龐有旺 鄭季南 洪慶南 方 鈞
(解放軍泉州第180醫(yī)院骨科,泉州 362000)
近年來(lái)已經(jīng)證明的囊泡膜谷氨酸轉(zhuǎn)運(yùn)體有三種亞型[1~3]。其中Ⅰ、Ⅱ型囊泡膜谷氨酸轉(zhuǎn)運(yùn)體廣泛、互補(bǔ)地分布于大腦皮質(zhì)、丘腦、延髓和脊髓等中樞神經(jīng)系統(tǒng)的谷氨酸能神經(jīng)終末內(nèi)[3~5]。目前已經(jīng)把Ⅰ、Ⅱ型囊泡膜谷氨酸轉(zhuǎn)運(yùn)體作為谷氨酸能軸突終末的特異性標(biāo)識(shí)物。生理學(xué)研究表明谷氨酸是作用三叉神經(jīng)運(yùn)動(dòng)核神經(jīng)元的主要神經(jīng)遞質(zhì),參與咀嚼、吮吸等活動(dòng)[6~7],但有關(guān)谷氨酸陽(yáng)性終末在三叉神經(jīng)運(yùn)動(dòng)核的分布模式到目前未見(jiàn)報(bào)道。因此,本研究綜合應(yīng)用束路追蹤與免疫熒光組織化學(xué)相結(jié)合技術(shù),對(duì)Ⅰ、Ⅱ型囊泡膜谷氨酸轉(zhuǎn)運(yùn)體陽(yáng)性纖維在大鼠三叉神經(jīng)運(yùn)動(dòng)核內(nèi)的分布進(jìn)行了研究。
雄性SD大鼠6只,體重250-280g。戊巴比妥鈉腹膜腔麻醉(40mg/kg)后,戊巴比妥鈉深麻下,插管至升主動(dòng)脈,先以100ml 0.025mol/L的PBS沖洗血液,再用500ml含4%多聚甲醛和75%飽和苦味酸的0.1mol/L的PB灌注固定,持續(xù)30min以上。灌畢立即取腦,并置入上述新鮮固定液中后固定4-6h,然后再移腦入含30%蔗糖的0.1mol/L的PB(pH 7.3)中,至其沉底。冰凍切片機(jī)行冠狀切片,片厚25μm,分為2套收集。
第1套切片用于Ⅰ、Ⅱ型囊泡膜谷氨酸轉(zhuǎn)運(yùn)體和神經(jīng)元核蛋白免疫熒光三重染色。具體步驟如下:①小鼠抗神經(jīng)元核蛋白IgG(1∶1000;MAB377;Chemicon)和兔抗Ⅰ型囊泡膜谷氨酸轉(zhuǎn)運(yùn)體IgG(0.8μg/ml,日本京都大學(xué)金子武嗣先生惠贈(zèng))和豚鼠抗Ⅱ型囊泡膜谷氨酸轉(zhuǎn)運(yùn)體IgG(0.8 μg/ml,日本京都大學(xué)金子武嗣先生惠贈(zèng))的混合液室溫下孵育過(guò)夜;②生物素結(jié)合的驢抗兔IgG(10 μg/ml;Jackson,West Grove,PA)室溫下孵育3 h;③10%兔血清、Alexa647標(biāo)記的山羊抗小鼠(10 μg/ml;Molecular Probes)、Alexa594標(biāo)記的驢抗豚鼠IgG (10μg/ml;Molecular Probes)、Alexa488標(biāo)記的Avidin D(10μg/ml;Molecular Probes)的混合液中室溫下孵育2h??贵w孵育液如前所述。
第2套切片用于對(duì)照實(shí)驗(yàn)。用正常血清替代一抗血清進(jìn)行免疫熒光組織化學(xué)染色,結(jié)果為陰性。
上述染色結(jié)果在激光共聚焦顯微鏡FV1000,Olympus,Japan)下觀察Ⅰ、Ⅱ型囊泡膜谷氨酸轉(zhuǎn)運(yùn)體陽(yáng)性纖維在三叉神經(jīng)運(yùn)動(dòng)核內(nèi)分布(Alexa488的激發(fā)光波長(zhǎng)488nm,發(fā)射光波長(zhǎng)510-525nm;Alexa594的激發(fā)光波長(zhǎng)594nm;發(fā)射光波長(zhǎng)575-640 nm;Alexa647的激發(fā)光波長(zhǎng)647nm,發(fā)射光波長(zhǎng)700-720nm。
雄性SD大鼠6只,體重250-280g。戊巴比妥鈉腹膜腔麻醉(40mg/kg)后,手術(shù)暴露一側(cè)下頜舌骨肌神經(jīng),微量注射器抽取2-3μl含10% 的四甲基羅達(dá)明水溶液,注入神經(jīng)內(nèi)。動(dòng)物存活4-5天后,戊巴比妥鈉腹膜腔麻醉(40mg/kg)后,戊巴比妥鈉深麻下,插管至升主動(dòng)脈,先以100ml 0.025mol/L的PBS沖洗血液,再用500ml含4%多聚甲醛和75%飽和苦味酸的0.1mol/L的PB灌注固定,持續(xù)30min以上。灌畢立即取腦,并置入上述新鮮固定液中后固定4-6h,然后再移腦入含30%蔗糖的0.1mol/L的PB(pH 7.3)中,至其沉底。冰凍切片機(jī)行冠狀切片,片厚25μm,分為2套收集。
