鄧?yán)蚶?王仁君 綜述 蘇紀(jì)平 審校
1 廣西醫(yī)科大學(xué)第一附屬醫(yī)院耳鼻咽喉頭頸外科(南寧 530021)
水楊酸鹽是臨床上常用的解熱、鎮(zhèn)痛、抗炎、抗風(fēng)濕藥物,但其對聽覺系統(tǒng)的副作用如可導(dǎo)致耳鳴、可逆性的30~40 dB的聽力下降等仍是臨床上亟待解決的問題。研究已發(fā)現(xiàn),水楊酸鈉的耳毒性機(jī)制與谷氨酸受體N-甲基-D-天冬氨酸(N-metlyl-d-aspartate,NMDA)介導(dǎo)的興奮毒性有關(guān),并且能通過內(nèi)源性Src激酶家族調(diào)節(jié)。本文就水楊酸鈉的耳蝸興奮毒性及其與Src的關(guān)系進(jìn)行綜述。
谷氨酸是哺乳動物中樞神經(jīng)系統(tǒng)一種主要的興奮性神經(jīng)遞質(zhì),但由于各種生理或病理原因造成谷氨酸濃度過高,過度刺激其突觸后受體,則會產(chǎn)生細(xì)胞毒性,即興奮毒性。過高濃度的谷氨酸激活PA/KA受體,促進(jìn)大量Na+、Cl-和水內(nèi)流進(jìn)入細(xì)胞,致細(xì)胞腫脹[1];同時,過量的谷氨酸過度激活NMDA受體,致Ca2+通道病理性開放,引起大量Ca2+內(nèi)流,細(xì)胞內(nèi)Ca2+超載,線粒體功能失活,自由基產(chǎn)生以及ATP能量衰竭,Caspase酶級聯(lián)反應(yīng)激活,細(xì)胞凋亡[2]。臨床上,這種興奮毒性所造成的細(xì)胞損傷很常見,如急性的局部缺血、腦外傷時,興奮毒性直接介導(dǎo)神經(jīng)細(xì)胞的丟失;在慢性神經(jīng)退行性疾病(如老年性癡呆、肌萎縮型側(cè)索硬化、帕金森病、亨廷頓病等)中,興奮毒性也介導(dǎo)了神經(jīng)機(jī)能異常。
水楊酸鈉是阿司匹林的主要代謝產(chǎn)物和有效成分,廣泛應(yīng)用于解熱、鎮(zhèn)痛、抗炎、抗風(fēng)濕和抗血栓形成等多方面臨床治療。但在神經(jīng)系統(tǒng),水楊酸鈉對不同狀態(tài)下的神經(jīng)元作用迥異,既有神經(jīng)保護(hù)作用,亦有神經(jīng)毒性作用。
實(shí)驗(yàn)證明,在許多情況下,水楊酸類藥物對神經(jīng)細(xì)胞有良好的神經(jīng)保護(hù)作用。Wang等[3]報道,在酸中毒的大腦皮層神經(jīng)元模型中,用膜片鉗全細(xì)胞記錄模式,可以檢測到300 μM到30 mM的水楊酸鈉或阿司匹林通過作用于酸敏感離子通道(acid-sensing ion channels,ASICs),能可逆性抑制ASIC電流,顯著減少酸中毒引起的皮層神經(jīng)元死亡數(shù)量,從而使大腦皮層細(xì)胞免受損傷。在原代培養(yǎng)的中腦組織中,用免疫組化染色的方法也可以觀察到0.01~1 mM阿司匹林能明顯抑制脂多糖(lipopolysaccharide,LP)誘導(dǎo)的神經(jīng)毒性,通過檢測觀察到阿司匹林主要抑制了LP誘導(dǎo)的氧化應(yīng)激和/或炎癥反應(yīng),減少活性氧(reactive oxygen species,ROS)的產(chǎn)生,同時促進(jìn)抗炎細(xì)胞因子白介素-10(interleukin,IL-10) 和轉(zhuǎn)化生長因子 1(transforming growth factorbeta-1,TGF- β 1)的釋放,從而保護(hù)多巴胺能神經(jīng)元免受LP引起的神經(jīng)毒性損害[4]。