• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      靜電微泵的3D流固耦合動態(tài)特性分析

      2012-12-03 14:50:30董金新林謝昭
      中國機(jī)械工程 2012年5期
      關(guān)鍵詞:微泵瞬態(tài)流體

      董金新 林謝昭 應(yīng) 濟(jì) 李 俊

      1.溫州職業(yè)技術(shù)學(xué)院,溫州,325035 2.浙江大學(xué),杭州,310027

      0 引言

      微流體系統(tǒng)中大都要求有微泵。其中,薄膜往復(fù)振動式無閥微泵是以擴(kuò)散/收縮單元為閥門,通過泵膜的振動驅(qū)動流體,其制造簡單,可以驅(qū)動一些非均相的流體,是眾多研究的焦點。根據(jù)驅(qū)動原理不同,無閥微泵可劃分為電磁、靜電、壓電、形狀記憶合金等多種類型。其中,靜電無閥微泵具有較低功耗,易于與IC工藝集成兼容等優(yōu)點,而得到廣泛關(guān)注。

      由于微泵的尺度很小,薄膜往復(fù)振動式無閥微泵的絕大部分物理量難以通過實驗測量,特別是瞬態(tài)量。因此,在微泵的研制階段,利用數(shù)值方法對動態(tài)性能進(jìn)行仿真、預(yù)測顯得很重要。它不僅可降低費(fèi)用,而且能更好地了解微泵的工作原理以及可能的潛在缺陷。但因微泵中柔性泵膜、電驅(qū)動和流體相互耦合,加之流體在擴(kuò)散/收縮單元中的不同流動方向表現(xiàn)出的不同壓力特性,增加了對整個泵的仿真難度和復(fù)雜性。早期的研究采用低階集總參數(shù)模型[1-2]和等效電網(wǎng)絡(luò)模型[3]等簡化方法,忽略了參數(shù)的空間分布特性。目前大部分的研究沒有考慮泵的流固耦合效應(yīng),也無法建立電驅(qū)動信號量與流體動力學(xué)量(比如流量)之間的關(guān)系。或是研究驅(qū)動器的動態(tài)特性[4-7];或是簡化流體場,根據(jù)擴(kuò)散/收縮單元的壓力損失系數(shù),將泵膜的運(yùn)動與泵腔內(nèi)外壓力以及擴(kuò)散/收縮單元流量聯(lián)系起來,研究泵膜的動態(tài)特性[8-11];或是將驅(qū)動器的位移輸出,作為流體場的移動壁面問題來研究泵流體的動力學(xué)特性[12-14]。實際上,泵膜的動態(tài)特性與流體黏滯損失的非線性和不穩(wěn)定性等是相互影響的。為了理解整個微泵的動態(tài)特性,模型必須能有效地描述這些耦合效應(yīng)[15-16]。本文以靜電無閥微泵為對象,建立靜電-結(jié)構(gòu)-流體全耦合的3維模型,利用數(shù)值方法,仿真并分析各個變量的非線性動態(tài)特性。

      1 模型的建立

      1.1 控制方程、邊界條件以及初始條件

      圖1所示為靜電無閥微泵的結(jié)構(gòu)示意圖。對于泵送流體,采用任意拉格朗日-歐拉(ALE)描述比較方便。某一時刻,在參考系中^x位置流動的流體質(zhì)點速度u的時間導(dǎo)數(shù)可以表示為

      圖1 靜電無閥微泵的結(jié)構(gòu)示意圖

      流體域Ωf的不可壓縮流動動量守恒定律以及連續(xù)方程可以表示為

      式中,ρf、f、σ分別為流體密度、體積力向量和Cauchy應(yīng)力張量;[0,T]為所考察的時間間隔。

      牛頓流體的本構(gòu)方程為

      在泵膜流固耦合界面Γf-s處,邊界條件如下:

      式(5)為流固界面Γf-s處的無滑移條件;在流固界面Γf-s上,參考系的速度^v及其位置^x需要滿足連續(xù)條件式(6),以保證參考系的邊界準(zhǔn)確地表達(dá)結(jié)構(gòu)的當(dāng)前構(gòu)型。沿著界面的應(yīng)力平衡由式(7)表達(dá)。

      對于泵膜,可以利用標(biāo)準(zhǔn)的Lagrangian描述建立其運(yùn)動學(xué)方程,即

      式中,ρs為固體的密度。

      泵膜流固耦合邊界Γf-s滿足:

