喬二偉,趙衛(wèi)華,龍長(zhǎng)興
國(guó)土資源部新構(gòu)造運(yùn)動(dòng)與地質(zhì)災(zāi)害重點(diǎn)實(shí)驗(yàn)室,中國(guó)地質(zhì)科學(xué)院地質(zhì)力學(xué)研究所,北京 100081
巖石的地震波性質(zhì)是建立地殼和上地幔物質(zhì)組成和結(jié)構(gòu)模型的基礎(chǔ)[1-8],在區(qū)域構(gòu)造研究和淺部地震勘探中都有廣泛的應(yīng)用.但由于巖石組構(gòu)、礦物組成、溫度、壓力、流體等因素對(duì)巖石地震波性質(zhì)的影響,地震資料的解釋常常是非唯一的.因此,研究含不同孔隙流體的巖石地震波速隨溫度及壓力變化的規(guī)律,對(duì)于提高地震資料解釋的精度和可靠度具有重要的意義,同時(shí)也為深部地球物理探測(cè)與地質(zhì)解釋之間架起一座橋梁.
目前,在巖石地震波性質(zhì)方面的研究已取得了若干成果.其中Timur、Batzle等、史謌等以及劉斌等中外學(xué)者分別對(duì)來(lái)自不同區(qū)域的巖石、在不同的條件下(如溫度、壓力、孔隙度等)進(jìn)行了地震波速與其影響因素之間關(guān)系的研究[9-26].從中可知,同一巖性由于其來(lái)源地不同,所得到的結(jié)果也是不同的,也就是說(shuō)沒(méi)有統(tǒng)一的公式適用于任何地區(qū).延長(zhǎng)油田是我國(guó)重要的油氣生產(chǎn)基地之一,但目前并沒(méi)有地震波性質(zhì)方面的報(bào)道,因此,很有必要對(duì)此區(qū)域進(jìn)行這方面的研究,從而可以為該地區(qū)地震資料的解釋及與聲波測(cè)井之間的對(duì)比提供重要的參考依據(jù)和基礎(chǔ)數(shù)據(jù).鑒于地震波性質(zhì)受溫度變化的影響較?。?,14-15,24,27-28],本 文 著 重 從 壓 力 和 孔 隙 流 體 方 面 ,探討其對(duì)砂巖地震波性質(zhì)的影響.
實(shí)驗(yàn)用的巖樣是三種砂巖Y1、Y2和Y3,均來(lái)自延長(zhǎng)油田,是三口不同深度、不同層位的鉆井取芯.其有關(guān)參數(shù)見(jiàn)表1.
實(shí)驗(yàn)前,先將巖芯加工成直徑25mm、高度50 mm的圓柱體,表面拋光,放入溫度為90℃的真空干燥箱中真空干燥48h以上,或者真空下用蒸餾水(或煤油)飽和24h以上.
表1 巖石樣品的礦物組成、顆粒大小、密度和孔隙度Table 1 Composition,grain size,density and porosity of the samples
實(shí)驗(yàn)所用儀器為 New England Research(NER)公司生產(chǎn)的 AutoLab系列[29-33]2000多功能巖石物性自動(dòng)測(cè)試系統(tǒng).最大測(cè)試壓力為200MPa,誤差為±0.5%.
波速測(cè)量采用的是超聲波脈沖穿透法[34].該方法可以同時(shí)實(shí)現(xiàn)一個(gè)縱波和兩個(gè)相互正交的S波即SH和SV波[31-32]的輸出結(jié)果.其縱波換能器主頻為700kHz,橫波換能器主頻為250kHz.根據(jù)Hornby的方法[35],計(jì)算出P波和S波的相對(duì)誤差分別在1.0%和0.77%以下.
巖樣飽水用的是去離子水,其目的是為了去除其它離子的干擾;飽油用的是煤油,則由于巖樣都屬于低滲砂巖,而煤油既可以作為石油的替代物(它是石油的分餾產(chǎn)物),同時(shí)其粘度較低又不易揮發(fā),更便于飽和巖樣.
在室溫條件下,對(duì)每種砂巖樣品按干燥、飽水和飽油的先后順序分別測(cè)量其在壓力作用下的縱波、橫波速度.一般從5MPa或10MPa開(kāi)始,逐步增加壓力直至180MPa,然后再逐步降低壓力到常壓.在每一壓力值進(jìn)行測(cè)量前至少需等待30min,以保證樣品內(nèi)部的應(yīng)力分布均勻.
