劉文麗,張?zhí)m威,*,John shi,易華西
(1.哈爾濱工業(yè)大學(xué)食品科學(xué)與工程學(xué)院,黑龍江哈爾濱 150090;2.加拿大農(nóng)業(yè)部圭爾夫食品研究中心,安大略圭爾夫N1G5C9)
乳酸菌細(xì)菌素純化技術(shù)的檢測(cè)及研究進(jìn)展
劉文麗1,張?zhí)m威1,*,John shi2,易華西1
(1.哈爾濱工業(yè)大學(xué)食品科學(xué)與工程學(xué)院,黑龍江哈爾濱 150090;2.加拿大農(nóng)業(yè)部圭爾夫食品研究中心,安大略圭爾夫N1G5C9)
細(xì)菌素可以抑制大量的食品源腐敗菌和致病菌,因此,近年來(lái)受到國(guó)內(nèi)外廣大學(xué)者的關(guān)注,其中乳酸菌細(xì)菌素因其安全性尤為受到關(guān)注。然而要使細(xì)菌素更好地應(yīng)用到生物技術(shù)領(lǐng)域,揭示乳酸菌細(xì)菌素的生物化學(xué)結(jié)構(gòu)和作用位點(diǎn)就顯得尤為重要,而這又是建立在乳酸菌細(xì)菌素的純化基礎(chǔ)上。文章結(jié)合乳酸菌細(xì)菌素純化技術(shù)及檢測(cè)的最新研究進(jìn)展,討論乳酸菌細(xì)菌素在食品和醫(yī)療領(lǐng)域的發(fā)展?jié)摿Α?/p>
乳酸菌,細(xì)菌素,分離,純化,檢測(cè)
近年來(lái),隨著人們生活水平和保健意識(shí)的提高,天然生物防腐劑代替化學(xué)防腐劑成為未來(lái)的發(fā)展方向。乳酸菌細(xì)菌素由于能夠有效地抑制食品中的腐敗菌和致病菌,受到了越來(lái)越多學(xué)者的關(guān)注,并在體內(nèi)、體外實(shí)驗(yàn)得到了一定的驗(yàn)證[1-3]。但目前僅有Nisin被允許合法地以部分純化的方式應(yīng)用到食品中。
乳酸菌細(xì)菌素應(yīng)用到工業(yè)化生產(chǎn)的障礙主要?dú)w因于兩個(gè)方面:a.細(xì)菌素在培養(yǎng)基中的產(chǎn)量很少;b.乳酸菌細(xì)菌素提純費(fèi)用高。復(fù)合培養(yǎng)基中本身含有的疏水性肽雜質(zhì)的干擾,這就使乳酸菌細(xì)菌素的分離純化需要一個(gè)復(fù)雜而又高耗費(fèi)的過(guò)程,因此乳酸菌細(xì)菌素的分離純化是目前急需解決的問(wèn)題。關(guān)于乳酸菌細(xì)菌素的分離純化,研究者們也相繼進(jìn)行了大量的研究[4-10],總結(jié)其方法大概包括以下兩個(gè)步驟:a.濃縮培養(yǎng)基上清液中的肽;b.利用色譜技術(shù)分離純化。
1.1 細(xì)菌素的濃縮
細(xì)菌素是細(xì)菌在生長(zhǎng)過(guò)程中分泌到培養(yǎng)基中的產(chǎn)物,培養(yǎng)基上清液中細(xì)菌素的產(chǎn)量很低,所以分離乳酸菌細(xì)菌素的第一個(gè)步驟就是濃縮培養(yǎng)基上清液中的肽,主要方法包括鹽析、有機(jī)溶劑、酸提取、細(xì)胞吸附-解析法和膜分離技術(shù)等。
1.1.1 鹽析 目前比較常用的鹽析方法主要是硫酸銨沉淀法,其原理是利用硫酸銨飽和溶液使培養(yǎng)基中的蛋白質(zhì)凝聚從而從培養(yǎng)基中析出,其存在的缺點(diǎn)是在高鹽濃度下,乳酸菌細(xì)菌素的活性降低。具體操作方法一般是將培養(yǎng)18h的產(chǎn)細(xì)菌素乳酸菌離心(9000×g,10m in,4℃),用70%飽和硫酸銨沉淀細(xì)胞懸浮液的蛋白[11](一些細(xì)菌素能夠以較低濃度的硫酸銨沉淀,或者以小范圍的飽和態(tài)就能將上清液中的蛋白沉淀下來(lái))。細(xì)胞懸浮液在4℃過(guò)夜,并且用磁力攪拌器攪拌,鹽析出的蛋白1000×g離心20m in,溶解在10mmol/L pH 7.0磷酸緩沖液或蒸餾水中,懸浮液用分子量1200透析膜或者是2500~3500的透析盒在4℃的磷酸緩沖液中透析12h。