岳 雯, 姚樹桐, 鮑 穎, 王家富, 楊娜娜, 商戰(zhàn)平△
(泰山醫(yī)學(xué)院1病理生理學(xué)教研室,2泰安市中心醫(yī)院心血管內(nèi)科,3動脈粥樣硬化研究所,山東 泰安 271000)
1000-4718(2012)03-0518-06
2011-08-02
2012-01-05
△通訊作者 Tel:0538-6225010; E-mail: zhpshang@tsmc.edu.cn
槲皮素對毒胡蘿卜素誘導(dǎo)的巨噬細(xì)胞內(nèi)質(zhì)網(wǎng)應(yīng)激凋亡途徑的抑制作用及機(jī)制
岳 雯1, 姚樹桐1, 鮑 穎2, 王家富1, 楊娜娜3, 商戰(zhàn)平1△
(泰山醫(yī)學(xué)院1病理生理學(xué)教研室,2泰安市中心醫(yī)院心血管內(nèi)科,3動脈粥樣硬化研究所,山東 泰安 271000)
目的研究槲皮素(quercetin, Que)對毒胡蘿卜素(thapsigargin, TG)誘導(dǎo)的巨噬細(xì)胞RAW264.7內(nèi)質(zhì)網(wǎng)應(yīng)激凋亡途徑的抑制作用及機(jī)制。方法1 μmol/L TG作用RAW264.7細(xì)胞24 h誘導(dǎo)內(nèi)質(zhì)網(wǎng)應(yīng)激,不同濃度Que(80、120或160 μmol/L)與TG共同作用后,MTT法檢測細(xì)胞存活率,流式細(xì)胞術(shù)檢測凋亡率及[Ca2+]i,激光共聚焦顯微鏡觀察細(xì)胞形態(tài)變化,Western blotting法檢測糖調(diào)節(jié)蛋白78 (glucose-regulated protein 78,GRP78)及C/EBP同源蛋白(C/EBP homologous protein, CHOP)的表達(dá);Western blotting法檢測Que(160 μmol/L)和(或)磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase, PI3K)抑制劑LY294002(15 nmol/L)與TG共同作用時(shí)GRP78和CHOP的表達(dá)。結(jié)果Que能夠抑制TG誘導(dǎo)的RAW264.7細(xì)胞內(nèi)質(zhì)網(wǎng)應(yīng)激損傷,與TG組相比,細(xì)胞存活率升高(P<0.05),凋亡率降低(P<0.05),[Ca2+]i降低(P<0.05),GRP78及CHOP表達(dá)減少(P<0.05);LY294002單獨(dú)作用可抑制TG誘導(dǎo)的GRP78及CHOP表達(dá)上調(diào)(P<0.05),但與Que聯(lián)合應(yīng)用與二者單獨(dú)使用時(shí)抑制作用無顯著差異。結(jié)論Que可以抑制TG誘導(dǎo)的RAW264.7細(xì)胞內(nèi)質(zhì)網(wǎng)應(yīng)激凋亡途徑,該作用可能與其抑制PI3K信號通路從而降低CHOP蛋白的表達(dá)有關(guān)。
槲皮素; 內(nèi)質(zhì)網(wǎng)應(yīng)激; 巨噬細(xì)胞; 細(xì)胞凋亡; 磷脂酰肌醇3-激酶
動脈粥樣硬化(atherosclerosis, AS)斑塊破裂后導(dǎo)致血栓形成,引發(fā)急性冠脈綜合征,是當(dāng)今人類健康的頭號殺手。巨噬細(xì)胞凋亡與斑塊的破裂密切相關(guān),而持久劇烈的內(nèi)質(zhì)網(wǎng)應(yīng)激(endoplasmic reticulum stress, ERS)是誘導(dǎo)巨噬細(xì)胞凋亡的重要途徑之一[1]。槲皮素(quercetin, Que)是分布最廣的黃酮類化合物之一,具有抗氧化、抗突變、抗血管形成、抑制蛋白激酶C(protein kinase C, PKC)、抑制脂氧合酶、抑制組胺釋放和調(diào)節(jié)細(xì)胞周期等多種生物學(xué)作用[2]。但Que對巨噬細(xì)胞ERS的調(diào)控作用至今未能完全闡明。本文將以毒胡蘿卜素(thapsigargin, TG)作用巨噬細(xì)胞RAW264.7誘導(dǎo)ERS模型,通過對凋亡、[Ca2+]i及相關(guān)蛋白水平的檢測,探討Que對巨噬細(xì)胞ERS凋亡途徑的調(diào)節(jié)作用及可能機(jī)制。
