供基礎(chǔ)。
近年來的研究表明,動(dòng)脈粥樣硬化的形成和發(fā)展與局部血流動(dòng)力學(xué)因素密切相關(guān)[9-11],如局部血流速度、血管壁的張應(yīng)力、湍流、剪切力等,尤其是剪切力與動(dòng)脈粥樣硬化之間的關(guān)系研究較多[12]。在低剪切力條件下,有利于血管壁對氧化低密度脂蛋白的攝取,而發(fā)生動(dòng)脈粥樣硬化[13]。年齡是動(dòng)脈粥樣硬化的重要危險(xiǎn)因素,隨著年齡的增長,發(fā)生動(dòng)脈粥樣硬化的危險(xiǎn)性逐漸增高。據(jù)估計(jì),60歲以上的老年人中約9%有頸動(dòng)脈粥樣硬化。從理論上來,隨著年齡的增高,頸動(dòng)脈管壁剪切力下降,從而導(dǎo)致動(dòng)脈粥樣硬化的發(fā)生。本研究將在體觀察年齡對頸總動(dòng)脈管壁血流動(dòng)力學(xué)的影響。
1.1 一般資料 2007年1~12月通過公開招募的方式選取47名健康志愿者入組本研究。
排除標(biāo)準(zhǔn):①臨床確診或高度懷疑有心臟病、卒中、外周動(dòng)脈粥粥樣硬化病史;②帶有神經(jīng)刺激器、胰島素泵、心臟起搏器、動(dòng)脈瘤夾、人工心臟金屬瓣膜、體內(nèi)有金屬或磁性物質(zhì)植入史、眼球金屬異物等不能進(jìn)行磁共振檢查;③妊娠期、哺乳期和前30 d內(nèi)分娩;④幽閉恐懼癥;⑤既往有心腦血管疾病、外周血管疾病。
1.2 方法
1.2.1 頸動(dòng)脈MR掃描 所有受試者接受3.0 T MR掃描儀(Trio-Tim,西門子,埃爾朗恩,德國)掃描檢查?;颊咂脚P位,表面線圈(西門子分公司,深圳,中國)置入患者頸部。分別對患者進(jìn)行左側(cè)和右側(cè)頸動(dòng)脈掃描。
首先進(jìn)行矢狀位和冠狀位掃描,判斷頸動(dòng)脈的形態(tài)和分叉所在部位,然后進(jìn)行在頸動(dòng)脈分叉部位下2 cm范圍內(nèi)掃描。掃描參數(shù):重復(fù)時(shí)間(TR)為78.6 ms,回波時(shí)間為4.6 ms。層厚5 mm,矩陣為256×256,視野(FOV)為120×120 mm,層面內(nèi)的分辨率為0.47×0.47 mm2。采用心電門控技術(shù),對搏動(dòng)的血管在整個(gè)心動(dòng)周期中連續(xù)采集,在一個(gè)R-R間隔內(nèi)得到16幀血流相位圖和量值圖。掃描頸內(nèi)動(dòng)脈時(shí),選取頸動(dòng)脈分叉部位上1 cm范圍掃描,掃描參數(shù)同頸總動(dòng)脈。
1.2.2 血流剪切力的計(jì)算步驟 剪切力的計(jì)算是采用三維拋物面模型擬合方法(Three-dimensional paraboloid model,3DP)[14-15]。首先在每幅量值圖上選取初始血管邊界。利用自制軟件,在血管內(nèi)設(shè)定種子點(diǎn),設(shè)定容差值(最大信號(hào)強(qiáng)度與血管邊界像素的信號(hào)強(qiáng)度之差)為85%,計(jì)算機(jī)根據(jù)信號(hào)閾值的差別自動(dòng)找到邊界點(diǎn),擬合為圓形或橢圓形。將此設(shè)為血管的初始邊界,并自動(dòng)復(fù)制至相應(yīng)時(shí)相的相位圖上。
利用PC-MR相位圖可以測出在頸總動(dòng)脈平面上每個(gè)點(diǎn)的速度,并且可以通過后處理方式得到速度等高線圖和3DP圖顯示血流速度分布[16]。根據(jù)血管橫斷面積及血流速度,計(jì)算出血流率。以血流率最大值定義為收縮期峰值時(shí)的血流率,以血流率最小值定義為舒張末期的血流率。