巖石的地震波性質(zhì)包括縱波速度(Vp)、橫波速度(Vs)、波速各向異性和S波分裂等.本文則主要研究砂巖的縱波、橫波速度.
圖1是Y1砂巖樣品在干燥、飽水及飽油條件下其縱波、橫波速度隨壓力變化的情況.可以看出,三種波速即Vp、Vs1和Vs2均隨壓力增加(或降低)而基本呈對(duì)數(shù)曲線增大(或減?。▓D中列舉了縱波的擬合公式及相關(guān)系數(shù)).對(duì)于Vp來(lái)說(shuō),飽油的波速最大,其次是飽水,最小的是干燥,即飽油>飽水>干燥,這與施行覺(jué)等[36]的實(shí)驗(yàn)結(jié)果基本一致.而Vs1和Vs2則是:飽油>干燥>飽水.這里的Vs1和Vs2其實(shí)就是兩個(gè)相互正交的S波即SH和SV波.由于所用儀器給出的Vs是Vs1和Vs2,為方便起見(jiàn),本文就采用了這種表示法.
圖1 Y1巖樣在干燥、飽水及飽油情況下Vp、Vs1和Vs2與壓力P的關(guān)系(a)升壓過(guò)程;(b)降壓過(guò)程.Fig.1 P-and S-wave velocity in dry,water and oil saturated conditions changing with pressure for sample Y1(a)Process of increasing the pressure;(b)Process of decreasing the pressure.
圖2 Y2巖樣在干燥、飽水及飽油情況下Vp、Vs1和Vs2與壓力P的關(guān)系(a)升壓過(guò)程;(b)降壓過(guò)程.Fig.2 P-and S-wave velocity in dry,water and oil saturated conditions changing with pressure for sample Y2(a)Process of increasing the pressure;(b)Process of decreasing the pressure.
圖2是Y2砂巖樣品在干燥、飽水及飽油條件下Vp、Vs1和Vs2隨壓力變化的情況.不難看出,它們均隨壓力增加(或降低)而以對(duì)數(shù)曲線增大(或減?。?,這和Y1相似;但在三種波速間的關(guān)系方面,卻有不盡相同的表現(xiàn)形式.對(duì)Vp來(lái)說(shuō),其表現(xiàn)形式是:飽水>干燥>飽油,而Vs1和Vs2則是:干燥>飽水>飽油.
圖3是Y3砂巖樣品在干燥、飽水及飽油條件下Vp、Vs1和Vs2隨壓力變化的情況.很明顯,它們均隨壓力增加(或降低)而以對(duì)數(shù)曲線增大(或減?。@點(diǎn)同Y2和Y1相似;但在三種波速的關(guān)系方面則有自己的獨(dú)特之處.對(duì)Vp來(lái)說(shuō),其表現(xiàn)特征為:飽油≈干燥>飽水;而Vs1和Vs2則是:干燥>飽油>飽水.
圖3 Y3巖樣在干燥、飽水及飽油情況下Vp、Vs1和Vs2與壓力P的關(guān)系(a)升壓過(guò)程;(b)降壓過(guò)程.Fig.3 P-and S-wave velocity in dry,water and oil saturated conditions changing with pressure for sample Y3(a)Process of increasing the pressure;(b)Process of decreasing the pressure.
圖4 Y1,Y2及Y3巖樣在干燥條件下Vp、Vs1和Vs2與壓力P的關(guān)系Fig.4 P-and S-wave velocity in dry conditions changing with pressure for samples Y1 ,Y2and Y3
圖5 Y1,Y2及Y3巖樣在飽水條件下Vp、Vs1和Vs2與壓力P的關(guān)系Fig.5 P-and S-wave velocity in water saturated conditions changing with pressure for samples Y1,Y2and Y3
圖6 Y1,Y2及Y3巖樣在飽油條件下Vp、Vs1和Vs2與壓力P的關(guān)系Fig.6 P-and S-wave velocity in oil saturated conditions changing with pressure for samples Y1 ,Y2and Y3
圖4—6是Y1、Y 2和Y 3巖樣分別在干燥、飽水及飽油條件下Vp、Vs1和Vs2隨壓力變化的對(duì)比情況.可以看出,不管在哪種孔隙流體條件下,三種巖樣Vp間的關(guān)系均表現(xiàn)為:Y1≥Y2>Y3.