此外,在NMDA造成視網(wǎng)膜神經(jīng)節(jié)細(xì)胞興奮毒性的模型中,阿司匹林還能通過直接抑制蛋白激酶Cζ(protein kinase C zeta,PKCζ)自身裂解或在細(xì)胞核中易位而阻止其被活化,減少誘導(dǎo)性一氧化氮合酶(inducible nitric oxide synthase,iNOS)及一氧化氮(nitric oxide,NO)的表達(dá),使視網(wǎng)膜細(xì)胞免受損傷, 發(fā)揮神經(jīng)保護(hù)作用[5]。另一方面, Katz 等[6]卻報道給大鼠腹腔注射1 700 mg/kg水楊酸鈉40分鐘內(nèi)可致死大鼠,而抑制水楊酸鈉導(dǎo)致的線粒體膜通透性轉(zhuǎn)換(membrane permeability transition,MPT),能明顯延長注射致死劑量水楊酸鈉的大鼠的生存時間。在PC12細(xì)胞株和大鼠耳蝸器官的培養(yǎng)中,水楊酸鈉也誘導(dǎo)了神經(jīng)細(xì)胞凋亡并呈現(xiàn)濃度依賴性[7,8]。為探討水楊酸鈉對中樞神經(jīng)系統(tǒng)毒副作用的機(jī)理,Gong等[9]應(yīng)用膜片鉗技術(shù),觀察水楊酸鈉對海馬CA1區(qū)興奮性突觸后電位(eld excitatory postsynaptic potentials,field EPSPs,fEPSPs)和細(xì)胞群體峰電位(population spike ,PS)的影響時發(fā)現(xiàn),水楊酸鈉明顯增強(qiáng)PS的峰值,卻對fEPSPs沒有明顯的影響,進(jìn)一步觀察發(fā)現(xiàn)水楊酸鈉通過抑制γ-氨基丁酸(γ-aminobutvric acid,GABA)能神經(jīng)傳遞增強(qiáng)了神經(jīng)興奮性,但對基本的興奮性神經(jīng)突觸傳遞并無影響。
以上實(shí)驗(yàn)結(jié)果提示,水楊酸鈉作用機(jī)制的復(fù)雜性和多樣性導(dǎo)致了水楊酸鈉的不同作用表現(xiàn)。實(shí)驗(yàn)?zāi)P?、藥物劑量、處理時間以及體溫、營養(yǎng)等多方面因素都能影響水楊酸鈉作用結(jié)果的變化。水楊酸鈉對神經(jīng)細(xì)胞的保護(hù)作用是主要針對缺血、缺氧、酸中毒等病理?xiàng)l件而言的,主要通過抗氧化、抗炎機(jī)理,抑制NF-κB的活化等機(jī)制來實(shí)現(xiàn)。而水楊酸鈉的細(xì)胞毒性作用機(jī)制則是其自身毒性對正常細(xì)胞的損傷而言,其機(jī)制與其經(jīng)典的藥物作用機(jī)制不同,既可以直接誘導(dǎo)MPT,產(chǎn)生氧化磷酸化脫偶聯(lián),直接促使細(xì)胞凋亡,也可通過阻斷抑制性受體功能,造成興奮性受體過度興奮,產(chǎn)生興奮毒性。
谷氨酸是耳蝸內(nèi)毛細(xì)胞與耳蝸螺旋神經(jīng)節(jié)神經(jīng)元(spiral ganglion neurons,SGN)突觸的重要神經(jīng)遞質(zhì)。谷氨酸受體廣泛分布于哺乳動物的聽覺系統(tǒng),如N-甲基-D天冬氨酸受體(N-methyl-d-aspartate receptor,NMDAR)、α-氨基-3羥基-5甲基-4異惡唑受體(al-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor,AMPAR)、海人藻酸受體(kainate,KAR)在耳蝸中均有表達(dá)。