第1套切片用于Ⅰ型囊泡膜谷氨酸轉(zhuǎn)運(yùn)體和神經(jīng)元核蛋白免疫熒光雙重染色。具體步驟如下:①小鼠抗神經(jīng)元核蛋白IgG(1∶1000;MAB377;Chemicon)和兔抗Ⅰ型囊泡膜谷氨酸轉(zhuǎn)運(yùn)體IgG(0.8μg/ml,日本京都大學(xué)金子武嗣先生惠贈(zèng))的混合液室溫下孵育過(guò)夜;②生物素結(jié)合的驢抗兔IgG(10 μg/ml;Jackson,West Grove,PA)室溫下孵育3 h;③10%兔血清、Alexa647標(biāo)記的山羊抗小鼠(10 μg/ml;Molecular Probes)、Alexa488標(biāo)記的 Avidin D(10μg/ml;Molecular Probes,Eugene,OR)的混合液中室溫下孵育2h??贵w孵育液如前所述。
第2套切片用于對(duì)照實(shí)驗(yàn)。用正常血清替代一抗血清進(jìn)行免疫熒光組織化學(xué)染色,結(jié)果為陰性。
上述染色結(jié)果在激光共聚焦顯微鏡FV1000,Olympus,Japan)下觀察Ⅰ、Ⅱ型囊泡膜谷氨酸轉(zhuǎn)運(yùn)體陽(yáng)性纖維在三叉神經(jīng)運(yùn)動(dòng)核內(nèi)分布(Alexa488的激發(fā)光波長(zhǎng)488nm,發(fā)射光波長(zhǎng)510-525nm;四甲基羅達(dá)明的激發(fā)光波長(zhǎng)568nm;發(fā)射光波長(zhǎng)570-610nm;Alexa647的激發(fā)光波長(zhǎng)647nm,發(fā)射光波長(zhǎng)700-720nm。)
神經(jīng)元核蛋白標(biāo)記的三叉神經(jīng)運(yùn)動(dòng)核神經(jīng)元胞體較大,與周圍標(biāo)記神經(jīng)元對(duì)比鮮明,因而整個(gè)三叉神經(jīng)運(yùn)動(dòng)核邊界清楚(圖A);Ⅰ型囊泡膜谷氨酸轉(zhuǎn)運(yùn)體標(biāo)記的神經(jīng)元終末在三叉神經(jīng)運(yùn)動(dòng)核背外側(cè)部呈中等密度分布,在三叉神經(jīng)運(yùn)動(dòng)核的腹內(nèi)側(cè)部沒(méi)有分布(圖B),而Ⅱ型囊泡膜谷氨酸轉(zhuǎn)運(yùn)體標(biāo)記的神經(jīng)元終末在三叉神經(jīng)運(yùn)動(dòng)核背外側(cè)部和腹內(nèi)側(cè)部均呈高密度分布(圖C);在三叉神經(jīng)運(yùn)動(dòng)核內(nèi),未見(jiàn)Ⅰ、Ⅱ型囊泡膜谷氨酸轉(zhuǎn)運(yùn)體雙重標(biāo)記的神經(jīng)元終末,Ⅰ型囊泡膜谷氨酸轉(zhuǎn)運(yùn)體標(biāo)記的神經(jīng)元終末個(gè)體明顯大于Ⅱ型囊泡膜谷氨酸轉(zhuǎn)運(yùn)體標(biāo)記的神經(jīng)元終末(圖D)。
四甲基羅達(dá)明注射入下頜舌骨肌神經(jīng)逆行標(biāo)記的開(kāi)口神經(jīng)元聚集于三叉神經(jīng)運(yùn)動(dòng)核的腹內(nèi)側(cè)部,與位于三叉神經(jīng)運(yùn)動(dòng)核的背外側(cè)部的閉口神經(jīng)元胞體聚集區(qū)界限清楚。此時(shí),我們可以清楚地觀察到在三叉神經(jīng)運(yùn)動(dòng)核內(nèi)沒(méi)有Ⅰ型囊泡膜谷氨酸轉(zhuǎn)運(yùn)體陽(yáng)性終末分布的區(qū)域正好是開(kāi)口神經(jīng)元胞體聚集區(qū)域(圖F)。
谷氨酸是中樞神經(jīng)系統(tǒng)中的主要興奮性神經(jīng)遞質(zhì),作為負(fù)責(zé)轉(zhuǎn)用谷氨酸到囊泡內(nèi)的囊泡膜谷氨酸轉(zhuǎn)運(yùn)體近年引起神經(jīng)科學(xué)研究者的關(guān)注[1~5]。已經(jīng)有較多形態(tài)學(xué)、生理學(xué)證據(jù)表明谷氨酸參與調(diào)控咀嚼活動(dòng)[10~12],囊泡膜轉(zhuǎn)運(yùn)體抗體陽(yáng)性終末在三叉神經(jīng)運(yùn)動(dòng)核的分布模式具有重要研究意義。本研究則通過(guò)免疫組織化學(xué)結(jié)合逆行標(biāo)記觀察了Ⅰ、Ⅱ型囊泡膜谷氨酸轉(zhuǎn)運(yùn)體在三叉神經(jīng)運(yùn)動(dòng)核不同區(qū)域的確切分布,我們觀察到Ⅰ型囊泡膜谷氨酸轉(zhuǎn)運(yùn)體在三叉神經(jīng)運(yùn)動(dòng)核的閉口神經(jīng)元聚集區(qū)域內(nèi)中等密度分布,在開(kāi)口神經(jīng)元聚集區(qū)域內(nèi)沒(méi)有分布,而Ⅱ型囊泡膜谷氨酸轉(zhuǎn)運(yùn)體在整個(gè)三叉神經(jīng)運(yùn)動(dòng)核內(nèi)均高密度分布。