上述結(jié)果可根據(jù)彈性波速度公式[37]進(jìn)行解釋.
其中:K─介質(zhì)的體積模量;μ─介質(zhì)的剪切模量;ρ─密度.巖樣中的飽和水或油會(huì)從兩方面影響其中傳播的縱波、橫波速度:一是巖石內(nèi)部孔隙充滿水或油會(huì)增大樣品的有效體積模量和剪切模量,使波速增大;二是孔隙內(nèi)充水或油會(huì)加大樣品的密度值,使波速變小.
對(duì)Y1的Vp來(lái)說(shuō),低壓下飽和水或油會(huì)使樣品的有效彈性模量增加起主要作用.根據(jù)式(1),此時(shí)的Vp均比干燥狀態(tài)下的大,所對(duì)應(yīng)的波速曲線在干燥之上(圖1).隨壓力增加,樣品的密度增大效應(yīng)逐漸顯著,同樣由式(1)可知,Vp增大的幅度會(huì)逐漸縮小,與干燥之間的差距也在縮小,三條波速曲線逐漸接近.當(dāng)壓力增加到約130MPa時(shí),飽水與干燥曲線相交;此后二者基本一致,直至壓力增大到約150MPa后,干燥曲線位于飽水之上.另外,由于油的粘滯系數(shù)比水大,密度比水小,相對(duì)而言,飽和油會(huì)使樣品的有效彈性模量增加更顯著,而密度增大效應(yīng)則較弱,所以飽油條件下的Vp比飽水的大(圖1a).
Vs的情況相對(duì)復(fù)雜.飽和水使樣品密度增大起主要作用,由式(2)及油水物理性質(zhì)的差異可知,此時(shí)的Vs1和Vs2和飽油及干燥狀態(tài)相比是最小的.而飽油樣品在低壓力下是彈性模量增加效應(yīng)起主要作用,根據(jù)式(2),其Vs1和Vs2均比相對(duì)應(yīng)的干燥的大;隨著壓力上升,密度增大效應(yīng)開(kāi)始逐漸顯著,兩者之間的差距越來(lái)越小,兩種曲線逐漸接近并近似平行.另外,高壓下尤其是100MPa以上,飽水Vs1和Vs2基本沒(méi)有差異,說(shuō)明此時(shí)影響二者的外部因素已趨相同(圖1a).
以上所說(shuō)的是升壓過(guò)程,降壓過(guò)程的情況基本與此一致.唯一不同的是當(dāng)壓力降到100MPa以下時(shí),與對(duì)應(yīng)的升壓過(guò)程相比,飽水Vp變化幅度過(guò)快(圖1),這也可以從圖1給出的擬合公式中看出.之所以產(chǎn)生這種差異,是由于巖樣中的水在降壓過(guò)程中出現(xiàn)了部分漏失(圖7).
圖7是Y1巖樣飽水與飽油升、降壓過(guò)程中Vp曲線的對(duì)比.可以看出,在壓力降到約150MPa時(shí),飽水樣品第一次漏失,正是這次漏失導(dǎo)致其彈性模量增加的效應(yīng)減弱,Vp下降幅度加大;在100MPa左右時(shí)的再次漏失,更加劇了Vp的下降幅度(圖1b).另外,從圖1a和1b的對(duì)比也可以看出,Vs1和Vs2均沒(méi)有明顯的變化.說(shuō)明巖樣中含水量的變化對(duì)它們基本沒(méi)有影響,也即巖樣含水飽和度的變化對(duì)Vs1和Vs2基本沒(méi)有影響.這一點(diǎn)與施行覺(jué)等[36,38]的研究結(jié)果一致.
圖7 Y1巖樣在飽水及飽油情況下Vp與壓力P的關(guān)系Fig.7 P-wave velocity in water and oil saturated conditions changing with pressure for sample Y1
另外,從圖1—圖3也可以看出,所有的縱波、橫波在0~50MPa段,波速隨壓力增加較快,明顯呈非線性變化,這是由于裂隙和孔隙的閉合引起的[39-49].雖然不同類(lèi)型砂巖增加的幅度不盡相同,但這一變化卻是十分顯著的;在壓力超過(guò)50MPa后,由于巖石的裂隙和孔隙基本閉合,波速增加呈斜率不同的線性曲線,且變化非常小,可以代表真實(shí)的巖石地震波特性.由于總體上波速隨壓力呈對(duì)數(shù)曲線變化,為方便說(shuō)明,本文沒(méi)有按壓力進(jìn)行分段擬合.