1主要材料及儀器
槲皮素、毒胡蘿卜素、3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴鹽[3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, MTT]和磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase, PI3K)抑制劑(LY294002)購自Sigma;膜聯(lián)蛋白V/碘化丙啶(Annexin V/PI)雙染色試劑盒購自南京凱基生物有限公司;Fura-3/AM Ca2+濃度檢測試劑盒購自Biotium;乙二醇-雙-(2-氨基乙醚)四乙酸(glycol-bis-(2-aminoethylether)-N,N,N’,N’-tetraacetic acid, EGTA)購自索萊寶公司;兔抗鼠糖調(diào)節(jié)蛋白78(glucose-regulated protein 78, GRP78)、C/EBP同源蛋白(C/EBP homologous protein, CHOP)和甘油醛-3-磷酸脫氫酶(glyceraldehyde-3-phosphate dehydrogenase, GAPDH)Ⅰ抗購自Santa Cruz,其它試劑均為進(jìn)口或國產(chǎn)分析純。流式細(xì)胞儀(FACS Calibur, Bio-Rad);酶標(biāo)儀(Tecan infinite F200, Tecan);電泳儀(Bio-Rad PAC3000, Bio-Rad);激光共聚焦顯微鏡(Radiance2100, Bio-Rad)。
2主要方法
2.1細(xì)胞培養(yǎng) 鼠源巨噬細(xì)胞RAW264.7細(xì)胞由本實(shí)驗(yàn)室保存。細(xì)胞用含有10%胎牛血清的高糖DMEM培養(yǎng)液,在37 ℃、5%CO2培養(yǎng)箱中靜置培養(yǎng)。待細(xì)胞生長良好,調(diào)整密度為5×109/L接種于培養(yǎng)板,細(xì)胞處理前換入無血清的DMEM培養(yǎng)液培養(yǎng)24 h。
2.2MTT法檢測細(xì)胞存活率 細(xì)胞培養(yǎng)于96孔培養(yǎng)板,每組5個(gè)復(fù)孔。細(xì)胞經(jīng)處理后,每孔加MTT 20 μL,4 h后終止培養(yǎng),棄去培養(yǎng)液,每孔加DMSO 200 μL,充分混勻,置于37 ℃溫箱培養(yǎng)15 min,使結(jié)晶物充分溶解。酶標(biāo)儀490 nm波長處測吸光度(A)值。細(xì)胞存活率%=(干預(yù)組A/對照組A)×100%。實(shí)驗(yàn)重復(fù)3次。
2.3流式細(xì)胞儀檢測細(xì)胞凋亡率 采用Annexin V-FITC/PI雙標(biāo)記染色法檢測細(xì)胞凋亡率。細(xì)胞經(jīng)處理后棄去舊培養(yǎng)液,常規(guī)消化后制成單細(xì)胞懸液,4 ℃離心5 min,去上清后細(xì)胞沉淀用冷PBS洗2次,加500 μL結(jié)合緩沖液懸浮細(xì)胞,然后加入Annexin V-FITC和PI各5 μL,輕輕混勻,室溫避光孵育10 min,1 h內(nèi)上機(jī)檢測。實(shí)驗(yàn)重復(fù)3次。
2.4激光共聚焦顯微鏡觀察細(xì)胞形態(tài) 將細(xì)胞培養(yǎng)于放有無菌蓋玻片的6孔培養(yǎng)板中。細(xì)胞經(jīng)處理后,用PBS潤洗3次,取500 μL結(jié)合緩沖液并加入Annexin V-FITC和PI各5 μL,混勻后滴加于玻片上,室溫避光孵育10 min,封片后上機(jī)檢測。實(shí)驗(yàn)重復(fù)3次。