損傷性噪聲、耳蝸缺血、外傷等都可引起谷氨酸從內(nèi)毛細(xì)胞過度釋放,導(dǎo)致SGN興奮性毒性,表現(xiàn)為SGN神經(jīng)元的腫脹(空泡化)以及內(nèi)毛細(xì)胞附近樹突末梢的空泡形成,最后神經(jīng)細(xì)胞凋亡[10,11]。直接將體外培養(yǎng)的SGN暴露于高濃度的谷氨酸鹽中,亦能誘導(dǎo)SGN凋亡,并呈濃度依賴性,而應(yīng)用caspase-3阻斷劑能對抗谷氨酸鹽引起的SGN凋亡[12]。
Guitton等[13]在水楊酸鈉誘導(dǎo)的耳鳴大鼠模型中,通過圓窗在耳蝸外淋巴液中給予NMDA受體阻斷劑5-甲基二氫丙環(huán)庚烯亞胺馬來酸(dizocilpine maleate,MK-801)、7-氯犬尿酸(7-chlorokynurenic acid,7-CK)、加環(huán)利定(gacyclidine)后,觀察到大鼠的耳鳴明顯減弱,證明水楊酸鈉引起的耳鳴與耳蝸的NMDA受體有關(guān),是水楊酸鈉興奮毒性的表現(xiàn)。迄今為止,已有許多關(guān)于水楊酸類藥物對聽覺系統(tǒng)的毒副作用的研究,大多認(rèn)為水楊酸鈉的作用機(jī)制是個復(fù)雜的過程,大劑量的水楊酸類藥物損傷神經(jīng)功能可以沿著聽覺通路,從毛細(xì)胞和初級聽覺神經(jīng)元(SGN)到大腦中樞聽覺皮層的任一環(huán)節(jié)起作用[14~17]。毛細(xì)胞和SGN作為這個反應(yīng)的外周環(huán)節(jié),起著重要作用。但較毛細(xì)胞而言,SGN對水楊酸鹽的毒性更敏感。體內(nèi)外實(shí)驗(yàn)都已證明,1 mM的水楊酸鹽即可引起顯著的SGN毒性[18],而毛細(xì)胞則需要5~7 mM甚至更高的濃度[19],最近甚至有報道高濃度的水楊酸鈉損傷SGN,卻能增強(qiáng)毛細(xì)胞的功能[20]。盡管文獻(xiàn)報道水楊酸鹽對多種神經(jīng)細(xì)胞有保護(hù)作用[2~4],但用水楊酸鈉直接作用于體內(nèi)或體外培養(yǎng)的SGN組織時,卻觀察到水楊酸藥物促進(jìn)了SGN的凋亡,并呈現(xiàn)出時間和劑量的依賴趨勢[8, 18, 21,22]。其具體機(jī)制目前并沒有完全明了。Jung等[8]用水楊酸鈉作用于SGN后,檢測到其細(xì)胞活性明顯降低,利用熒光染色標(biāo)記出其凋亡率明顯增高,SGN細(xì)胞上多種熱休克蛋白以及Bcl-2的表達(dá)發(fā)生了改變,為水楊酸鈉的神經(jīng)毒性作用提供了一部分病理依據(jù)。Wei等[18]亦觀察到水楊酸鈉作用后SGN呈現(xiàn)胞體萎縮、軸突縮短甚至消失的典型凋亡形態(tài)學(xué)改變,SGN上多種與凋亡相關(guān)的腫瘤壞死因子(tumor necrosis factor,TNF)也發(fā)生了改變,推測水楊酸鈉所引起的SGN凋亡與caspase介導(dǎo)的凋亡通路有關(guān)。Feng[21,22]則用免疫組化方法驗(yàn)證了水楊酸鈉誘導(dǎo)的SGN凋亡與caspase-3有關(guān),水楊酸鈉對SGN的興奮毒性作用是通過caspase依賴性的凋亡通路實(shí)現(xiàn)的。