對(duì)Y2砂巖來(lái)說(shuō),干燥、飽水和飽油波速間的關(guān)系明顯不同于Y1.其主要原因是:
1)Y2和Y1類(lèi)砂巖的粒度不同.從表1和圖8可以看出,Y2以細(xì)沙為主,區(qū)別于以中砂為主的Y1.較細(xì)顆粒比粗粒所形成的孔隙更狹小,也更容易使充填的油被壓實(shí),從而促使密度增大的效果更明顯,進(jìn)而導(dǎo)致Y2飽油波速隨壓力增加而上升的幅度低于飽水和干燥.但飽水和干燥波速并不受粒度變化的影響,因此,它們之間的關(guān)系和對(duì)應(yīng)的Y1相比,基本保持不變.
2)含油飽和度可能較低.較低的含油飽和度使樣品有效彈性模量增加的效果不明顯,進(jìn)而影響到其波速的增加.而這一切歸根到底是由Y2的細(xì)粒結(jié)構(gòu)所形成的狹小孔隙引起的,因?yàn)楠M小孔隙不利于粘度相對(duì)較大的油進(jìn)入,因此同樣的巖樣,含油和含水飽和度相比會(huì)較低.
圖8 實(shí)驗(yàn)樣品顯微照片(a)Y1樣品;(b)Y2樣品.標(biāo)有"Qtz、Fsp、Bt和Deb"的礦物顆粒分別是石英、長(zhǎng)石、黑云母和巖屑.Fig.8 Microscopic photographs for sample Y1 (a)and Y2(b)The mineral grains marked with'Qtz,F(xiàn)sp,Bt and Deb are quartz,feldspar,biotite and debris,respectively.
圖9 Y2巖樣在飽水及飽油情況下Vp與壓力P的關(guān)系Fig.9 P-wave velocity in water and oil saturated changing with pressure for sample Y2
總之,Y2同Y1三種波速間關(guān)系差異的主要原因是由于二者孔隙結(jié)構(gòu)不同,而這一切則是由不同的粒度所引起的.
另外,從圖2a和2b的對(duì)比可以看出,降壓過(guò)程中Vp的變化幅度存在異常.其原因與Y1相似,不同的是除了飽水樣品漏失外,飽油樣品也出現(xiàn)了漏失(圖9),但兩者的漏失對(duì)Vs1和Vs2都沒(méi)有太大的影響.同Y1一樣,說(shuō)明含水或含油飽和度的變化對(duì)Vs1和Vs2沒(méi)有太大的影響.
對(duì)Y3來(lái)說(shuō),三種波速間的關(guān)系既不同于Y1,也不同于Y2,其內(nèi)在原因可能與Y3具有較大的孔隙度(表1)有關(guān).因?yàn)閹r樣充水或充油后,較大孔隙度會(huì)更容易使其密度增大的效應(yīng)起主導(dǎo)作用.這樣,隨著壓力上升,其波速增加趨勢(shì)也會(huì)大幅減緩.由于水比油密度大,因此它對(duì)波速的影響也會(huì)更突出.所以不管對(duì)Vp或Vs1和Vs2來(lái)說(shuō),飽水是三種波速中最小的(圖3).
由于降壓過(guò)程中飽油和飽水樣品都出現(xiàn)了漏失(圖10),導(dǎo)致這兩種Vp的變化幅度均大于相對(duì)應(yīng)的上升過(guò)程(圖3a,b).另外,同Y1和Y2一樣,飽油及飽水的Vs1和Vs2在升降過(guò)程中沒(méi)太大變化,說(shuō)明含油或含水量的變化對(duì)其沒(méi)有產(chǎn)生明顯的影響,也就說(shuō)含水或含油飽和度的變化對(duì)Vs1和Vs2基本沒(méi)有影響.
圖10 Y3巖樣在飽水及飽油情況下Vp與壓力P的關(guān)系Fig.10 P-wave velocity in water and oil saturated conditions changing with pressure for sample Y3
另外,由以上可知,Y3以其孔隙度較大而區(qū)別于Y1和Y2,而Y2則以較細(xì)粒度而不同于Y1.因此,我們可以推測(cè)出:較大孔隙度是引起Vp下降最主要的因素,其次是較細(xì)粒度.Vs1和Vs2的情況相對(duì)較復(fù)雜.一般來(lái)說(shuō),較大孔隙度是引起Vs下降的主要因素,其次是較粗粒度(飽水條件).