血管壁剪切力計(jì)算應(yīng)用三維拋物面模型擬合方法。設(shè)定扇形計(jì)算區(qū)域。本研究扇形區(qū)域的角度設(shè)為90°,厚度設(shè)為半徑的70%~90%。為了避免血管外噪聲點(diǎn)的干擾,設(shè)置扇形區(qū)域內(nèi)像素速度值為血管最大速度值20%~80%的像素點(diǎn)被收入計(jì)算。扇形區(qū)域逆時(shí)針旋轉(zhuǎn),每次15°,每個(gè)時(shí)相沿血管壁求得24個(gè)管壁切應(yīng)率(WSR)值。血液黏度設(shè)為3.5 cP[17],根據(jù)公式分別計(jì)算不同時(shí)相不同位置局部血管壁剪切力值。對每一等分單獨(dú)計(jì)算,可以計(jì)算出每一等份內(nèi)隨心動(dòng)周期變化的剪切力值,也可以得到某一心動(dòng)周期瞬時(shí)的剪切力分布圖。將所有時(shí)相所有位置的管壁剪切力(wall shear stress,WSS)值進(jìn)行平均得到平均剪切力值。
1.2.3 總的平均剪切力和空間分布上最低剪切力的選定
頸總動(dòng)脈管壁在空間被分為的24個(gè)扇區(qū),以每個(gè)扇區(qū)為一個(gè)單位,計(jì)算每個(gè)扇區(qū)在一個(gè)心動(dòng)周期內(nèi)的剪切力,所有剪切力的均數(shù)為總的平均剪切力,而剪切力最低部位上對應(yīng)的剪切力被定義為空間分布上最低剪切力。
1.3 統(tǒng)計(jì)學(xué)分析 用SPSS 12.0統(tǒng)計(jì)學(xué)軟件進(jìn)行統(tǒng)計(jì)學(xué)分析。年齡與頸總動(dòng)脈管壁剪切力的關(guān)系采用Pearson相關(guān)分析和線性回歸分析。以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
47名受試者中,有9名的9條頸動(dòng)脈,因難以耐受較長時(shí)間的掃描或掃描結(jié)果有偽影,在分析時(shí)排除在外。對剩下的85條血管進(jìn)行分析,頸動(dòng)脈血管壁上平均剪切力及空間位置上最低剪切力分別為(7.45±2.12)dyne/cm2和(5.98±1.93)dyne/cm2。
2.1 計(jì)算機(jī)后處理影像 利用PC-MR相位圖可以測出在頸總動(dòng)脈平面上每個(gè)點(diǎn)的速度,并且可以通過后處理方式得到速度等高線圖和3DP圖顯示血流速度分布。
應(yīng)用三維拋物面模型擬合方法,可以計(jì)算出心動(dòng)周期任何瞬時(shí)間點(diǎn)上,在血管環(huán)狀壁上任何一點(diǎn)的剪切力。圖1顯示了收縮期峰值及舒張末期時(shí)頸總動(dòng)脈剪切力的變化。同樣,把心動(dòng)周期分為16個(gè)時(shí)段,可以計(jì)算在頸總動(dòng)脈同一空間位置上的血管壁剪切力在一個(gè)心動(dòng)周期不同時(shí)刻的變化(圖2)。
圖1 在心動(dòng)周期內(nèi)的收縮期峰值和舒張末期,管壁不同位置剪切力的變化
圖2 管壁上某一空間位置上剪切力隨心動(dòng)周期的變化
2.2 頸總動(dòng)脈總的平均WSS與年齡的相關(guān)性 頸總動(dòng)脈總的平均WSS(y)與年齡(x)負(fù)相關(guān)?;貧w方程:y=68.8-13.6x。見表1。
表1年齡與頸總動(dòng)脈總的平均WSS的相關(guān)性
2.3 頸總動(dòng)脈空間最低WSS與年齡的相關(guān)性 頸總動(dòng)脈空間最低WSS(y)與年齡(x)負(fù)相關(guān)。回歸方程:y=58.8-12.0x。見表2。
表2年齡與頸總動(dòng)脈空間最低WSS的相關(guān)性