3.1 Src家族的結(jié)構(gòu)及功能 Src家族是一組膜結(jié)合的非受體型蛋白酪氨酸激酶(protein tyrosine kinase,PTK),現(xiàn)已知Src家族包括Src、Lck、Fyn、Yes、Lyn、Hck、Fgr、Blk、Frk亞科9個成員,它們的表達(dá)有組織特異性,其中Src、Lck、Fyn、Yes、Lyn在中樞系統(tǒng)中均有高表達(dá)。Src家族成員的結(jié)構(gòu)特征是N端的豆蔻酰化、一個不同源的獨(dú)特結(jié)構(gòu)域、兩個調(diào)節(jié)結(jié)構(gòu)域(SH2和SH3)、一個保守的催化結(jié)構(gòu)域(又稱激酶結(jié)構(gòu)域,kinase domain,KD)和C端負(fù)調(diào)控區(qū)域。Src家族通過信號轉(zhuǎn)導(dǎo)作用,參與調(diào)節(jié)細(xì)胞生長、分化、繼續(xù)生存以及神經(jīng)細(xì)胞的突觸傳遞等功能,并且能影響細(xì)胞粘附、遷移和入侵的能力[23]。
3.2 Src家族對興奮毒性的調(diào)節(jié)作用 興奮毒性在細(xì)胞缺氧、外傷等病理過程中發(fā)揮著重要作用,其主要機(jī)制由NMDA受體介導(dǎo)。在中樞神經(jīng)系統(tǒng)中,Src家族的一個重要作用是調(diào)節(jié)各種離子通道的活動,如電壓門控性鉀離子通道[24]、鈣離子通道[25]、煙堿乙酰膽堿受體[26]等。 Src對NMDA受體也有明顯的調(diào)控作用,主要有以下幾個方面:①介導(dǎo)興奮毒性:XU等在大鼠大腦外傷后的病理過程中觀察到,Src通過對突觸后密度-95(postsynaptic density-95,PSD-95)酪氨酸磷酸化介導(dǎo)了興奮毒性損傷機(jī)制的啟動和增強(qiáng)[27]。Xu等[27]也在缺血再灌注的大鼠模型中通過激活GluR5受體使Src酪氨酸磷酸化功能下降,并影響其與PSD-95、NR2A的相互作用,進(jìn)而使NMDA受體的活性下降,興奮毒性減弱;②調(diào)節(jié)突觸和突觸可塑性:在小腦顆粒細(xì)胞突觸形成過程中,血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)受體F1K1與NMDA受體亞基NR1和NR2B組成復(fù)合體。VEGF與F1K1結(jié)合時,通過激活Src激酶家族而使復(fù)合體中NR2B磷酸化增強(qiáng),NMDA 受體電流和Ca2+內(nèi)流(Ca2+influx)增大,這種增大的Ca2+內(nèi)流能促進(jìn)小腦顆粒細(xì)胞遷移,對神經(jīng)細(xì)胞的突觸形成起重要作用[28];③易化痛覺感受:在用鞘內(nèi)注射NMDA構(gòu)建的痛覺過敏的大鼠模型上,鞘內(nèi)注射Src激酶抑制劑PP2能阻止NR2B受體亞基的酪氨磷酸化,減弱NMDA誘導(dǎo)的NR2B受體突觸表達(dá),使大鼠的機(jī)械觸感的敏感性下降,痛覺敏感性降低[29];④介導(dǎo)藥物成癮:在可卡因成癮的小鼠模型中,Src激酶誘導(dǎo)的NMDA受體亞單位NR2B酪氨酸磷酸化,促進(jìn)了細(xì)胞外信號調(diào)節(jié)激酶(extracellular signal-regulated kinase,ERK) 激活,導(dǎo)致了可卡因成癮的發(fā)生[30]。
Src激酶家族調(diào)控NMDA受體的主要證據(jù)有:①Src家族通過SH2和SH3區(qū)域與NMDA受體結(jié)合,應(yīng)用聯(lián)合免疫沉淀法可標(biāo)志出Src是NMDA受體蛋白的組成部分,并集中在突觸后密度處(postsynaptic density,PSD)[26];②Src家族激活后,能促使NR2A、NR2B磷酸化,增強(qiáng)NMDA 受體功能。用抗磷酸化抗體標(biāo)記NR2A和NR2B受體發(fā)現(xiàn),活體大鼠海馬細(xì)胞中約有2.1%NR2A受體亞基和3.6%NR2B受體亞基是被酪氨酸磷酸化的。