由本實(shí)驗(yàn)可以得出如下認(rèn)識(shí):
1)三種砂巖樣品Y1、Y2和Y3的Vp、Vs1和Vs2均隨壓力增加(或降低)而基本呈對(duì)數(shù)曲線增大(或減?。蚁嚓P(guān)系數(shù)基本都在90%以上(除Y3的干燥Vp外).
2)干燥、飽水和飽油三種波速間的關(guān)系因砂巖類(lèi)型不同而不同,這主要取決于巖石的有效彈性模量、孔隙流體性質(zhì)(密度、粘滯系數(shù))以及巖石的內(nèi)部結(jié)構(gòu)(粒度、孔隙)等.
3)含不同孔隙流體的同種砂巖,其Vp、Vs1和Vs2隨壓力變化的規(guī)律也不盡相同.基本的影響因素有:有效彈性模量、密度、粘滯系數(shù)等,其中有效彈性模量、密度為主要因素.
4)含同種孔隙流體的不同類(lèi)砂巖,其Vp、Vs1和Vs2隨壓力變化的規(guī)律也不同.主要的影響因素是孔隙度,其次是粒度.其中孔隙度與Vp、Vs分別呈負(fù)相關(guān)性.
5)含水或含油飽和度的變化對(duì)Vs1和Vs2基本沒(méi)有影響.
6)Vp、Vs1和Vs2隨壓力及不同孔隙流體的變化規(guī)律,可以為該地區(qū)地震資料的解釋及與聲波測(cè)井之間的對(duì)比提供基礎(chǔ)數(shù)據(jù)和參考,同時(shí)也為深部地球物理探測(cè)成果的正確解譯提供依據(jù).
(References)
[1]Christensen N I,Mooney W D.Seismic velocity structure and composition of the continental crust.A global view.J.Geophy.Res.,1995,100(B6):9761-9788.
[2]Gao S,Kern H,Liu Y,et al.Measured and calculated seismic velocities and densities for granulites from xenolith occurrences and adjacent exposed lower crustal sections:a comparative study from the North China craton.J.Geophy.Res.,2000,105(B8):18965-18976.
[3]Park J,Levin V.Seismic anisotropy:tracing plate dynamics in the mantle.Science,2002,296(5567):485-489.
[4]Rudnick R L,F(xiàn)ountain D M.Nature and composition of the continental crust.A lower crustal perspective.Rev.Geophy,1995,33(3):267-309.
[5]Weiss T,Siegesmund S,Rabbel W,et al.Seismic velocities and anisotropy of the lower continental crust.Areview.Pure appl.Geophys,1999,156(1-2):97-122.
[6]嵇少丞,王茜,王勤等.蘇魯—大別超高壓變質(zhì)巖的彈性力學(xué)性質(zhì)與密度關(guān)系.巖石學(xué)報(bào),2007,23(12):3054-3064.Ji S C,Wang Q,Wang Q,et al.Correlation between elastic properties and density for Sulu-Dabie UHP metamorphic rocks.Acta Petrologica Sinica(in Chinese),2007,23(12):3054-3064.
[7]嵇少丞,王茜,許志琴,夏斌.蘇魯超高壓變質(zhì)巖中地震波速隨壓力的變化規(guī)律.地質(zhì)學(xué)報(bào),2006,80(12):1807-1812.Ji S C,Wang Q,Xu Z Q,et al.Pressure-Dependence of PWave Velocities in Sulu UHP Metamorphic Rocks.Acta Geologica Sinica(in Chinese),2006,80(12):1807-1812.
[8]王勤.巖石地震波性質(zhì)的實(shí)驗(yàn)與理論研究,礦物巖石地球化學(xué)通報(bào),2007,26(2):118-126.Wang Q.Experimental and theoretical study on seismic properties of rocks.Bulletin of Mineralogy.Petrology and Geochemistry(in Chinese),2007,26(2):118-126.
[9]Timur A.Temperature dependence of compressional and shear wave velocities in rocks.Geophysics,1977,42(5):950-956.
[10]曹均,賀振華,黃德濟(jì)等.儲(chǔ)層孔(裂)隙的物理模擬與超聲波實(shí)驗(yàn)研究.地球物理學(xué)進(jìn)展,2004,19(2):386-391.Cao J,He Z H,Huang D J,et al.Physical modeling and Ultrasonic experiment of pore-crack in reservoirs.Progress in Geophys.(in Chinese),2004,19(2):386-391.