Soumaya Messaoudi等[12]利 用 鹽 析 的 方 法 分 離 Lactobacillus salivarius SMXD51產(chǎn)生的細(xì)菌素粗蛋白,取得了很好的效果,蛋白回收率為1.36%,細(xì)菌素活性為160AU/m L,總活性1.6×104AU/m L,比活性117.6AU/mg。Ramakrishnan Srinivasan等[13]也利用35%~65%的硫酸銨回收Lactobacillus rhamnosus L34產(chǎn)生的細(xì)菌素,產(chǎn)率達(dá)到了12.32%,純化倍數(shù)是1.79,比活性是39.77AU/mg。N Ravi Sankar等[14]利用70%的硫酸銨回收從牛奶中分離出的Lactobacillus plantarum產(chǎn)生的細(xì)菌素,效果顯著,回收率達(dá)到了63.1%,純化倍數(shù)是5.3倍,比活性155.7AU/mg。E Vera Pingitore等[15]將此方法應(yīng)用到了salivaricin CRL 1328的分離純化中,取得了的效果如表1所示。
1.1.2 有機(jī)溶劑和真空濃縮[16-17]主要是利用正丙醇和氯化鈉的混合物抽提,丙酮沉淀,但收率并不理想。據(jù)報(bào)道,這種方法已經(jīng)成功地應(yīng)用到Lactococcin B、Pediocin PA1和Lacticin Q的濃縮中,一般具體操作是用3倍體積冷丙酮處理無(wú)細(xì)胞上清液,在-30℃過(guò)夜,然后離心回收蛋白。Dong M in Chung等[18]利用3倍體積冷丙酮在-20℃處理Pediococcus acidilactici WRL-1產(chǎn)生的細(xì)菌素2h,在液相中得到95.2%±2.5%片球菌素活性,片球菌素通過(guò)蒸發(fā)有機(jī)溶劑的方法獲得。
1.1.3 細(xì)胞吸附-解析法 Yang等[19]提出利用細(xì)胞吸附-解析法來(lái)回收乳酸菌細(xì)菌素,主要是根據(jù)大多數(shù)細(xì)菌素在一個(gè)特定的pH范圍下能夠完全吸附在細(xì)胞表面,而在較低pH下自動(dòng)從細(xì)胞表面脫落下來(lái)的原理,雖然這種方法具有高效、簡(jiǎn)便、無(wú)污染等特點(diǎn),但進(jìn)行大規(guī)模工業(yè)化生產(chǎn),仍需進(jìn)一步研究。具體操作方法為菌株在相應(yīng)培養(yǎng)基上培養(yǎng)過(guò)夜,70℃加熱25m in使微生物失去活性。培養(yǎng)基的pH用5mol/L的NaOH調(diào)節(jié)pH 7.0,使細(xì)菌素吸附到細(xì)胞上,離心收集細(xì)胞,用原始培養(yǎng)基40倍體積的5mmol/L磷酸鈉緩沖溶液(pH 7.0)洗兩次,用0.1mol/L NaCl(pH 2.0)重懸,在4℃下攪拌1h從細(xì)胞表面釋放細(xì)菌素分子,釋放的細(xì)菌素在4℃14000×g離心30min,上清液用于下一步研究。運(yùn)用這種方法來(lái)回收salivaricin CRL 1328,收率很低,原因可能是salivaricin CRL 1328是兩組分細(xì)菌素,此方法的優(yōu)點(diǎn)主要是減少了雜蛋白的干擾。用細(xì)胞膜吸附提取salivaricin CRL 1328[15]的實(shí)例見表2。
1.1.4 酸提取和吸附劑吸附 Daba等[20]和Coventry等[21]又提出了利用酸提取和吸附劑吸附乳酸菌細(xì)菌素,但效果并不理想,雖然得到相對(duì)較高的純品,但必須通過(guò)透析的步驟,這將大大降低肽的回收率。
1.1.5 膜分離技術(shù) Daoudi L等[22]提出利用膜分離技術(shù)濃縮細(xì)菌素,此方法比較適合大規(guī)模工業(yè)化生產(chǎn),但其弊端是容易造成膜污染,而膜不易清洗,從而降低膜性能,使成本提高。陳琳等[23]利用采用截留分子質(zhì)量1ku和3ku的超濾膜分離植物乳桿菌KLDS1.0391發(fā)酵液中的細(xì)菌素,研究主要超濾操作參數(shù)對(duì)膜通量和細(xì)菌素效價(jià)的影響,確定超濾法分離細(xì)菌素的條件。結(jié)果表明,超濾法分離物乳桿菌KLDS 1.0391發(fā)酵液中細(xì)菌素的最適條件為:采用截留分子質(zhì)量為3ku的超濾膜進(jìn)行分離,超濾溫度30℃,操作壓力0.140MPa,超濾時(shí)間120m in,細(xì)菌素的效價(jià)由574.99IU/m L提高到1849.40IU/m L,比活力為185.96IU/mg,純化倍數(shù)為8.0,濃縮倍數(shù)為3.0。