在NR2A受體亞基中,已發(fā)現(xiàn)多個c-Src的磷酸化作用位點(diǎn):Tyr-1292、Tyr-1325和Tyr-1387。 Src通過這些作用位點(diǎn)使受體亞基酪氨酸磷酸化,阻止Zn2+依賴性抑制作用對NMDA受體的抑制作用,增加NMDA受體的活性而上調(diào)NMDA受體功能[31];③應(yīng)用細(xì)胞電生理技術(shù),在細(xì)胞中添加Src或能激活Src家族成員的相關(guān)肽,能增強(qiáng)NMDA受體單通道活動,提高NMDA誘導(dǎo)的電流和NMDA受體參與組成的興奮性突觸后電流(excitatory postsynaptic currents,EPSCs);這種增強(qiáng)了的NMDA受體活動能被特異性Src阻斷劑阻斷[32]。
研究表明,NMDA受體電流調(diào)控由酪氨酸磷酸化和去磷酸化來保持平衡:抑制內(nèi)源性Src活動或添加外源性的蛋白酪氨酸磷酸酶(protein tyrosine phosphatase,PTP)能抑制NMDA受體功能[33];反之,應(yīng)用PTP抑制劑抑制內(nèi)源性的PTP活動或添加外源性Src,能增強(qiáng)NMDA受體功能[34]。
根據(jù)以上實(shí)驗(yàn)結(jié)果,推測Src家族對興奮毒性的調(diào)節(jié)機(jī)制可能有:①Src 家族是NMDA受體蛋白的組成部分;②Src 調(diào)控NMDA受體的磷酸化。
3.3 Src家族與水楊酸鈉 在非神經(jīng)細(xì)胞中觀察到了水楊酸鈉能抑制Src活性[35,36]。Wang等[35]用免疫沉淀和免疫印跡法在體外培養(yǎng)的心肌中觀察到水楊酸鈉能抑制血管緊張素或血小板衍生生長因子激活c-Src。應(yīng)用細(xì)胞內(nèi)Ca2+螯合劑或蛋白激酶C抑制劑能減弱水楊酸鈉對Src磷酸化的抑制作用,表明水楊酸鈉對Src活性的抑制作用機(jī)制是Ca2+和蛋白激酶C依賴性的。同時,實(shí)驗(yàn)還發(fā)現(xiàn)水楊酸鈉對Src活性的抑制作用在濃度為5~20 mM時最明顯,并呈現(xiàn)出濃度依賴性,即水楊酸鈉濃度越高其對Src磷酸化的抑制作用越強(qiáng)。而 Perez等[36]發(fā)現(xiàn)在單核細(xì)胞中,水楊酸鈉只有在20 mM的濃度時才對Src磷酸化起一定的作用,而低于這個濃度是沒有作用的。但在神經(jīng)細(xì)胞的研究中,仍未見水楊酸鈉與Src的關(guān)系的報道。
磷酸化對NMDA受體的調(diào)控是一系列影響因子作用的結(jié)果,在興奮毒性過程中起關(guān)鍵作用,通過調(diào)節(jié)NMDA受體磷酸化,尤其是通過調(diào)節(jié)Src功能而減少興奮毒性的危害將是神經(jīng)科學(xué)領(lǐng)域研究的一個新的切入點(diǎn)。目前,Src對于水楊酸鈉耳毒性是否具有調(diào)節(jié)作用仍未見報道,如何通過調(diào)節(jié)其自身受體磷酸化狀態(tài)來影響興奮毒性過程而達(dá)到保護(hù)神經(jīng)細(xì)胞是目前亟需進(jìn)一步研究的課題,以期為防治許多內(nèi)耳疾病提供新的理論依據(jù)。
1 Beck J, Lenart B, Kintner DB, et al. Na-K-Cl cotransporter contributes to glutamate-mediated excitotoxicity[J]. J Neurosci, 2003,23:5 061.