[11]Batzle M L,Wang Z.Seismic properties of pore fluids.Geophysics,1992,57(11):1396-1408.
[12]Best A I.The effect of pressure on ultrasonic velocity and attenuation in near-surface sedimentary rocks.Geophysical Prospecting,1997,45(2):345-364.
[13]陳祖安,伍向陽(yáng).砂巖孔隙度和含泥量與波速關(guān)系的模型.地球物理學(xué)進(jìn)展,2000,15(1):78-82.Chen Z A,Wu X Y.A model for the relation between wave velocity and porosity as well as clay content in sandstone.Progress in Geophys.(in Chinese),2000,15(1):78-82.
[14]李?lèi)?ài)兵,馬麗云.頻率、溫度對(duì)砂巖的橫波速度和值的影響.地球物理學(xué)報(bào),1994,37(5):653-658.Li A B,Ma L Y.Effects of frequency and temperature on shear velocity and Q-s in sandstone.Chinese J.Geophys.(in Chinese),1994,37(5):653-658.
[15]盧琳,閆桂京,陳建文.地層溫度和壓力對(duì)地震速度的影響.海洋地質(zhì)動(dòng)態(tài),2005,21(9):13-16.Lu L,Yan G J,Chen J W.Influences of temperature and pressure on velocities of seismic.Marine Geology Letters(in Chinese),2005,21(9):13-16.
[16]姜修道,朱光明.變質(zhì)巖區(qū)地震波速度的特點(diǎn)及其影響因素——以中國(guó)大陸科學(xué)鉆探孔區(qū)為例.地球物理學(xué)進(jìn)展,2003,18(2):331-335.Jiang X D,Zhu G M.Characteristics and effect factors of seismic velocity in metamorphic rock area:An example from CCSD borehole area.Progress in Geophys.(in Chinese),2003,18(2):331-335.
[17]Khaksar A,Grifiths C M,McCann C.Compressional-and shear-wave velocities as a function of confining stress in dry sandstones.Geophysical Prospecting,1999,47(4):487-508.
[18]馬中高,解吉高.巖石的縱、橫波速度與密度的規(guī)律研究.地球物理學(xué)進(jìn)展,2005,20(4):905-910.Ma Z G,Xie J G.Relationship among conpressional wave,shear wave velocities and density in rocks.Progress in Geophys.(in Chinese),2005,20(4):905-910
[19]史謌,楊東全.巖石波速和孔隙度、泥質(zhì)含量之間的關(guān)系研究.北京大學(xué)學(xué)報(bào)(自然科學(xué)版),2001,37(3):379-384.Shi G,Yang D Q.The regression analysis study on velocity and porisity,and clay content of rocks.Acta Scientiarum Naturalium Universitatis Pekinensis(in Chinese),2001,37(3):379~ 384.
[20]史謌,沈文略,楊東全.巖石彈性波速度和飽和度、孔隙流體分布的關(guān)系.地球物理學(xué)報(bào),2003,46(1):138-142.Shi G,Shen W L,Yang D Q.The relationship of wave velocities with saturation and fluid distribution in pore space.Chinese J.Geophys.(in Chinese),2003,46(1):138-142.
[21]李琳,馬勁風(fēng),張憲旭.孔隙裂隙型砂巖橫波速度預(yù)測(cè)方法.地球物理學(xué)進(jìn)展,2010,25(3):1065-1074.Li L,M J F,Zhang X X.S-wave velocity prediction in sandstones.Progress in Geophys.(in Chinese),2010,25(3):1065-1074.
[22]劉斌,Kern H,Popp T.不同壓力下孔隙度不同的干燥及水飽和巖樣中的縱橫波速度及衰減.地球物理學(xué)報(bào),1998,41(4):537-546.Liu B,Kern H,Popp T.Velocities and attenuation of P-and S-waves in dry and wet rocks with different porosities under different confining pressures.Chinese J.Geophys.(in Chinese),1998,41(4):537-546.
[23]伍向陽(yáng),方華,陳祖安.儲(chǔ)層砂巖聲波速度預(yù)測(cè).地球物理學(xué)進(jìn)展,1999,14(1):56-63.Wu X Y,F(xiàn)ang H,Chen Z A.Estimation of wave velocities of sandstones.Progress in Geophys.(in Chinese),1999,14(1):56-63.