2.5流式細(xì)胞儀檢測[Ca2+]i處理后收集細(xì)胞,PBS洗3次,取細(xì)胞懸液加入2 μmol/L Fluo-3/AM,置培養(yǎng)箱中孵育30 min,其間輕微振蕩3次,無鈣緩沖液終止反應(yīng)并調(diào)整細(xì)胞數(shù)目1×109/L,30 min內(nèi)上機(jī)檢測。參數(shù)設(shè)置為激發(fā)光波長488 nm,發(fā)射波長526 nm,按公式計(jì)算[Ca2+]i=Kd[(F-Fmin)/(Fmax-F)],Kd為Fluo-3的解離常數(shù)(400 nmol/L),F(xiàn)為熒光強(qiáng)度,F(xiàn)min是加入EGTA(終濃度5 mmol/L)后的最小值,F(xiàn)max是加入10% Triton X-100后的最大值。實(shí)驗(yàn)重復(fù)3次。
2.6Western blotting測定蛋白表達(dá) 收集細(xì)胞,加入裂解液冰浴30 min,15 000×g離心20 min,取上清BCA法蛋白定量,煮沸變性后取40 μg蛋白行SDS-PAGE并電轉(zhuǎn)印至PVDF膜,膜封閉后,與兔抗鼠GRP78、CHOP或GAPDH的多克隆抗體孵育4℃過夜,漂洗后與相應(yīng)辣根過氧化物酶耦聯(lián)的Ⅱ抗孵育2 h, 抗原-抗體復(fù)合物用增強(qiáng)化學(xué)發(fā)光法(ECL)顯影,暗室X光膠片曝光,Image-Pro Plus軟件(Version 6.0, Media Cybernetics)分析蛋白條帶累積吸光度(integrated absorbance,IA)值,以靶蛋白IA值/GAPDHIA值反映靶蛋白相對水平。實(shí)驗(yàn)重復(fù)3次。
3統(tǒng)計(jì)學(xué)處理
1Que對TG作用RAW264.7細(xì)胞存活率的影響
結(jié)果顯示,TG組細(xì)胞存活率較對照組明顯降低(P<0.05);而Que與TG共同作用后,細(xì)胞存活率較TG組升高(P<0.05),且呈劑量依賴性;Que(160 μmol/L)單獨(dú)作用細(xì)胞存活率較對照組無明顯改變(P>0.05),結(jié)果提示Que可抑制TG對RAW264.7細(xì)胞活性的損傷,見表1。
表1MTT法檢測RAW264.7細(xì)胞存活率
GroupCellviabilityControl100TG30.81±1.21*TG+80μmol/LQue49.34±3.59#TG+120μmol/LQue56.83±2.98#TG+160μmol/LQue76.90±1.17#160μmol/LQue95.25±1.73
*P<0.05vscontrol;#P<0.05vsTG group.
2Que對TG作用RAW264.7細(xì)胞凋亡的影響
Annexin V-FITC/PI對細(xì)胞行雙標(biāo)記染色,正常細(xì)胞分布于流式圖的左下區(qū),早期凋亡細(xì)胞分布于右下區(qū),晚期凋亡或死亡細(xì)胞分布于右上區(qū),早晚期凋亡細(xì)胞百分?jǐn)?shù)總和稱為總凋亡率。結(jié)果顯示,對照組總凋亡率為(3.48±0.45)%;TG組總凋亡率為(70.91±2.02)%,較對照組明顯增加(P<0.05);Que(80、120和160 μmol/L)與TG共同作用后,總凋亡率分別為(45.11±1.93)%、(36.02±1.42)%和(25.92±1.72)%,均較TG組減少(P<0.05),且呈劑量依賴性;Que(160 μmol/L)單獨(dú)作用后細(xì)胞凋亡率為(8.11±0.77)%,較對照組升高(P<0.05),但與TG共同作用時(shí)存在交互作用。
激光共聚焦顯微鏡下觀察可見,對照組和Que單獨(dú)作用組僅可見少數(shù)單染成綠色胞膜的細(xì)胞,未見紅染的胞核;TG組可見較多雙染細(xì)胞,即紅色胞核外圍鮮綠色胞膜,還可見僅著紅色的凋亡小體;而Que與TG共同作用后,紅染胞核基本消失,單染成綠色胞膜的細(xì)胞也隨Que濃度增加而逐漸減少。結(jié)果提示Que可抑制TG誘導(dǎo)的RAW264.7細(xì)胞凋亡,見圖1。
3Que對TG作用RAW264.7細(xì)胞[Ca2+]i的影響
結(jié)果顯示,TG作用后[Ca2+]i較對照組明顯升高(P<0.05),加入Que(80、120和160 μmol/L)與TG共同作用后可使[Ca2+]i明顯降低(P<0.05),呈劑量依賴性;雖Que(160 μmol/L)單獨(dú)作用也可使[Ca2+]i較對照組升高(P<0.05),但與TG共孵育時(shí)存在交互作用,見表2。