      邊界條件式(9)、式(10)分別對應(yīng)于式(5)和式(7)。

      如果沒有包含自由電荷,則描述靜電場的Poisson方程可以表示為

      式中,φ為靜電勢;ε為介電常數(shù)張量;E為靜電場電場強(qiáng)度。

      Maxwell靜電應(yīng)力張量TE由下式計算:

      式中,F(xiàn)E為靜電載荷。

      各個場變量的初始條件都設(shè)置為零。為了計算易于收斂,將一個很小的初值輸入到模型中。

      1.2 模型參數(shù)及材料屬性

      圖1所示靜電微泵的泵膜厚度為10μm,泵腔深度為100μm,泵膜半徑為2000μm;擴(kuò)散/收縮單元的幾何結(jié)構(gòu)相同,長度為1000μm,最小端面寬度尺寸為80μm,擴(kuò)張角為10°;連接的進(jìn)出口管道長度皆為2000μm,寬度為200μm。流體介質(zhì)為去離子水,物性參數(shù)如表1所示。

      表1 與微泵仿真相關(guān)的材料屬性參數(shù)

      假設(shè)層流流動,考慮對稱性,在CFD-ACE中建立微泵的一半模型。利用結(jié)構(gòu)化網(wǎng)格劃分流體,單元數(shù)為52 880個,泵膜劃分為4974個殼單元。使用基于壓力修正的SIMPLE-C 算法對流動以及能量進(jìn)行順序積分,獲得流場的解。流體域的對流和擴(kuò)散采用一階迎風(fēng)格式,時間積分采用了Crank-Nicolson格式。使用基于有限體積法的計算格式求解靜電場,這樣可以處理不同介質(zhì)介電常數(shù)問題。利用一階殼單元來表達(dá)泵膜,并進(jìn)行大變形和接觸等幾何非線性分析??紤]到靜電、結(jié)構(gòu)以及流動耦合求解的需要,利用網(wǎng)格重劃分工具,使用預(yù)測-校正方法對局部變形進(jìn)行連續(xù)修正,將流動速度和結(jié)構(gòu)速度聯(lián)系起來,實現(xiàn)流固耦合分析。流體和結(jié)構(gòu)求解器的耦合迭代頻率設(shè)置為fc=1,使得流體場和結(jié)構(gòu)場信息能及時得到交換和更新。當(dāng)量綱一殘差小于10-4時,認(rèn)為計算是收斂的。施加的周期性驅(qū)動電壓V=200(1-cos(20πt))(泵腔底電壓為零),在Pentium-3.0GHz的PC機(jī)中,完成3.5個周期的求解,共350個子步數(shù),求解時間約為59h。

      2 結(jié)果及討論

      2.1 泵膜的動力學(xué)特性

      圖2所示為計算得到的泵膜中心點垂直方向上的位移隨時間變化曲線,圖中最大變形量為28.433μm??紤]流固耦合效應(yīng)后,在流體阻尼作用下,泵膜無法回復(fù)至初始零位置,0.653μm為新的平衡位置。穩(wěn)態(tài)情況下,泵膜位移的變化滯后于輸入電壓信號的變化,一個周期的滯后時間約為0.01s。

      圖2 泵膜中心垂直方向上的位移隨時間變化曲線

      2.2 流場的瞬態(tài)特性

      實際上,泵流體動態(tài)特性更為設(shè)計者所關(guān)注,為了更好地詮釋泵膜振動與流體特性之間的耦合關(guān)系,用圖3所示的泵膜流固耦合界面上中心點處的垂直方向位移與泵腔內(nèi)流體壓力來顯示其對應(yīng)關(guān)系,從圖中可以明顯地看出,流體壓力的變化與泵膜的位移存在著密切關(guān)系。在靜電力的作用下,泵膜下拉變形的速度大于回彈的速度,所以在流體壓出泵腔的過程中其壓力變化較大,最高壓力為945.1Pa;而在流體吸入泵腔過程中,其壓力變化相對較小,最大負(fù)壓為-558.0Pa;整個泵送過程中,流體壓力呈現(xiàn)非對稱性變化。圖3還表明,泵初始工作點從零點開始,經(jīng)過第一個周期的瞬態(tài)過程后,第二個周期的軌跡與第三個周期的軌跡已經(jīng)重合,表明泵已經(jīng)進(jìn)入穩(wěn)定工作狀態(tài)。流體壓力的波動周期同樣滯后于驅(qū)動電壓的變化(約0.01s)。