1.2 色譜分離
由于乳酸菌細(xì)菌素的濃縮步驟僅僅能減少工作量,并不能得到高純品,所以,后續(xù)的色譜分離步驟還是必不可少的,主要包括離子交換色譜、疏水層析、凝膠過(guò)濾和反相色譜。由于乳酸菌細(xì)菌素帶正電荷并具有疏水性殘基,所以常用的分離方法是利用陽(yáng)離子交換色譜將乳酸菌細(xì)菌素吸附到柱子上,然后再用NaCl梯度洗脫,最后再利用反相色譜將活性片段濃縮,來(lái)提高樣品的純度和減少培養(yǎng)基中雜質(zhì)肽的污染。這種方法雖然被廣泛使用,但其缺點(diǎn)是耗時(shí)長(zhǎng)、回收率低,并不適合大量的純化,為了解決這個(gè)問(wèn)題,研究者們相繼提出了不同的方法。Guyonnet等[24]提出了三步法提純Ⅱa類乳酸菌細(xì)菌素和抗李斯特細(xì)菌素滅菌的溫度和程度,來(lái)削弱雜質(zhì)肽的顏色,再通過(guò)陽(yáng)離子交換色譜和反相色譜純化乳酸菌細(xì)菌素,這種方法產(chǎn)率雖然不穩(wěn)定(10%~60%),但乳酸菌細(xì)菌素的純度可以達(dá)到95%。Uteng等[25]提出了兩步法提純Ⅱa類乳酸菌細(xì)菌素,主要是利用SPSepharose Fast Flow陽(yáng)離子交換柱吸附帶正電荷的細(xì)菌素,然后用1mol/L NaCl洗脫,最后利用反相色譜回收活性峰,樣品回收率從原來(lái)的10%~20%增加到90%~100%。Lasta Samar等[26]利用兩步法分離純化Lactococcus lactis BMG6.14產(chǎn)生的細(xì)菌素,首先利用硫酸銨沉淀提取出細(xì)菌素的粗提物,然后,利用兩步反相色譜得到細(xì)菌素純品,取得了較好的回收效果。免疫性親和性色譜也是一個(gè)快速和純度較高的新型純化細(xì)菌素的方法,但這種方法需要找到合適的抗體,有待于未來(lái)進(jìn)一步研究和開發(fā)。
表1 硫酸銨沉淀及固相提取salivaricin CRL 1328[15]Table 1 The extraction of salivaricin CRL 1328 with ammonium sulfate precipitation and solid phase extraction[15]
表2 細(xì)胞膜吸附提取salivaricin CRL 1328[12]Table 2 The extraction of salivaricin CRL 1328 with absorption-desorptionmethod[12]
目前已經(jīng)報(bào)道的乳酸菌細(xì)菌素的分離純化方法見表3~表6。
在整個(gè)分離純化過(guò)程中,細(xì)菌素抗菌能力的檢測(cè)起著至關(guān)重要的作用。目前相應(yīng)的方法主要有瓊脂擴(kuò)散法和點(diǎn)種法、微量稀釋法、SDS-PAGE和免疫化學(xué)法。
2.1 瓊脂擴(kuò)散法和點(diǎn)種法
目前,使用最廣泛的檢測(cè)方法是瓊脂擴(kuò)散法和點(diǎn)種法,兩種方法都是將各個(gè)階段的樣品放在帶指示菌的培養(yǎng)基平板上,通過(guò)抑菌圈的大小來(lái)判斷抑菌能力。不同之處在于,第一種方法是將各個(gè)階段的樣品接到牛津杯內(nèi)或打孔器打的孔內(nèi);而第二種方法是將各個(gè)階段的樣品點(diǎn)在敏感細(xì)胞上[49]。周配東等[50]利用雙層瓊脂擴(kuò)散法在豆腐乳中篩選出一株具有廣譜抗菌活性的乳酸菌,經(jīng)16S rDNA鑒定該菌株為植物乳桿菌。岳喜慶等[51]利用瓊脂擴(kuò)散法在自制的發(fā)酵肉、酸菜汁、黃瓜汁、大麥汁、玉米汁等以及市售鮮奶、傳統(tǒng)干酪、紅茶中篩選出一株對(duì)單核細(xì)胞增生李斯特菌和大腸桿菌均有抑制作用的乳酸菌,經(jīng)排除有機(jī)酸、過(guò)氧化氫等干擾及蛋白酶敏感后,確定產(chǎn)生的抑菌物質(zhì)為蛋白類物質(zhì)。韓雪等[52]利用瓊脂擴(kuò)散法從多種發(fā)酵材料中篩選出5株對(duì)枯草芽孢桿菌和大腸桿菌均有抑制作用的細(xì)菌素。A Tosukhowong等[53]利用瓊脂擴(kuò)散法分離出一株對(duì)Listeriamonocytogen有抑制作用的乳球菌。