4Que對TG作用RAW264.7細(xì)胞GRP78和CHOP蛋白表達(dá)的影響
結(jié)果顯示,TG組細(xì)胞GRP78及CHOP蛋白表達(dá)明顯增加,其相對蛋白含量分別為對照組的9.36和21.6倍(P<0.05);而Que(80、120和160 μmol/L)與TG共同作用使兩種蛋白表達(dá)均較TG組降低(P<0.05),GRP78蛋白相對含量較TG組降低20%、61%和78%,CHOP蛋白相對含量較TG組降低56%、81%和79%,見圖2A。
160 μmol/L Que單獨(dú)作用RAW264.7細(xì)胞,不同時(shí)間點(diǎn)檢測蛋白表達(dá)變化,結(jié)果發(fā)現(xiàn),GRP78和CHOP的蛋白水平均較對照組升高(P<0.05),作用24 h時(shí)蛋白水平分別是對照組的3.55倍和1.75倍,但時(shí)間依賴性不明顯,見圖2B。
5Que通過PI3K通路抑制TG誘導(dǎo)的RAW264.7細(xì)胞ERS
結(jié)果顯示,LY294002(15 nmol/L)或Que(160 μmol/L)單獨(dú)作用,或是二者共同作用RAW264.7細(xì)胞時(shí),都可以抑制TG誘導(dǎo)的GRP78和CHOP的表達(dá)上調(diào)(P<0.05),GRP78較TG組分別降低74%、76%和77%,CHOP較TG組分別降低74%、76%和76%,而三者對兩種蛋白的抑制作用之間無統(tǒng)計(jì)學(xué)意義(P>0.05),見圖2C。
內(nèi)質(zhì)網(wǎng)是蛋白質(zhì)合成、修飾加工、分選轉(zhuǎn)運(yùn)的主要場所,同時(shí)也參與調(diào)節(jié)細(xì)胞內(nèi)Ca2+濃度變化。很多病理生理因素,如熱性驚厥、糖基化的抑制、Ca2+穩(wěn)態(tài)失衡、二硫鍵結(jié)合減少、病毒感染等,都能干擾蛋白質(zhì)折疊,使未折疊或錯誤折疊的蛋白質(zhì)在內(nèi)質(zhì)網(wǎng)腔內(nèi)蓄積,引起ERS。隨后細(xì)胞引發(fā)一系列試圖恢復(fù)內(nèi)質(zhì)網(wǎng)穩(wěn)態(tài)的反應(yīng),如降低翻譯水平來阻止蛋白質(zhì)的進(jìn)一步聚集,誘導(dǎo)分子伴侶GRP78、葡萄糖調(diào)節(jié)蛋白質(zhì)94(glucose-regulated protein 94,GRP94)等的表達(dá)以糾正蛋白質(zhì)的折疊及促進(jìn)泛素-蛋白酶體降解系統(tǒng),加速未折疊或錯誤折疊蛋白質(zhì)的降解。這一系列反應(yīng)稱之為未折疊蛋白反應(yīng)(unfolded protein response, UPR),相關(guān)轉(zhuǎn)錄因子有:RNA依賴的蛋白激酶樣內(nèi)質(zhì)網(wǎng)激酶(PKR-like ER kinase, PERK)、肌醇激酶l(inositol-requiring kinase 1, IRE1)和活化轉(zhuǎn)錄因子6(activating transcription factor 6, ATF6)[3]。當(dāng)應(yīng)激持續(xù)過強(qiáng)或過久時(shí),UPR可激活轉(zhuǎn)錄因子CHOP、caspase-12和c-Jun氨基末端激酶(c-Jun N-terminal kinase, JNK)等,誘導(dǎo)細(xì)
Figure 1. Effect of Que on apoptosis of RAW264.7 cells induced by TG. RAW264.7 cells were treated with various concentrations of Que and 1 μmol/L of TG for 24 h. The apoptotic rate was determinied by flow cytometry. The morphological changes of the cells was observed by laser scanning confocal microscopy (×200).
