胡巧怡
?
弱耗散Novikov方程強(qiáng)解的整體存在性和衰減性
胡巧怡
(華南農(nóng)業(yè)大學(xué) 數(shù)學(xué)系,廣東 廣州 510642)
研究弱了耗散Novikov方程的Cauchy問(wèn)題,得到強(qiáng)解的整體存在性和衰減性.
Novikov方程;弱耗散;整體存在性;解的衰減
最近Novikov[1]導(dǎo)出了一個(gè)帶三次方非線性項(xiàng)的可積方程
該方程具有許多與Camassa-Holm方程形似的性質(zhì),如同樣具有尖峰解、雙Hamilton結(jié)構(gòu)結(jié)構(gòu)等.
在許多實(shí)際情況下,人們不能忽視能量的耗散.Ott等[6]曾經(jīng)研究了能量耗散對(duì)KdV方程解的影響(包括對(duì)行波解的影響大?。?;Chidaglia[7]把弱耗散KdV方程作為有限維動(dòng)力系統(tǒng)模型,研究了該方程解的長(zhǎng)時(shí)間性態(tài);吳書(shū)印等研究了周期[6]和非周期[9]的弱耗散Camassa-Holm方程強(qiáng)解的爆破、爆破率、整體存在性和衰減性;胡巧怡等[10]研究了周期的弱耗散桿方程解的爆破性質(zhì).
受此啟發(fā),我們考研究下面非周期的弱耗散Novikov方程強(qiáng)解的整體存在性和衰減性.
或
類(lèi)似文獻(xiàn)[4]的方法,可得弱耗散方程(3)的局部適定性.
引理得證.
由引理1結(jié)合Sobolev不等式,得推論1.
證明 由引理1,得
結(jié)合Sobolev不等式,得
推論證畢.
類(lèi)似文獻(xiàn)[4]中的方法,可得如下爆破機(jī)制.
證明 由式(5)得
由方程(3),得
引理證畢.
由此推出
由推論1得
將式(9)和式(10)相加,得
注:1)Novikov方程的整體強(qiáng)解沒(méi)有衰減性,定理2說(shuō)明了弱耗散Novikov方程與非耗散Novikov方程在長(zhǎng)時(shí)間性態(tài)有明顯的不同,即弱耗散項(xiàng)對(duì)Novikov方程整體強(qiáng)解的長(zhǎng)時(shí)間性態(tài)有很大影響.
[1] NOVIKOV V S. Generalizations of the Camassa-Holm equation[J]. J Phys A: Math Theor, 2009: 42: 1-14
[2] TIGLAY F. The periodic Cauchy problem for Novikov's equation[J]. Int Math Res Not, 2010: 267: 1-16.
[3] NI Lidiao, ZHOU Yong. Well-posedness and persistence properties for the Novikov equation[J]. J Differential Equations, 2011, 250: 3002-3021.
[4] WU Xinglong, YIN Zhaoyang. Well-posedness and global existence for the Novikov equation[J]. Ann Sc Norm Sup Pisa, (sumitted).
[5] WU Xinglong, YIN Zhaoyang. Global weak solutions for the Novikov equation[J]. Y Phys A: Math Theor, 2011, 44: 055202 1-17.
[6] OTT E, SUDAN R N. Damping of solitary waves[J]. Phys Fluids, 1970, 13: 1432-1434.
[7]GHIDAGLIA J M. Weakly damped forced Korteweg-de Vries equations behave as a finite dimensional dynamical system in the long time[J]. J Differential Equations, 1988, 74: 369-390.
[8] WU Shuyin, YIN Zhaoyang. Global existence and blow-up phenomena the weakly dissipative for Camassa- Holm equation[J]. J Differential Equations[J]. 2009, 246: 4309-4321.
[9] WU Shuyin, YIN Zhaoyang. Blow-up and decay of the solution of the weakly dis-sipative Degasperis-Procesi equation[J]. SIAM J Math Anal, 2008, 40: 475-490.
[10] HU Qiaoyi, YIN Zhaoyang. Blowup and blowup rate of solutions to a weakly dissipative periodic rod equation[J]. J Math Phys, 2009, 50(8): 1-16.
Global Existence and Attenuation of the Strong Solution of Weak Dissipative Novikov Equations
HUQiao-yi
(Department of Mathematics, South China Agricultural University, Guangzhou 510642, China)
The paper studies weak dissipative Novikov equations’ Cauchy problems and obtains the global existence and the attenuation properties of their strong solutions.
Novikov equations; weak dissipation; global existence; attenuation of solutions
1006-7302(2012)01-0020-05
O175.29
A
2011-09-05
廣東省自然科學(xué)基金資助項(xiàng)目(S2011040001127);廣東省教育廳育苗工程項(xiàng)目(LYM11030)
胡巧怡(1979—),女,廣東惠州人,講師,博士,從事非線性偏微分方程研究.