2.2 微量稀釋法
微量稀釋法是將一定濃度的指示菌和濃縮的乳酸菌發(fā)酵上清液混合在96孔平板內(nèi),然后放在培養(yǎng)箱中培養(yǎng),通過(guò)檢測(cè)每個(gè)孔發(fā)酵前后的OD值變化來(lái)判斷乳酸菌的抑菌能力,此方法具有樣品用量小、操作簡(jiǎn)單等優(yōu)點(diǎn),缺點(diǎn)是平行性不是很高。
表3 Ⅰ乳類酸菌細(xì)菌素的純化方法Table 3 The separation and purificationmethod of ClassⅠLAB bacteriocins
表4 Ⅱa類乳酸菌細(xì)菌素的純化方法Table 4 The separation and purificationmethod of ClassⅡa LAB bacteriocins
表5 Ⅱb類乳酸菌細(xì)菌素的純化方法Table 5 The separation and purificationmethod of ClassⅡb LAB bacteriocins
表6 Ⅱc類乳酸菌細(xì)菌素的純化方法Table 6 The separation and purificationmethod of ClassⅡc LAB bacteriocins
2.3 SDS-PAGE
SDS-PAGE蛋白質(zhì)變性電泳是檢測(cè)部分純化和完全純化細(xì)菌素分子量的有力手段[54],缺點(diǎn)主要是在染色期間,疏水性小肽容易在聚丙烯酰胺凝膠上擴(kuò)散開來(lái),導(dǎo)致沒(méi)有條帶。為了克服這個(gè)問(wèn)題,很多學(xué)者做了相應(yīng)的研究,Bhunia等[55-60]提出了凝膠覆蓋法或生物量法,其原理是用帶指示菌的培養(yǎng)基覆蓋染色和不染色的膠,結(jié)果最下邊的那條帶如果產(chǎn)生抑菌圈,就說(shuō)明這條帶具有抑菌活性,這種方法能夠直接檢測(cè)細(xì)菌素抑菌能力,但是其取決于純化過(guò)程中細(xì)菌素的產(chǎn)量及染色方法(考馬斯亮藍(lán)、銀染法、SYPRO-Ruby熒光染色、新蛋白凝膠熒光染色),新蛋白凝膠熒光染色不僅具有染色的優(yōu)勢(shì),而且能夠從膠上切割下條帶,有利于下一步質(zhì)譜分析及序列分析,而且按照標(biāo)準(zhǔn)步驟直接將條帶轉(zhuǎn)移到PVDF膜上也是可能的。
2.4 免疫化學(xué)
免疫化學(xué)法是一種新興的定量檢測(cè)細(xì)菌素抑菌活性的方法,具有效率高、敏感和專一的優(yōu)點(diǎn),但卻不容易找到合適的抗體,且成本較高,不適宜大規(guī)模應(yīng)用。
以上乳酸菌細(xì)菌素抑菌能力的檢測(cè)手段各有各的優(yōu)缺點(diǎn),還不是很完善,還需要進(jìn)一步開發(fā)一種效率高、專一、成本低的檢測(cè)方法,從而有利于發(fā)現(xiàn)新的細(xì)菌素,更好地為乳酸菌細(xì)菌素在醫(yī)療及食品行業(yè)的應(yīng)用服務(wù)。
乳酸菌細(xì)菌素的分離純化在過(guò)去二十年已經(jīng)完成了一個(gè)非常重要的階段,但總結(jié)起來(lái),目前,乳酸菌的分離純化仍然需要進(jìn)一步提高,首先,分離過(guò)程中盡量縮短時(shí)間和利用簡(jiǎn)單的工藝來(lái)保證乳酸菌細(xì)菌素的活性;其次,乳酸菌細(xì)菌素的收率和純度尚不能同時(shí)達(dá)到要求,來(lái)進(jìn)行大規(guī)模工業(yè)化生產(chǎn),最后,分離純化過(guò)程所附帶的環(huán)境污染問(wèn)題仍需考慮。相信隨著未來(lái)乳酸菌分離純化工藝的進(jìn)一步完善,更多的乳酸菌細(xì)菌素將被合法使用,更多的乳酸菌細(xì)菌素將進(jìn)行大規(guī)模的工業(yè)化生產(chǎn),乳酸菌細(xì)菌素將會(huì)廣泛地應(yīng)用到食品保藏、防腐、醫(yī)療等各個(gè)領(lǐng)域。