圖1Que對TG誘導(dǎo)RAW264.7細(xì)胞凋亡的影響
表2Que對TG誘導(dǎo)的RAW264.7細(xì)胞[Ca2+]i濃度的影響
Group[Ca2+]iControl31.65±2.94TG371.39±58.92*TG+80μmol/LQue292.61±11.01#TG+120μmol/LQue198.97±2.03#TG+160μmol/LQue162.78±3.19#160μmol/LQue121.14±1.54*
*P<0.05vscontrol;#P<0.05vsTG.
圖2Que對TG誘導(dǎo)的RAW264.7細(xì)胞中GRP78和CHOP蛋白表達(dá)的影響
胞凋亡,導(dǎo)致不可逆的損傷[3]。研究發(fā)現(xiàn),ERS伴隨AS發(fā)生、發(fā)展的全過程,可誘導(dǎo)斑塊中的巨噬細(xì)胞凋亡,是除死亡受體和線粒體途徑外,觸發(fā)巨噬細(xì)胞凋亡的另一重要機(jī)制[4]。
GRP78是ERS的標(biāo)志蛋白之一。在未應(yīng)激的細(xì)胞中,GRP78與IRE1、PERK、ATF6的胞內(nèi)部分結(jié)合,使其失活;當(dāng)ERS時(shí)其表達(dá)上調(diào),激活感受器蛋白的同時(shí),增加內(nèi)質(zhì)網(wǎng)對未折疊蛋白的處理能力[4]。CHOP是參與ERS凋亡途徑的重要信號分子,可通過多種途徑誘導(dǎo)細(xì)胞凋亡[5]。研究發(fā)現(xiàn),在巨噬細(xì)胞中CHOP可通過活化內(nèi)質(zhì)網(wǎng)氧化酶1(ER oxidase 1, ERO1),激活1,4,5-三磷酸肌醇受體(inositol 1,4,5-trisphosphate receptor, IP3R)相關(guān)的內(nèi)質(zhì)網(wǎng)Ca2+釋放,從而活化死亡受體FAS、線粒體等眾多凋亡信號通路[6]。
TG可通過抑制肌漿/內(nèi)質(zhì)網(wǎng)Ca2+-ATP酶(sarco/endoplasmic reticulum Ca2+-ATPase, SERCA),使Ca2+穩(wěn)態(tài)失衡誘導(dǎo)ERS。本實(shí)驗(yàn)結(jié)果顯示,鼠源巨噬細(xì)胞RAW264.7經(jīng)1 μmol/L TG處理24 h后,細(xì)胞存活率降低,凋亡率增加,可見凋亡形態(tài)變化及典型的凋亡小體,[Ca2+]i及GRP78、CHOP蛋白表達(dá)與對照組相比也有明顯增加。結(jié)果表明,TG誘導(dǎo)RAW264.7細(xì)胞ERS模型制備成功。
Que及其衍生物是植物界分布最廣的黃酮類化合物,也是人類飲食中最主要的生物類黃酮,其藥理活性主要有抗氧化、抗炎、降血壓、抗血小板聚集、 抗癌變、抗AS等作用[7-9]。本實(shí)驗(yàn)發(fā)現(xiàn),Que可以減輕TG誘導(dǎo)的RAW264.7細(xì)胞ERS相關(guān)損傷,表現(xiàn)為細(xì)胞存活率上升,凋亡率下降,凋亡形態(tài)變化減輕,晚期凋亡及壞死細(xì)胞明顯減少,凋亡小體缺失,[Ca2+]i降低,凋亡標(biāo)志蛋白GRP78及CHOP表達(dá)減少,且該效應(yīng)呈劑量依賴趨勢。
Que單獨(dú)作用也可上調(diào)GRP78及CHOP的表達(dá),以上調(diào)GRP78表達(dá)更為顯著,我們猜測,Que或許是通過上調(diào)GRP78表達(dá),增強(qiáng)細(xì)胞對應(yīng)激的防御能力。而且我們?nèi)梭w對黃酮類的日攝取量僅僅是20~35 mg/d[10],實(shí)驗(yàn)用的Que濃度已遠(yuǎn)遠(yuǎn)大于體內(nèi)實(shí)際存在量。Takano等[11]研究發(fā)現(xiàn),與Que具有相似生物學(xué)作用的甲基黃酮類代表-紅橘素在抑制衣霉素誘導(dǎo)的ERS時(shí),會上調(diào)GRP78和血紅素氧合酶1(heme oxygenase 1, HO-1)的表達(dá);而紅橘素抑制小鼠胰島素瘤細(xì)胞MIN6 ERS的同時(shí),也可上調(diào)GRP78表達(dá)并誘導(dǎo)翻譯起始因子2α(eukaryotic translation initiation factor 2α, eIF2α)的磷酸化。據(jù)此我們推測,Que表現(xiàn)出的是對ERS的抑制作用,而不是加劇ERS的毒性作用。