管壁剪切力是指血流對血管壁腔面的牽引力,低管壁剪切力是動(dòng)脈疾病最危險(xiǎn)的血流動(dòng)力學(xué)因素[18-19]。在低剪切力條件下,有利于血管壁對氧化低密度脂蛋白的攝取[13]。特別是在血流不均一條件下,剪切力的大小與血管平滑肌細(xì)胞的密度呈反比[20]。管壁剪切力與血流速率成正比,與血管半徑的立方和血液粘稠度成反比。
年齡是動(dòng)脈粥樣硬化的重要危險(xiǎn)因素。早期的研究假想,隨年齡增長,由于最小工作原理,無論管徑粗細(xì),平均管壁剪切力保持恒定[21-23];但之后的研究發(fā)現(xiàn),隨年齡增長管壁剪切力下降[24]。實(shí)際上,在人體的研究發(fā)現(xiàn),隨著年齡增加,管壁的硬化程度增加[25-29],管徑增大[27],由于管壁剪切力與血管半徑的立方成反比,管徑的增大導(dǎo)致管壁剪切力的下降,這種代償?shù)哪康氖潜3肿銐虻难萘縖30]。但是,這種學(xué)說與管壁剪切力通過管徑調(diào)節(jié)保持恒定的假說不同[31-32]。在人體的無創(chuàng)性研究也發(fā)現(xiàn),隨著年齡增長,頸總動(dòng)脈直徑有所變化。管壁剪切力除受血管半徑的影響,還受到血流速度的影響,且管壁剪切力有空間位置上的變化,在血管壁的不同位置(如內(nèi)側(cè)或外側(cè))有所不同,這些都使得分析更加復(fù)雜化。既往由于技術(shù)的限制,無法在體檢測出管壁不同位置上剪切力的變化。本研究利用相位對比磁共振分析發(fā)現(xiàn),對于頸總動(dòng)脈管壁上空間分布上剪切力最小的部位,隨著年齡增長,這種剪切力逐漸下降,可能更易在局部動(dòng)脈粥樣硬化斑塊。但是從本試驗(yàn)的研究發(fā)現(xiàn),年齡與這種剪切力的相關(guān)性較低,提示除了年齡外,還可能會(huì)有其他重要因素參于頸動(dòng)脈粥樣硬化的形成。
本研究的不足之處在于檢測成本較高,對設(shè)備的要求高,不僅需要高分辨的磁共振的檢測儀,而且還需要備有表面線圈,限制了臨床的廣泛應(yīng)用,也造成了本研究樣本量相對較少。今后還應(yīng)增加樣本量進(jìn)一步研究不同性別之間在頸動(dòng)脈血流動(dòng)力學(xué)參數(shù)上是否有差異。
[1]Bamford J,Dennis M,Sandercock P,et al.The frequency,causes and timing of death within 30 days of a first stroke:the Oxfordshire Community Stroke Project[J].J Neurol Neurosurg Psychiatry,1990,53(10):824-829.
[2]Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis.North American Symptomatic Carotid Endarterectomy Trial Collaborators[J].N Engl J Med,1991,325(7):445-453.
[3]Randomised trial of endarterectomy for recently symptomatic carotid stenosis:final results of the MRC European Carotid Surgery Trial(ECST)[J].Lancet,1998,351(9113):1379-1387.
[4]DeBakey ME,Lawrie GM,Glaeser DH.Patterns of atherosclerosis and their surgical significance[J].Ann Surg,1985,201(2):115-131.
[5]Kazmierski MK.[Stenosis of the carotid arteries][J].Wiad Lek,2003,56(5-6):260-265.