[1]Fim land G,Johnsen L,Dalhus B,et al.Pediocin-like antimicrobial peptides(class IIa bacteriocins)and their immunity proteins:biosynthesis,structure,andmode ofaction[J].JPept Sci,2005(11):688-696.
[2]Lawton E M,Ross RP,Hill C,Cotter P D.Two-peptide lantibiotics:amedical perspective[J].Mini Rev Med Chem,2007(7):1236-1247.
[3]Castellano P,Belfiore C,F(xiàn)adda S,et al.A review of bacteriocinogenic lactic acid bacteria used as bioprotective cultures in fresh meat produced in Argentina[J].Meat Sci,2008(9):483-499.
[4]Carolissen-Mackay V,Arendse G,Hastings JW.Purification of bacteriocins of lactic acid bacteria:problems and pointers[J]. Int JFood Microbiol,1997,34:1-16.
[5]Suarez A M,Azcona J I,Rodriguez JM,et al.One-step purification of nisin A by immunoaffinity chromatography[J]. Appl Environ Microbiol,1997,63:4990-4992.
[6]Parente E,Ricciardi A.Production,recovery and purification of bacteriocins from lactic acid bacteria[J].Appl Microbiol Biotechnol,1999,52:628-638.
[7]Guyonnet D,F(xiàn)remaux C,Cenatiempo Y,et al.Method for rapid purification of class IIa bacteriocins and comparison of their activities[J].Appl Environ Microbiol,2000,66:1744-1748.
[8]UtengM,Hauge H H,Brondz I,etal.Rapid two-step procedure for large-scale purification of pediocin-like bacteriocins and other cationic antimicrobial peptides from complex culture medium[J].Appl Environ Microbiol,2002,68:952-956.
[9]Berjeaud J M,Cenatiempo Y.Purification of antilisterial bacteriocins[J].Methods Mol Biol,2004,268:225-233.
[10]Saavedra L,Castellano P,Sesma F.Purification ofbacteriocins produced by lactic acid bacteria[J].Methods Mol Biol,2004a,268:331-336.