已知Que與PI3K抑制劑LY294002具有相似的結(jié)構(gòu),能抑制PI3K-Akt /PKB信號通路[12]。我們發(fā)現(xiàn),LY294002或Que單獨(dú)作用都可以抑制TG誘導(dǎo)的GRP78和CHOP的表達(dá)升高,而聯(lián)合應(yīng)用時(shí)對蛋白的抑制作用與二者單獨(dú)作用時(shí)沒有統(tǒng)計(jì)學(xué)差異,此結(jié)果提示二者抑制TG誘導(dǎo)的GRP78和CHOP蛋白表達(dá)升高的機(jī)制是相同的,即Que或許是通過抑制PI3K通路來調(diào)節(jié)RAW264.7細(xì)胞ERS的。
有報(bào)道稱,PI3K能通過抑制糖原合酶激酶 3β(glycogen synthase kinase 3β, GSK-3β)影響糖代謝,誘發(fā)葡糖胺誘導(dǎo)的ERS[13]。TG抑制SERCA后可使內(nèi)質(zhì)網(wǎng)腔Ca2+耗竭和[Ca2+]i升高,而后者導(dǎo)致PI3K活化[14]。PI3K活化能進(jìn)一步激活磷脂酶Cγ(phospholipase C gamma, PLCγ),產(chǎn)生IP3,通過與IP3R結(jié)合誘導(dǎo)內(nèi)質(zhì)網(wǎng)釋放Ca2+[15],加重ERS。而且PI3K還能通過活化JNK、促進(jìn)CHOP表達(dá)和失活 Bcl-2等誘導(dǎo)細(xì)胞凋亡[16]。因此,抑制PI3K信號通路或許能直接導(dǎo)致ERS的緩和。
綜上所述,Que可以抑制TG誘導(dǎo)的巨噬細(xì)胞RAW264.7內(nèi)質(zhì)網(wǎng)應(yīng)激凋亡途徑,其機(jī)制可能與抑制PI3K信號通路和抑制CHOP蛋白的表達(dá)有關(guān)。
[1] Hertog MG, Hollman PC. Potential health effects of the dietary flavonol quercetin[J]. Eur J Clin Nutr, 1996, 50(2):63-71.
[2] Walker EH, Pacold ME, Perisic O, et al. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine[J]. Mol Cell, 2000, 6(4): 909-919.
[3] Rasheva VI, Domingos PM. Cellular responses to endoplasmic reticulum stress and apoptosis[J]. Apoptosis, 2009, 14(8):996-1007.
[4] Lai E, Teodoro T, Volchuk A. Endoplasmic reticulum stress:signaling the unfolded protein response[J]. Physiology (Bethesda), 2007,22:193-201.
[5] Rao RV, Peel A, Logvinova A, et al. Coupling endoplasmic reticulum stress to the cell death program:role of the ER chaperone GRP78[J]. FEBS Lett, 2002, 514(2-3):122-128.
[6] Yao PM, Tabas I. Free cholesterol loading of macrophages is associated with widespread mitochondrial dysfunction and activation of the mitochondrial apoptosis pathway[J]. Biol Chem, 2001, 276(45):42468-42476.
[7] 朱宇同,王艷芳, 王新華. 槲皮素藥理學(xué)作用研究進(jìn)展[J]. 天然產(chǎn)物研究與開發(fā), 2003, 15(2):171-173.
[8] 畢 偉,朱麗紅,王傳明,等.槲皮素抑制魚藤酮誘導(dǎo)的PC12細(xì)胞凋亡[J].中國病理生理雜志,2011,27(1):82-85.