已往的生理學(xué)研究表明從三叉神經(jīng)中腦核到三叉神經(jīng)運(yùn)動(dòng)核之間存在直接的單突觸興奮性通路,也存在間接的多突觸興奮性通路,從大腦皮層到三叉神經(jīng)運(yùn)動(dòng)核之間只存在間接的多突觸興奮性通路[14~15]。以往的形態(tài)學(xué)研究表明三叉神經(jīng)運(yùn)動(dòng)核內(nèi)的Ⅰ型囊泡膜谷氨酸轉(zhuǎn)運(yùn)體陽(yáng)性終末為三叉神經(jīng)中腦核神經(jīng)元的中樞突終末[13]。本研究我們觀察到Ⅰ、Ⅱ型囊泡膜谷氨酸轉(zhuǎn)運(yùn)體在三叉神經(jīng)運(yùn)動(dòng)核不同區(qū)域差異分布,其中一個(gè)顯著特征就是在三叉神經(jīng)運(yùn)動(dòng)核的腹內(nèi)側(cè)區(qū)未見(jiàn)Ⅰ型囊泡膜谷氨酸轉(zhuǎn)運(yùn)體陽(yáng)性終末分布,我們進(jìn)一步逆行標(biāo)記了開(kāi)口神經(jīng)元,明確三叉神經(jīng)運(yùn)動(dòng)核內(nèi)沒(méi)有Ⅰ型囊泡膜谷氨酸轉(zhuǎn)運(yùn)體陽(yáng)性終末分布的區(qū)域?yàn)殚_(kāi)口神經(jīng)元區(qū)。因而,本研究結(jié)果表明Ⅰ型囊泡膜谷氨酸轉(zhuǎn)運(yùn)體在三叉神經(jīng)中腦核到閉口神經(jīng)元間的單突觸反射通路中發(fā)揮作用,而Ⅱ型囊泡膜谷氨酸轉(zhuǎn)運(yùn)體則在大腦皮層或三叉神經(jīng)中腦核等核團(tuán)到三叉神經(jīng)運(yùn)動(dòng)核開(kāi)口和閉口神經(jīng)元的多突觸通路中發(fā)揮作用。
[1]Ni B,Wu X,Yan GM,et al.Regional expression and cellular localization of the Na+-dependent inorganic phosphate cotransporter of rat brain.J Neurosci,1995,15:5789-5799
[2]Bellocchio EE,Hu HL,Pohorille A,et al.The localization of the brain-specific inorganic phosphate transporter suggests a specific presynaptic role in glutamatergic transmission.J Neurosci,1998,18:8648-8659
[3]Fujiyama F,F(xiàn)uruta T,Kaneko T.Immunocytochemical localization of candidates for vesicular glutamate trans-porters in the rat cerebral cortex.J Comp Neurol,2001,435:379-387
[4]Li JL,F(xiàn)ujiyama F,Kaneko T,et al.Expression of vesicular glutamate transporters,VGluT1and VGluT2,in axon terminals of nociceptive primary afferent fibers in the superficial layers of the medullary and spinal dorsal horns of the rat.J Comp Neurol,2003,457:236-249
[5]Li JL,Xiong KH,Dong YL,F(xiàn)ujiyama F,Kaneko T,Mizuno N.Vesicular glutamate transporters,VgluT1 and VGluT2,in the trigeminal ganglion neurons of the rat,with special reference to coexpression.J Comp Neurol,2003,463:212-220