[11]JSambrook,E F Fritsch,TManiatis.A Laboratory Manual edited by Cold Spring Laboratory Press[J].Molecular Cloning,1989.
[12]Ramakrishnan Srinivasan,Dinesh K.Kumawat,Sunil Kumar,et al.Purification and characterization of a bacteriocin from Lactobacillus rhamnosus L34[J].Ann Microbiol,2012(8):132-133.
[13]N Ravi SankarV,Deepthi Priyanka,P Srinivas Reddy,et al.Purification and Characterization of Bacteriocin Produced by Lactobacillus plantarum Isolated from Cow Milk[J].International Journal of Microbiological Research,2012(2):133-137.
[14]Soumaya Messaoudi, Gilles Kergourlay, Michèle Dalgalarrondo,et al.Purification and characterization of a new bacteriocin active against Campylobacter produced by Lactobacillus salivarius SMXD51[J].Food Microbiology,2012:1-6.
[15]E Vera Pingitore,E Salvucci,F(xiàn) Sesm,et al.Different strategies for purification of antimicrobial peptides from Lactic Acid Bacteria(LAB)[J].Communicating Current Research and Educational Topics and Trends in Applied Microbiology,2007:557-568.
[16]Burianek L L,Yousef A E.Solvent extraction of bacteriocins from liquid cultures[J].Lett ApplMicrobiol,2000,31:193-197.
[17]Taylor T M,Davidson P M,Zhong Q.Extraction of nisin from a 2.5%commercialnisin productusingmethanoland ethanol solutions[J].JFood Prot,2007,70:1272-1276.
[18]Dong Min Chung,Ki Eun Kim,Seong-Yeop Jeong,et al. Rapid concentration of some bacteriocin-like compounds using an organic solvent[J].Food Science And Biotechnology,2011(20):1457-1459.
[19]Yang R,Johnson M C,Ray B.Novelmethod to extract large amounts of bacteriocins from lactic acid bacteria[J].Appl Environ Microbiol,1992,58:3355-3359.
[20]Daba H,Lacroix C,Huang J,et al.Simple method of purification and sequencing of a bacteriocin produced by Pediococcus acidilactici UL5[J].JAppl Bacteriol,1994,77:682-688.
[21]Coventry M J,Gordon J B,Alexander M.A food-grade process for isolation and partial purification of bacteriocins of lactic acid bacteria that uses diatomite calcium silicate[J].Appl Environ Microbiol,1996,62:1764-1769.
[22]L Daoudi,C Turcotte,C Lacroix,et al.Production and characterization of anti-nisin Zmonoclonal antibodies:suitability for distinguishing active from inactive forms through a competitive enzyme immunoassay[J].Appl Microbiol Biotechnol,2001,56:114-119.
[23]陳琳,孟祥晨.超濾法分離植物乳桿菌KLDS1.0391發(fā)酵液中的細(xì)菌素[J].食品科學(xué),2011,32(5):198-201.
[24]Guyonnet D,F(xiàn)remaux C,Cenatiempo Y,et al.Method for rapid purification of class IIa bacteriocins and comparison of their activities[J].Appl Environ Microbiol,2000,66:1744-1748.
[25]Uteng M,Hauge H H,Brondz I,et al.Rapid two-step procedure for large-scale purification ofpediocin-likebacteriocins and other cationic antimicrobial peptides from complex culture medium[J].Appl Environ Microbiol,2002,68:952-956.
[26]Piard JC,Muriana PM,Desmazeaud M J,et al.Purification and partial characterization of lacticin 481,a lanthioninecontaining bacteriocin produced by Lactococcus lactis subsp. lactis CNRZ 481[J].Appl Environ Microbiol,1992,58:279-284.
[27]Lasta Samar,OuzariHadda,Andreotti Nicolas,et al.Lacticin LC14,a New Bacteriocin Produced by Lactococcus lactis BMG6.14:Isolation,Purification and Partial Characterization[J]. Infectious Disorders-Drug Targets,2012(12):316-325.
[28]McAuliffe O,Ryan M P,Ross R P,et al.Lacticin 3147,a broad spectrum bacteriocin which selectively dissipates the membrane potential[J].Appl Environ Microbiol,1998,64:439-445.