[9] 周 曉,商戰(zhàn)平,司艷紅,等.槲皮素抑制內(nèi)皮素-1誘導(dǎo)的人臍動脈平滑肌細(xì)胞T型鈣通道的表達(dá)[J].中國病理生理雜志,2011,27(3):450-454.
[10]Manach C, Williamson G, Morand C, et al. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies[J]. Am J Clin Nutr, 2005, 81(1 Suppl):230S-242S.
[11]Takano K, Tabata Y, Kitao Y, et al. Methoxyflavones protect cells against endoplasmic reticulum stress and neurotoxin[J]. Am J Physiol Cell Physiol, 2007, 292(1): C353-C361.
[12] Gulati N, Laudet B, Zohrabian VM, et al. The antiproliferative effect of quercetin in cancer cells is mediated via inhibition of the PI3K-Akt/PKB pathway[J]. Anticancer Res, 2006, 26(2A):1177-1181.
[13]Sharma M, Chuang WW, Sun Z. Phosphatidylinositol 3-kinase/Akt stimulates androgen pathway through GSK3β inhibition and nuclear β-catenin accumulation[J]. J Biol Chem, 2002, 277(34): 30935-30941.
[14]Takuwa Y. Identification of PI3K-C2α as the mediator of Ca2+-induced Rho activation and MLC phosphatase inhibition[J]. Nippon Yakurigaku Zasshi, 2007, 129(4): 253-257.
[15]Fischer L, Gukovskaya AS, Penninger JM, et al. Phosphatidylinositol 3-kinase facilitates bile acid-induced Ca2+responses in pancreatic acinar cells[J]. Am J Physiol Gastrointest Liver Physiol, 2007, 292(3): G875-G886.
[16]Liang SH, Zhang W, McGrath BC, et al. PERK (eIF2α kinase) is required to activate the stress-activated MAPKs and induce the expression of immediate-early genes upon disruption of ER calcium homoeostasis[J]. Biochem J, 2006, 393(Pt 1): 201-209.
ProtectiveeffectofquercetinonERstress-relatedapoptosisinducedbythapsigargininmacrophages
YUE Wen1, YAO Shu-tong1, BAO Ying2,WANG Jia-fu1, YANG Na-na3, SHANG Zhan-ping1
(1DepartmentofPathophysiology,2DepartmentofCardiovascularMedicine,theCentralHospitalofTaian,3InstituteofAtherosclerosis,TaishanMedicalCollege,Taian271000,China.E-mail:zhpshang@tsmc.edu.cn)
AIM: To investigate the effects and possible mechanisms of quercetin (Que) on endoplasmic reti-culum stress (ERS)-related apoptosis induced by thapsigargin (TG) in RAW264.7 cells.METHODSER stress of RAW264.7 cells were induced by TG at concentration of 1 μmol/L for 24 h. After treated with different concentrations of Que (80, 120 and 160 μmol/L), the cell viability was determined by MTT assay.The apoptotic rate and the changes of intracellular Ca2+concentration ([Ca2+]i) were determined by flow cytometry, and the cell apoptotic morphology was observed under laser scanning confocal microscope.The protein levels of glucose-regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP) were detected by Western blotting. The effect of Que on GRP78 and CHOP induced by TG with phosphatidylinositol 3-kinase (PI3K) inihibitor LY294002 at concentration of 15 nmol/L was measured by Western blotting.RESULTSQue suppressed ER stress-related injury induced by TG in RAW264.7 cells. Compared with TG group, the cell viability increased (P<0.05), apoptotic rate and [Ca2+]idecreased (P<0.05) and the changes of apoptotic morphology were alleviated. The increase in GRP78 and CHOP induced by TG as an ER stress marker was suppressed by Que (P<0.05). The suppressive effect of Que on GRP78 and CHOP was reproduced by LY294002 (P<0.05), but they failed to exhibit additive suppression.CONCLUSIONQue suppresses the ER stress induced by TG in RAW264.7 cells. The protective effect may be related to its suppression on PI3K signaling pathway.
Quercetin; Endoplasmic reticulum stress; Macrophages; Apoptosis; Phosphatidylinositol 3-kinase
R332
A
10.3969/j.issn.1000-4718.2012.03.023