      圖3 泵膜中心點處垂直方向上位移與流體壓力的關(guān)系

      圖4所示為進(jìn)出口單元處的瞬態(tài)體積流量變化曲線,從圖中可以看出,在泵膜下拉(往固定電極)運(yùn)動階段(泵送階段),出口單元的瞬態(tài)流量大于進(jìn)口單元的瞬態(tài)流量;而在泵膜回彈階段(泵吸入階段),進(jìn)口單元的流量則大于出口單元的流量。最大的瞬態(tài)流量差發(fā)生在泵腔內(nèi)壓力達(dá)到極大值時刻,而在泵腔內(nèi)壓力與進(jìn)出口壓力相差不大的時間段,進(jìn)出口單元的流量相差不大。表明要使擴(kuò)散/收縮單元發(fā)揮“整流”作用,其兩端的壓力差必須達(dá)到一定值,并且壓力差要盡可能地大。對穩(wěn)態(tài)情況下的泵凈流量進(jìn)行積分計算,得到的凈輸出流量為10.764nL/s。

      圖4 進(jìn)出口瞬態(tài)流量隨時間的變化

      圖5所示為微泵橫截面方向上流體壓力的分布情況,由圖可知泵腔內(nèi)的壓力幾乎分布一致,說明在平面布置的無閥微泵中,采用Reynolds方程來描述泵腔內(nèi)流體的瞬態(tài)動力學(xué)特性具有一定的可行性。另外,微泵所連接的進(jìn)出口管道對微泵的工作性能也有影響。

      圖5 不同時刻下的微泵橫截面方向上的壓力分布情況

      考慮了流固耦合特性后,模型不僅能夠仿真泵流場的動態(tài)特性,還能夠仿真泵膜的應(yīng)力特性變化。圖6所示為t=28ms時刻的泵腔內(nèi)流體壓力分布與泵膜應(yīng)力分布情況,以及這一時刻的擴(kuò)散/收縮單元內(nèi)流體的速度場分布。此時,泵腔內(nèi)流體壓力達(dá)到最大值945.3Pa,泵膜中心撓度為13.20μm;泵 膜 邊 緣 處 VonMises 應(yīng) 力 為28.39MPa。微泵腔內(nèi)的流速較小,擴(kuò)張管/收縮管頸部的平均流速達(dá)到最大,計算得到的平均流速為0.0867m/s,雷諾數(shù)為7.71,遠(yuǎn)小于宏觀條件下通常認(rèn)定的臨界雷諾數(shù)(2000左右),這也證實了前面假設(shè)層流流動模式的正確性。另外,圖6b和圖6c表明,收縮/擴(kuò)散管內(nèi)未出現(xiàn)流體與固體壁面分離流動現(xiàn)象。

      圖6 t=28ms時刻的泵膜應(yīng)力和微泵的流體場瞬態(tài)結(jié)果

      3 結(jié)論

      (1)擴(kuò)散/收縮單元的最大流量差都發(fā)生在泵腔內(nèi)壓力與進(jìn)出口壓力相差最大的時刻,表明要使得擴(kuò)散單元發(fā)揮“整流”作用,其單元兩端的壓力差必須達(dá)到一定值。

      (2)在仿真的每個時刻,泵腔內(nèi)流體壓力分布幾乎一致,表明用Reynolds方程來描述泵腔內(nèi)流體動力學(xué)特性具有可行性。

      (3)仿真得到的最大雷諾數(shù)遠(yuǎn)小于通常認(rèn)定的臨界雷諾數(shù),表明微泵流體具有層流特性。

      (4)泵腔內(nèi)流體動態(tài)特性與泵膜的運(yùn)動存在著密切關(guān)系,如果忽略了流固耦合效應(yīng),簡單地將微泵的驅(qū)動器與腔內(nèi)的流場分離處理,必然歪曲了泵流體場的動態(tài)特性。泵膜變形、流體壓力和進(jìn)出口流速等響應(yīng)與輸入電壓信號之間存在著滯后現(xiàn)象。對微泵的3D全耦合仿真,能夠獲得驅(qū)動電信號與流體流量、泵送壓力等輸出變量之間的直接關(guān)系,有利于從整體意義上實現(xiàn)微泵的優(yōu)化設(shè)計。

      [1]Morris C J,F(xiàn)orster F K.Low-order Modeling of Resonance for Fixed-valve Micropumps Based on First Principles[J].Journal Microelectromech.Syst.,2003,12:325-334.