[29]Suarez A M,Azcona J I,Rodriguez JM,et al.One-step purification of nisin A by immunoaffinity chromatography[J]. Appl Environ Microbiol,1997,63:4990-4992.
[30]Coughlin R T,Crabb JH.Patent US6794181.2002[P].
[31]Cotter PD,Hill C.PatentWO/2009/135945.2009[P].
[32]Zendo T,Koga S,Shigeri Y,et al.Lactococcin Q,a novel two-peptide bacteriocin produced by Lactococcus lactis QU4[J]. Appl Environ Microbiol,2006,72:3383-3389.
[33]Prioult G,Turcotte C,Labarre L,et al.Rapid purification of nisin Z using specific monoclonal antibody-coated magnetic beads[J].Int Dairy J,2000,10(9):627-633.
[34]FariasM E,F(xiàn)ariasRN,de RuizHolgado AP,etal.Purification and N-terminal amino acid sequence of Enterocin CRL35,a‘pediocin-like’bacteriocin produced by Enterococcus faecium CRL35[J].Lett ApplMicrobiol,1996(22):417-419.
[35]Cintas LM,Casaus P,Havarstein L S,et al.Biochemical and genetic characterization ofenterocin P,a novel sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum[J].Appl Environ Microbiol,1997,63:4321-4330.
[36]Kaur K,Andrew LC,WishartDS,etal.Dynamic relationships among type IIa bacteriocins:temperature effects on antimicrobial activity and on structure of the C-terminal amphipathic alpha helix as a receptor-binding region[J].Biochemistry,2004,43:9009-9020.
[37]Van Reenen C A,Dicks L M,Chikindas M L.Isolation,purification and partial characterization of plantaricin 423,a bacteriocin produced by Lactobacillus plantarum[J].J Appl Microbiol,1998,84:1131-1137.
[38]Guyonnet D,F(xiàn)remaux C,Cenatiempo Y,et al.Method for rapid purification of class IIa bacteriocins and comparison of their activities[J].Appl Environ Microbiol,2000,66:1744-1748.
[39]Maldonado-Barragan A,Caballero-Guerrero B,Jimenez E,et al.Enterocin C,a class IIb bacteriocin produced by E. faecalis C901,a strain isolated from human colostrum[J].Int J Food Microbiol,2009,133:105-112.
[40]Balla E,Dicks L M,Du Toit M,et al.Characterization and cloning of the genes encoding enterocin 1071A and enterocin 1071B,two antimicrobial peptides produced by Enterococcus faecalis BFE 1071[J].Appl Environ Microbiol,2000,66:1298-1304.
[41]Muriana P M,Klaenhammer T R.Purification and partial characterization of lactacin F,a bacteriocin produced by Lactobacillus acidophilus 11088[J].Appl Environ Microbiol,1991,57:114-121.
[42]Muriana P M,Klaenhammer T R.Purification and partial characterization of lactacin F, a bacteriocin produced by Lactobacillusacidophilus11088[J].ApplEnviron Microbiol,1999,57:114-121.
[43]Muriana P M,Klaenhammer T R.Purification and partial characterization of lactacin F, a bacteriocin produced by Lactobacillus acidophilus 11088[J].Appl Environ Microbiol,1991,57:114-121.
[44]Zendo T,Koga S,Shigeri Y,et al.Lactococcin Q,a novel two-peptide bacteriocin produced by Lactococcus lactis QU4[J]. Appl Environ Microbiol,2006,72:3383-3389.
[45]Jimenez-Diaz R,Ruiz-Barba J L,Cathcart D P,et al. Purification and partial amino acid sequence of plantaricin S,a bacteriocin produced by Lactobacillus plantarum LPCO10,the activity of which depends on the complementary action of two peptides[J].Appl Environ Microbiol,1995,61:4459-4463.
[46]Anderssen E L,Diep D B,Nes I F,et al.Antagonistic activity of Lactobacillus plantarum C11:two new two-peptide bacteriocins,plantaricins E F and J K,and the induction factor plantaricin A[J].Appl Environ Microbiol,1998,64:2269-2272.
[47]Maldonado A,Ruiz-Barba JL,Jimenez-Diaz R.Purification and genetic characterization ofplantaricin NC8,a novel cocultureinducible two-peptide bacteriocin from Lactobacillus plantarum NC8[J].Appl Environ Microbiol,2003,69:383-389.