[6]Mead GE,Murray H,Farrell A,et al.Pilot study of carotid surgery for acute stroke[J].Br J Surg,1997,84(7):990-992.
[7]Bamford J,Sandercock P,Dennis M,et al.Classification and natural history of clinically identifiable subtypes of cerebral infarction[J].Lancet,1991,337(8756):1521-1526.
[8]Bamford J,Sandercock P,Dennis M,et al.A prospective study of acute cerebrovascular disease in the community:the Oxfordshire Community Stroke Project-1981-86.2.Incidence,case fatality rates and overall outcome at one year of cerebral infarction,primary intracerebral and subarachnoid haemorrhage[J].J Neurol Neurosurg Psychiatry,1990,53(1):16-22.
[9]Zarins CK,Giddens DP,Bharadvaj BK,et al.Carotid bifurcation atherosclerosis:uantitative correlation of plaque localization with flow velocity profiles and wall shear stress[J].Circulation Res,1983,53:502-514.
[10]Womersley JR.Oscillatory flow in arteries:the reflection of the pulse wave at junctions and rigid inserts in the arterial system[J].Phys Med Biol,1958,2:313-323.
[11]Schulz UGR,Rothwell PM.Major variation in carotid bifurcation anatomy:a possible risk factor for plaque development?[J].Stroke,2001,32:2522-2529.
[12]Glagov S,Zarins C,Giddens DP,et al.Hemodynamics and atherosclerosis:insights and perspectives gained from studies of human arteries[J].Arch Pathol Lab Med,1988,112(10):1018-1031.
[13]Niwa K,Kado T,Sakai J,et al.The effects of a shear flow on the uptake of LDL and acetylated LDL by an EC monoculture and an EC-SMC coculture[J].Ann Biomed Eng,2004,32(4):537-543.
[14]Oyre S,Ringgaard S,Kozerke S,et al.Quantitation of circumferential subpixel vessel wall position and wall shear stress by multiple sectored three-dimensional paraboloid modeling of velocity encoded cine MR[J].Magn Reson Med,1998,40(5):645-655.
[15]Oyre S,Paaske WP,Ringgaard S,et al.Automatic accurate non-invasive quantitation of blood flow,cross-sectional vessel area,and wall shear stress by modelling of magnetic resonance velocity data[J].Eur J Vasc Endovasc Surg,1998,16(6):517-524.
[16]Wu SP,Ringgaard S,Pedersen EM.Three-dimensional phase contrast velocity mapping acquisition improves wall shear stress estimation in vivo[J].Magn Reson Imaging,2004,22(3):345-351.
[17]Papaioannou TG,Stefanadis C.Vascular wall shear stress:basic principles and methods[J].Hellenic J Cardiol,2005,46(1):9-15.
[18]Tavlor CA,Hughes DJR,Zarins CK.Finite element modeling of blood flow in arteries[J].Computer Methods in Applied Mechanies and Engineering,1998,158:156-196.
[19]Irace C,Cortese C,Fiaschi E,et al.Wall shear stress is associated with intima-media thickness and carotid atherosclerosis in subjects at low coronary heart disease risk[J].Stroke,2004,35(2):464-468.
[20]Liu SQ,Tang D,Tieche C,et al.Pattern formation of vascular smooth muscle cells subject to nonuniform fluid shear stress:mediation by gradient of cell density[J].Am J Physiol Heart Circ Physiol,2003,285(3):H1072-H1080.
[21]Murray CD.The Physiological Principle of Minimum Work:I.The Vascular System and the Cost of Blood Volume[J].Proc Natl Acad Sci USA,1926,12(3):207-214.
[22]Rodbard S.Negative feedback mechanisms in the architecture and function of the connective and cardiovascular tissues[J].Perspect Biol Med,1970,13(4):507-527.
[23]La Barbera M.Principles of design of fluid transport systems in zoology[J].Science,1990,249(4972):992-1000.
[24]Samijo SK,Willigers JM,Barkhuysen R,et al.Wall shear stress in the human common carotid artery as function of age and gender[J].Cardiovasc Res,1998,39(2):515-522.