2 Paoletti P,Neyton J. NMDA receptor subunits: function and pharmacology[J]. Curr Opin Pharmacol, 2007,7:39.
3 Wang W, Ye SD, Zhou KQ, et al. High doses of salicylate and aspirin are inhibitory on acid-sensing ion channels and protective against acidosis-induced neuronal injury in the rat cortical neuron[J]. J Neurosci Res, 2011,90:267.
4 Wang F, Zhai H, Huang L, et al. Aspirin protects dopaminergic neurons against lipopolysaccharide-induced neurotoxicity in primary midbrain cultures[J]. J Mol Neurosci, 2011,46:153.
5 Crisanti P, Laplace O, Lecain E ,et al. The role of PKCzeta in NMDA-induced retinal ganglion cell death: prevention by aspirin[J]. Apoptosis, 2006,11:983.
6 Katz KD, Curry SC, Brooks DE, et al. The effect of cyclosporine A on survival time in salicylate-poisoned rats[J]. J Emerg Med, 2004,26:151.
7 Kiss K, Kiss J, Rudolf E, et al. Sodium salicylate inhibits NF-kappaB and induces apoptosis in PC12 cells[J]. J Biochem Biophys Methods, 2004,61:229.
8 Jung HH, Kim HJ, Im GJ, et al. Differential protein expression profiles in salicylate ototoxicity of the mouse cochlea[J]. Hear Res, 2009,255:121.
9 Gong N, Zhang M, Zhang XB, et al. The aspirin metabolite salicylate enhances neuronal excitation in rat hippocampal CA1 area through reducing GABA ergic inhibition[J]. Neuropharmacology, 2008,54:454.
10 Wang J, Tymczyszyn N, Yu Z, et al. Overexpression of X-linked inhibitor of apoptosis protein protects against noise-induced hearing loss in mice[J]. Gene Ther, 2011,18:560.
11 Tabuchi K, Nishimura B, Tanaka S, et al. Ischemia-reperfusion injury of the cochlea: pharmacological strategies for cochlear protection and implications of glutamate and reactive oxygen species[J]. Curr Neuropharmacol, 2010,8:128.
12 Steinbach S,Lutz J. Glutamate induces apoptosis in cultured spiral ganglion explants[J]. Biochem Biophys Res Commun, 2007,357:14.
13 Guitton MJ, Caston J, Ruel J, et al. Salicylate induces tinnitus through activation of cochlear NMDA receptors[J]. J Neurosci, 2003,23:3 944.
14 Wang HT, Luo B, Zhou KQ, et al. Sodium salicylate reduces inhibitory postsynaptic currents in neurons of rat auditory cortex[J]. Hear Res, 2006,215:77.
15 Basta D,Goetze R,Ernst A. Effects of salicylate application on the spontaneous activity in brain slices of the mouse cochlear nucleus, medial geniculate body and primary auditory cortex[J]. Hear Res, 2008,240:42.
16 de Almeida-Silva I, de Oliveira JA, Rossato M, et al. Spontaneous reversibility of damage to outer hair cells after sodium salicylate induced ototoxicity[J]. J Laryngol Otol, 2011,125:786.
17 Deng A,Lu J,Sun W. Temporal processing in inferior colliculus and auditory cortex affected by high doses of salicylate[J]. Brain Res, 2010,1 344:96.
18 Wei L,Ding D,Salvi R. Salicylate-induced degeneration of cochlea spiral ganglion neurons-apoptosis signaling[J]. Neuroscience, 2010,168:288.
19 Kimitsuki T, Kakazu Y, Matsumoto N, et al. Salicylate-induced morphological changes of isolated inner hair cells and outer hair cells from guinea-pig cochlea[J]. Auris Nasus Larynx, 2009,36:152.