[24]肖昆,鄒長(zhǎng)春,聶昕,徐晉.江蘇油田G凹陷儲(chǔ)層條件下巖石縱橫波速度實(shí)驗(yàn)研究.工程地球物理學(xué)報(bào),2010,7(6):688-693.Xiao K,Zou C C,Nie X,et al.Experimental research of S-wave and P-wave velocities for rocks under the reservoir conditions in G sag,Jiangsu Oilfield.Chinese Journal of Engineering Geophysics(in Chinese),2010,7(6):688-693.
[25]楊宏峰,施行覺(jué).軸向壓力下砂巖波速的實(shí)驗(yàn)研究.地球物理學(xué)進(jìn)展,2004,19(2):481-485.Yang H F,Shi X J.Experimental research on wave velocity under axial pressure.Progress in Geophys.(in Chinese),2004,19(2):481-485.
[26]張友南,李彪.山西裂谷帶地殼巖石波速的研究,地球物理學(xué)進(jìn)展,1993,84(5):214-224.Zhang Y N,Li B.Investigation of wave velocity of crustal rocks in shanxi rift zone.Progress in Geophys.(in Chinese),1993,84(5):214-224.
[27]孫建國(guó).巖石物理學(xué)基礎(chǔ).北京:地質(zhì)出版社,2006.Sun J G.Rock Physics(in Chinese).Beijing:Geology Press,2006.
[28]馬麥寧,白武明,伍向陽(yáng).10.6~1.5GPa、室溫~1200℃條件下青藏高原地殼巖石彈性波速特征.地球物理學(xué)進(jìn)展,2002,17(4):684-689.Ma M N,Bai W M,Wu X Y.Study on elastic wave velocities of crustal rocks under high temperature and high pressure conditions.Progress in Geophys.(in Chinese),2002,17(4):684-689.
[29]鄧?yán)^新,王尚旭,俞軍.不同壓力條件下部分飽和砂巖速度實(shí)驗(yàn)結(jié)果及理論解釋.石油地球物理勘探,2005,40(5):530-534.Deng J X,Wang S X,Yu J.Experimental results in partially saturated sandstone under condition of different pressure and their theoretical interpretation.Oil Geophysical Prospecting(in Chinese),2005,40(5):530-534.
[30]孫東生,李阿偉,王紅才等.低滲砂巖儲(chǔ)層滲透率各向異性規(guī)律的實(shí)驗(yàn)研究.地球物理學(xué)進(jìn)展,2012,27(3):1101-1106.Sun D S,Li A W,Wang H C,Zhao W H,et al.Experiment on anisotropy of permeability with tight sandstone.Progress in Geophys.(in Chinese),2012,27(3):1101-1106.
[31]He T,Zou C,Pei F,et al.Laboratory study of fluid viscosity induced ultrasonic velocity dispersion in reservoir sandstones.Applied Geophysics,2010,7(2):114-126.
[32]Purcell C,Mur A,Soong Y,et al.Integrating velocity measurements in a reservoir rock sample from the SACROC unit with an AVO proxy for subsurface supercritical CO2.The Leading Edge,2010,29(2):192-195.
[33]Mur A,Purcell C,Soong Y,et al.Integration of core sample velocity measurements into a 4Dseismic survey and analysis of SEM and CT images to obtain pore scale properties.Energy Procedia,2011,4:3676-3683.
[34]馬麥寧,白武明.高溫高壓實(shí)驗(yàn)彈性波速研究及其地球動(dòng)力學(xué)意義.地球物理學(xué)進(jìn)展,1999,14(1):40-55.Ma M N,Bai W M.Progress of high temperature and pressure study on elastic wave velocity and its geodynamicalimplications.Progress in Geophys.(in Chinese),1999,14(1):40-55.
[35]Hornby B E.Experimental laboratory determination of the dynamic elastic properties of wet,drained shales.Journal of Geophysical Research,1998,103(B12):29945-29964.
[36]施行覺(jué),夏從俊,吳永鋼.儲(chǔ)層條件下波速的變化規(guī)律及其影響因素的實(shí)驗(yàn)研究.地球物理學(xué)報(bào),1998,41(2):234-241.Shi X J,Xia C J,Wu Y G.The laboratory study on wave velocity under reservoir condition and its affection factors.Chinese J.Geophys.(in Chinese),1998,41(2):234-241.