      [2]Olsson A,Stemme G,Stemme E.A Numerical Design Study of the Valveless Diffuser Pump Using a Lumped-mass Model[J].Journal Micromech.Microeng.,1999,9:34-44.

      [3]Bourouina T,Grandchamp J P.Modeling Micropumps with Electrical Equivalent Networks[J].Journal Micromech.Microeng.,1996,6:398-404.

      [4]Lin X Z,Ying J,Chen Zichen.Research on Terminal Behavior of Electrostatically Actuated Micropump Membrane Based on Modal Analysis[C]//Wei Y L,Chong K T,Takahashi T,et al.ICMIT 2005:Mechatronics,MEMS and Smart Materials,SPIE.Bellingham,2005,6040:P60400U.

      [5]Faris W F,Abdel-Rahman E M,Nayfeh A H.Mechanical Behavior of an Electrostatically Actuated Micropump[C]//Agnes G,Chamis C,Noor A,et al.43rd AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference.Denver,2002:AIAA2002-1303.

      [6]Morris C J,F(xiàn)orster F K .Optimization of a Circular Piezoelectric Bimorph for a Micropump Driver[J].Journal Micromech.Microeng.,2000,10:65-459.

      [7]王立文,高殿榮,楊林杰,等.壓電驅(qū)動微泵泵膜振動有限元分析[J].機(jī)械工程學(xué)報,2006,42(4):230-235.

      [8]Ullman A,F(xiàn)ono I.The Piezoelectric Valve-less Pump—improved Dynamic Model[J].Journal Microelectromech.Syst.,2002,11:655-664.

      [9]Pan L S,Ng T Y,Wu X H,et al.Analysis of Valveless Micropumps with Inertial Effects[J].Journal Micromech.Microeng.,2003,13:390-399.

      [10]MacHauf A,Nemirovsky Y,Dinnar U.A Membrane Micropump Electrostatically Actuated Across the Working Fluid[J].Journal Micromech.Microeng.,2005,15(12):2309.

      [11]白蘭,馮志慶,吳一輝.無閥微泵動態(tài)特性的固液耦合分析[J].機(jī)械工程學(xué)報,2008,44(7):69-74.

      [12]謝海波,傅新,楊華勇.微型無閥泵流動特征仿真與試驗研究[J].機(jī)械工程學(xué)報,2002,38(7):54-57.

      [13]楊愷祥.壓電無閥式微泵浦制造與測量分析[D].臺灣云林縣:臺灣云林科技大學(xué),2004.

      [14]Tsui Y Y,Lu S L.Evaluation of the Performance of a Valveless Micropump by CFD and Lumpedsystem Analyses[J].Sensors and Actuators A:Physical,2008,148(1):138.

      [15]Yao Q,Xu D,Pan L S,et al.CFD Simulation of Flows in Valveless Micropumps[J].Eng.Appl.Comput.Fluid Mech.,2007,1(3):181-188.

      [16]林謝昭,應(yīng)濟(jì),陳子辰.靜電無閥微泵兩種仿真模型的比較研究[J].哈爾濱工業(yè)大學(xué)學(xué)報,2010,42(12):1943-1947.

      猜你喜歡
      微泵瞬態(tài)流體
      流體壓強(qiáng)知多少
      基于微流控芯片的五腔室壓電蠕動微泵的設(shè)計
      分娩鎮(zhèn)痛聯(lián)合微泵靜注縮宮素的臨床效果觀察
      高壓感應(yīng)電動機(jī)斷電重啟時的瞬態(tài)仿真
      山雨欲來風(fēng)滿樓之流體壓強(qiáng)與流速
      等效流體體積模量直接反演的流體識別方法
      一種微泵懸掛裝置的設(shè)計和應(yīng)用
      利用體塊PZT制備膜片式壓電微泵
      十億像素瞬態(tài)成像系統(tǒng)實時圖像拼接
      基于瞬態(tài)流場計算的滑動軸承靜平衡位置求解
      凤台县| 合作市| 保康县| 颍上县| 民和| 高邑县| 贵州省| 花莲县| 靖江市| 丹寨县| 昌吉市| 和政县| 延长县| 大洼县| 扎鲁特旗| 股票| 南溪县| 上犹县| 新化县| 台中县| 南木林县| 运城市| 新竹市| 郎溪县| 江城| 兰州市| 垫江县| 绍兴县| 张家港市| 抚州市| 葫芦岛市| 双江| 仲巴县| 家居| 清流县| 广宗县| 东台市| 启东市| 乐东| 大埔区| 正镶白旗|