20 Chen GD, Kermany MH, D'Elia A, et al. Too much of a good thing: long-term treatment with salicylate strengthens outer hair cell function but impairs auditory neural activity[J]. Hear Res, 2010,265:63.
21 Feng H, Yin SH, Tang AZ, et al. Caspase-3 activation in the guinea pig cochlea exposed to salicylate[J]. Neurosci Lett, 2010,479:34.
22 Feng H, Yin SH, Tang AZ, et al. Salicylate initiates apoptosis in the spiral ganglion neuron of guinea pig cochlea by activating caspase-3[J]. Neurochem Res, 2011,36:1 108.
23 Schenone S, Brullo C, Musumeci F, et al. Src kinase inhibitors:an update on patented compounds[J]. Curr Med Chem, 2011,18:5 061.
24 Kemp PJ, Telezhkin V, Wilkinson WJ, et al. Enzyme-linked oxygen sensing by potassium channels[J]. Ann N Y Acad Sci, 2009(1 177):112.
25 Gonzalez-Gutierrez G, Telezhkin V, Wilkinson WJ, et al. The Src homology 3 domain of the beta-subunit of voltage-gated calcium channels promotes endocytosis via dynamin interaction[J]. J Biol Chem, 2007,282:2 156.
26 Kim NH, Park KS, Cha SK, et al. Src family kinase potentiates the activity of nicotinic acetylcholine receptor in rat autonomic ganglion innervating urinary bladder[J]. Neurosci Lett, 2011,494:190.
27 Xu J,Liu Y,Zhang GY. Neuroprotection of GluR5-containing kainate receptor activation against ischemic brain injury through decreasing tyrosine phosphorylation of N-methyl-D-aspartate receptors mediated by Src kinase[J]. J Biol Chem, 2008,283:29 355.
28 Meissirel C, Ruiz de Almodovar C, Knevels E, et al.VEGF modulates NMDA receptors activity in cerebellar granule cells through Src-family kinases before synapse formation[J]. Proc Natl Acad Sci USA, 2011,108:13 782.
29 Li S, Cao J, Yang X, et al. NR2B phosphorylation at tyrosine 1472 in spinal dorsal horn contributed to N-methyl-D-aspartate-induced pain hypersensitivity in mice[J]. J Neurosci Res, 2011,89:1 869.
30 Pascoli V, Besnard A, Hervé D, et al. Cyclic adenosine monophosphate-independent tyrosine phosphorylation of NR2B mediates cocaine-induced extracellular signal-regulated kinase activation[J]. Biol Psychiatry, 2011,69:218.
31 Hossain MI,Kamaruddin MA,Cheng HC. Aberrant regulation and function of Src-family tyrosine kinases - their potential contributions to glutamate-induced neurotoxicity[J]. Clin Exp Pharmacol Physiol, 2011.http://www.ncbi.nlm.nih.gov/pubmed.
32 Li HB, Jackson MF, Yang K, et al. Plasticity of synaptic GluN receptors is required for the Src-dependent induction of long-term potentiation at CA3-CA1 synapses[J]. Hippocampus, 2011,21:1 053.
33 Le HT, Maksumova L, Wang J, et al. Reduced NMDA receptor tyrosine phosphorylation in PTP alpha-deficient mouse synaptosomes is accompanied by inhibition of four src family kinases and Pyk2: an upstream role for PTPalpha in NMDA receptor regulation[J]. J Neurochem, 2006,98:1 798.
34 Metere A, Mallozzi C, Minetti M, et al. Quinolinic acid modulates the activity of src family kinases in rat striatum: in vivo and in vitro studies[J]. J Neurochem, 2006,97:1 327.
35 Wang Z,Brecher P. Salicylate inhibits phosphorylation of the nonreceptor tyrosine kinases, proline-rich tyrosine kinase 2 and c-Src[J]. Hypertension, 2001,37:148.
36 Perez GM, Melo M, Keegan AD, et al. Aspirin and salicylates inhibit the IL-4- and IL-13-induced activation of STAT6[J]. J Immunol, 2002,168:1 428.