[6]Scott G,Westberg KG,Vrentzos N,et al.Effect of lidocaine and NMDA injections into the medial pontobulbar reticular formation on mastication evoked by cortical stimulation in anaesthetized rabbits.Eur J Neurosci,2003,17:2156-2162
[7]Nakamura Y,Katakura N,Nakajima M.Generation of rhythmical ingestive activities of the trigeminal,facial,and hypoglossal motoneurons in in vitro CNS preparations isolated from rats and mice.J Med Dent Sci,1999,46:63-73
[8]Nozaki S,Iriki A,Nakamura Y.Localization of central rhythm generator involved in cortically induced rhythmical masticatory jaw-opening movement in the guinea pig.J Neurophysiol,1986,55:806-825
[9]Turman Jr JE,Chandler SH.Immunohistochemical localization of glutamate and glutaminase in guinea pig trigeminal premotoneurons.Brain Res,1994,634:49-61
[10]Turman Jr JE,Ajdari J,Chandler SH.NMDA receptor NR1and NR2A/B subunit expression in trigeminal neurons during early postnatal development.J Comp Neurol,1999,409:237-249
[11]Turman Jr JE,MacDonald,AS,Pawl KEW,et al.AMPA receptor subunit expression in trigeminal neurons during postnatal development.J Comp Neuro,2000,l 427:109-123
[12]Turman Jr JE,Hiyama L,Castillo M,et al.Expression of group I and II metabotropic glutamate receptors in trigeminal neurons during postnatal development.Dev Neurosci,2000,23:41-54
[13]Pang YW,Ge SN,Nakamura K,et al.Axon Terminals Expressing Vesicular Glutamate Transporter VGLUT1or VGLUT2Within the Trigeminal Motor Nucleus of the Rat:Origins and Distribution Patterns.J Comp Neurol l,2009,512:595-612
[14]Luo PF,Moritani M,Dessem D.Jaw-Muscle Spindle Afferent Pathways to the Trigeminal Motor Nucleus inthe Rat.J Comp Neurol,2001,435:341-353
[15]Nozaki S,Iriki A,Nakamura Y.Localization of central rhythm generator involved in cortically induced rhythmical masticatory jaw-opening movement in the guinea pig.J Neurophysiol,1986,55:806-825.