[37]葛瑞.馬沃克,塔基.木克基,杰克.德沃金著,徐海濱,戴建春譯.巖石物理手冊(cè):孔隙介質(zhì)中地震分析工具.合肥:中國(guó)科學(xué)技術(shù)大學(xué)出版社,2008.Mavko G, Mukerji T,Dvorkin J.The Rock Physics Handbook:Tools for Seismic Analysis of Porous Media(in Chinese).Translated by Xu H B,Dai J C.Hefei:Press of University of Science and Technology of China,2008.
[38]施行覺(jué),徐果明,靳平,盧振剛,劉文忠.巖石的含水飽和度對(duì)縱、橫波速及衰減影響的實(shí)驗(yàn)研究.地球物理學(xué)報(bào),1995,38(增刊1):281-287.Shi X J,Xu G M,Jin P,et al.The laboratory study of influence of water saturation on rock s velocity and attenuation.Chinese J.Geophys.(in Chinese),1995,38(Supp.1):281-287.
[39]Birch F.The velocity of compressional waves in rocks to 10 kilobars,part 2.Journal of Geophysical Research,1961,66(7):2199-2224.
[40]Carlson R L,Gangi A F.Effect of cracks on the pressure dependence of p wave velocities in crystalline rocks.Journal of Geophysical Research,1985,90(B10):8675-8684.
[41]David E C,Zimmerman R W.Pore structure model for elastic wave velocities in fluid-saturated sandstones.Journal of Geophysical Research,2012,117(B07210):1-15.
[42]郝晉昇,劉曉紅,李紀(jì)漢.華北地區(qū)典型巖石在1萬(wàn)巴壓力下的密度和彈性波速度的實(shí)驗(yàn)研究.地震學(xué)報(bào),1985,7(3):276-284.Hao J S,Lu X H,Li J H.An experimental study on the density and elastic wave velocity of typical rocks of north china under high pressure up to 10kb.Acta Seismologica Sinica(in Chinese),1985,7(3):276-284.
[43]Higo Y,Inoue T,Li B,Irifune T,Liebermann R C.The effect of iron on the elastic properties of ringwoodite at high pressure.Physics of the Earth and Planetary Interiors,2006,159:276-285.
[44]Kern H T,Popp F,Gorbatsevich A.Smirnov Pressure and temperature dependence of Vpand Vsin rocks from the superdeep well and from surface analogues at Kola and the nature of velocity anisotropy.Tectonophysics,2001,338:113-134.
[45]李華,王良書(shū),李成.塔里木盆地巖石高溫高壓下波速的實(shí)驗(yàn)研究及其地質(zhì)意義.高校地質(zhì)學(xué)報(bào),2005,11(4):601-607.Li H,Wang L S,Li C,et al.Experimental study on wave velocity of rocks from tarim basin at high PT conditions and its geological implications.Geological Journal of China Universities(in Chinese),2005,11(4):601-607.
[46]劉永祥,吳福元,張世紅.高溫高壓下巖石彈性波速特征及其在深部地質(zhì)研究中的意義.地球物理學(xué)進(jìn)展,1995,10(3):82-94.Liu Y X,Wu F Y,Zhang S H.The characteristics of elastic wave veloctty of rocks at high t and p:implications for the study of deepseated geology.Progress in Geophys.(in Chinese),1995,10(3):82-94.
[47]馬中高,伍向陽(yáng),王中海.有效壓力對(duì)巖石縱橫波速度的影響.勘探地球物理進(jìn)展,2006,29(3):183-186.Ma Z G,Wu X Y,Wang Z H.Effect of effective pressure on compressional and shear wave velocities. Progress in Exploration Geophysics (in Chinese),2006,29(3):183-186.
[48]Sun S,Ji S,Wang Q,et al.Seismic velocities and anisotropy of core samples from the Chinese Continental Scientific Drilling borehole in the Sulu UHP terrane,eastern China.Journal of Geophysical Research,2012,117(B01206):1-24.
[49]楊樹(shù)鋒,陳漢林,姜繼雙等.高溫高壓下華南Ⅰ型和S型花崗巖的波速特征及其地質(zhì)意義.中國(guó)科學(xué),D輯,1997,27(1):33-38.Yang S F,Cheng H L,Jiang J S,et al.The velocity characteristics and its geological significance of I and S type granite from Southern China under high temperature and high pressure.Science in China (Series D)(in Chinese),1997,27(1):33-38.