[25]Laogun AA,Gosling RG.in vivo arterial compliance in man[J].Clin Phys Physiol Meas,1982,3(3):201-212.
[26]Reneman RS,van Merode T,Hick P,et al.Flow velocity patterns in and distensibility of the carotid artery bulb in subjects of various ages[J].Circulation,1985,71(3):500-509.
[27]Reneman RS,van Merode T,Hick P,et al.Age-related changes in carotid artery wall properties in men[J].Ultrasound Med Biol,1986,12(6):465-471.
[28]Baskett JJ,Lewis RR,Beasley MG,et al.Changes in carotid artery compliance with age[J].Age Ageing,1990,19(4):241-246.
[29]Hansen F,Mangell P,Sonesson B,et al.Diameter and compliance in the human common carotid artery--variations with age and sex[J].Ultrasound Med Biol,1995,21(1):1-9.
[30]Kamiya A,Bukhari R,Togawa T.Adaptive regulation of wall shear stress optimizing vascular tree function[J].Bull Math Biol,1984,46(1):127-137.
[31]Duncan DD,Bargeron CB,Borchardt SE,et al.The effect of compliance on wall shear in casts of a human aortic bifurcation[J].J Biomech Eng,1990,112(2):183-188.
[32]Perktold K,Thurner E,Kenner T.Flow and stress characteristics in rigid walled and compliant carotid artery bifurcation models[J].Med Biol Eng Comput,1994,32(1):19-26.
Effect of Age on Carotid Hemodynamics
QIN Hai-qiang,ZHAO Xing-quan,ZHOU Ping,et al.Department of Neurology,Beijing Tiantan Hospital,Capital Medical University,Beijing 100050,China
ObjectiveTo study the effect of age on the hemodynamics of common carotid artery.Methods47 healthy volunteers were studied.Wall shear stress(WSS)values localized at common carotid artery 2 cm below the bifurcation were calculated with cine phase-contrast MR imaging combined three-dimensional paraboloid(3DP)model.On the spatial distribution,common carotid artery wall was divided into 24 equal parts.Calculate the mean WSS in a cardiac cycle on each part,and choose the minimal WSS value.Then the effects of age on the average WSS and minimal WSS were observed.ResultsTotal 94 common carotid arteries of 47 health volunteers were examined,in which 9 carotid arteries in 9 volunteers were excluded because of uninterpretable high-resolution MRI findings or volunteer's intolerance for the detection.In the remaining 85 common carotid arteries,the average WSS and the minimal WSS during a cardiac cycle on the spatial distribution were(7.45±2.12)dyne/cm2and(5.98±1.93)dyne/cm2respectively.Both average WSS and minimal WSS were negative correlated with age(P<0.05).ConclusionWith the age increased,mean WSS and minimal WSS on the spatial distribution of common carotid artery decreased.
carotid;hemodynamics;age
[本文著錄格式]秦海強(qiáng),趙性泉,周萍,等.年齡對頸動(dòng)脈血流動(dòng)力學(xué)影響的初步研究[J].中國康復(fù)理論與實(shí)踐,2012,18(6):573-576.
10.3969/j.issn.1006-9771.2012.06.022
1.首都醫(yī)學(xué)發(fā)展科研基金資助項(xiàng)目(2009-3106);2.北京市科普項(xiàng)目(社會(huì)征集類)(Z09020600360917);3.首都醫(yī)科大學(xué)基礎(chǔ)-臨床科研合作基金(11021289和1000170791)。
1.首都醫(yī)科大學(xué)附屬北京天壇醫(yī)院,a:神經(jīng)內(nèi)科;b:神經(jīng)影像中心,北京市100050;2.首都醫(yī)科大學(xué)生物醫(yī)學(xué)工程學(xué)院,北京市100054。作者簡介:秦海強(qiáng)(1974-),男,河南林州市人,博士,主治醫(yī)師,主要研究方向:腦血管病的診治。通訊作者:王擁軍。
R543.4
A
1006-9771(2012)06-0573-04
2012-04-28
2012-06-06)
·專題·