[48]Sawa N,Zendo T,Kiyofuji J,et al.Identification and characterization of lactocyclicin Q,a novel cyclic bacteriocin produced by Lactococcus sp.strain QU12[J].Appl Environ Microbiol,2009,75:1552-1558.
[49]Steinberg D,Lehrer R.Shafer W M,et al.Designer assays for antimicrobial peptides,Disputing the“one-size-Fits-All”Theory[J].Antibacterial Peptide Protocols,1997,78:169-186.
[50]周配東,潘道東,張玉千,等.產(chǎn)細(xì)菌素乳酸菌的篩選及其所產(chǎn)細(xì)菌素的特性[J].食品科學(xué),2011,32(17):303-307.
[51]岳喜慶,閔鐘熳,郭晨,等.產(chǎn)Ⅱa類細(xì)菌素乳酸菌的篩選及鑒定[J].江蘇農(nóng)業(yè)學(xué)報(bào),2011(2):410-414.
[52]韓雪,李研東,王穎.產(chǎn)細(xì)菌素乳酸菌的分離與篩選[J].中國(guó)飼料,2011(7):31-32.
[53]Amonlaya Tosukhowong, Takeshi Zendo, Wonnop Visessanguan,et al.Garvieacin Q,a Novel Class II Bacteriocin from Lactococcus garvieae BCC 43578[J].Applied and EnvironmentalMicrobiology,2012,78:1619-1623.
[54]Schagger H,von Jagow G.Tricine-sodium dodecyl sulfatepolyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100ku[J].Anal Biochem,1987,166:368-379.
[55]Bhunia A K,Johnson M C,Ray B.Purification, characterization and antimicrobial spectrum of a bacteriocin produced by Pediococcus acidilactici[J].JAppl Bacteriol,1988,65:261-268.
[56]Onda T,Yanagida F,TsujiM.Production and purification of a bacteriocin peptide produced by Lactococcus sp.strain GM005,isolated from Miso-paste[J].Int JFood Microbiol,2003,87:153-159.
[57]Ball M S,Karuso P.Mass spectral compatibility of four proteomics stains[J].JProteome Res,2007(6):4313-4320.
[58]Vera Pingitore E,Salvucci E,Sesma F,et al.Different strategies for purification of antimicrobial peptides from lactic acid bacteria[J].Applied Microbiology,2007:557-568.
[59]Vera Pingitore E,Hebert E M,Sesma F,et al.Influence of vitamins and osmolites on growth and bacteriocin production by Lactobacillus salivarius CRL 1328 in a chemically defined medium[J].Can JMicrobiol,2009,55:304-310.
[60]Nock C M,Ball M S,White IR,et al.Mass spectrometric compatibility of Deep Purple and SYPRO Ruby total protein stains for high-throughput proteomics using large-format twodimensionalgelelectrophoresis[J].Rapid Commun MassSpectrom,2008(22):881-886.
Detection technique of bacteriocin from lactic acid bacteria and
research advance in separation and purification technology
LIUWen-li1,ZHANG Lan-wei1,*,John shi2,YIHua-xi1
(1.School of Food Science and Engineering,Harbin Institute of Technology,Harbin 150090,China;2.Guelph Food Research Center,Agriculture and Agri-Food Canada,Guelph N1G5C9,Canada)
Bacteriocins can be againstnumerous foodborne pathogen and spoilage organisms,hence researchers at home and aboard are interested in bacteriocins,especially,bacteriocin from lac tic acid bac teria(LAB)are focused most.However,for bacteriocin could be app lied to biotechnological fields better,it is essential to illum inate its biochem ical structure and its mode of action,which needs that bacteriocins is purified to homogeneity.The main technologies used for the purification and detection of numerous bacteriocins was described,the exp loration of bacteriocins potential in LAB was also d iscussed.
lactic acid bacteria;bac teriocin;separation;purification;detection
TS252.1
A
1002-0306(2012)22-0414-06
2012-05-14 *通訊聯(lián)系人
劉文麗(1982-),女,博士研究生,研究方向:食品科學(xué)。
科技部“863”課題(2007AA10Z354)。