曹慧英 伍松陵 孫長(zhǎng)坡
(國(guó)家糧食局科學(xué)研究院,北京 100037)
真菌毒素是霉菌產(chǎn)生的有毒次生代謝產(chǎn)物。真菌毒素污染糧食或飼料后,給人類健康和畜禽生產(chǎn)帶來(lái)巨大威脅。Yoshizawa等[1]從污染的玉米中分離得到脫氧雪腐鐮刀菌烯醇(Deoxynivalenol,DON),并根據(jù)它能引發(fā)母豬拒食和嘔吐的特征,將其定名為嘔吐毒素(Vomitoxin,VT)。DON主要由禾谷鐮刀菌(Fusarium.graminearum)和黃色鐮刀菌(F.culmorum)產(chǎn)生[2],該兩株菌是引起小麥赤霉病和玉米穗腐病的病原菌[3]。家畜食用DON污染的飼料會(huì)引起拒食,嘔吐,生長(zhǎng)延遲,生殖紊亂等癥狀;而人類誤食DON污染的糧食會(huì)引起免疫抑制,貧血,頭痛,嘔吐,厭食和腹痛等癥狀[4-5]。DON污染糧食已經(jīng)成為畜產(chǎn)品生產(chǎn)和人類健康的嚴(yán)重威脅,DON污染的防治迫在眉睫。本文綜述了DON的物理化學(xué)性質(zhì),生物合成途徑及生物降解的研究進(jìn)展,為尋求有效的防治手段做到“知己知彼”。
DON的IUPAC化學(xué)名為12,13-環(huán)氧 -3a,7a,15-三羥基單端孢霉烯-9-烯-8-酮,為一種倍半烯衍生物(圖1),DON各種物理化學(xué)性質(zhì)見(jiàn)表1。DON屬于B類單端孢霉烯,該類毒素的特點(diǎn)是在C8位具有一個(gè)酮基[6],該酮基使其在短波紫外下有吸收峰,但與其他物質(zhì)紫外吸收峰相重疊,并非特征性吸收。DON易溶于水和極性溶劑甲醇、乙醇、乙腈、丙酮及乙酸乙酯,但不溶于正己烷和乙醚。研究證實(shí)DON在有機(jī)溶劑中穩(wěn)定,乙酸乙酯和乙腈是長(zhǎng)期儲(chǔ)存最適合的溶劑[7]。DON耐熱、耐壓,弱酸中不分解,而加堿及高壓處理可以破壞其部分毒力。DON的耐藏力也很強(qiáng),據(jù)報(bào)道病麥經(jīng)4年的貯藏,其中的DON仍能保留原有的毒性。研究認(rèn)為12,13-環(huán)氧結(jié)構(gòu)是其具有毒性的主要結(jié)構(gòu)基礎(chǔ)[8],DON的環(huán)氧結(jié)構(gòu)耐煮沸,烘焙,甚至是135℃的高溫蒸汽[9]。
圖1 DON的化學(xué)結(jié)構(gòu)
表1 DON的物理化學(xué)性質(zhì)
單端孢霉烯族毒素的生物合成需要經(jīng)過(guò)一系列的酶促反應(yīng),研究表明,在禾谷鐮刀菌(F.graminea-rum)基因組中,約有12~16個(gè)相關(guān)的單端孢霉烯族毒素合酶基因(trichothecene)參與DON的生物合成,第一個(gè)被鑒定和克隆的 trichothecene基因?yàn)門RI5[10-11],其他基因聚集在 TRI5合酶基因周圍形成一個(gè)25 kb的基因簇[12]。基于大量深入的研究,DON生物合成相關(guān)基因的功能逐漸被闡明,且合成途徑也逐漸清晰(圖2)[13]。起初,研究者通過(guò)基因敲除和插入突變的方法,獲得TRI基因突變的鐮刀菌突變菌株,來(lái)探尋DON的降解途徑[14-15]。此外,研究者通過(guò)外源表達(dá)TRI基因來(lái)研究該基因在合成途徑中的作用[16-17]。盡管圖2顯示DON合成是分步的過(guò)程,但其生物合成途徑是一種復(fù)雜的代謝網(wǎng)絡(luò),目前這些合成步驟的順序并不確定[18]。然而,合成途徑的第一步是法呢基焦磷酸(FPP)在trichodiene合成酶TRI5的催化作用下,被環(huán)化生成無(wú)毒的trichodiene。研究者通過(guò)純化TRI5在體外證實(shí)了這步反應(yīng)[10],F(xiàn).graminearum與F.sambucinum的TRI5基因突變體喪失了DON中間體及DON的合成能力[19-20]。
曲古二烯 在多功能的細(xì)胞色素P450單氧酶TRI4催化作用下經(jīng)4步反應(yīng),即C2羥基化,C12,13之間環(huán)氧化,C11羥基化,C3羥基化,生成產(chǎn)物Isotrichotriol[21]。兩項(xiàng)獨(dú)立研究證實(shí)了上述4步反應(yīng),研究者分別在不產(chǎn)DON的鐮刀菌(F.verticillioide)和釀酒酵母(Saccharomyces cerevisiae)中表達(dá)了TRI4基因,結(jié)果所表達(dá)的TRI4酶均能催化這4步反應(yīng),而TRI4基因突變的F.graminearum菌株無(wú)法完成上述4步反應(yīng)[22-23]。
異構(gòu)單端孢霉三元醇(Isotrichotriol)繼續(xù)經(jīng)歷無(wú)需酶催化的兩步異構(gòu)化反應(yīng),即C9的羥基轉(zhuǎn)變成C11羥基,C2上氧原子與C11之間經(jīng)環(huán)化作用形成—CO鍵[24],生成產(chǎn)物異構(gòu)木霉菌醇(Isotrichodermol)[18],該產(chǎn)物是單端孢霉烯族的骨架結(jié)構(gòu)。異構(gòu)木霉菌醇在乙酰基轉(zhuǎn)移酶TRI101催化下,其C3上羥基被乙?;?。研究證實(shí)F.graminearum與F.sporotrichioides的TRI101基因突變體只能完成C3乙?;暗暮铣煞磻?yīng),在酵母中表達(dá)的TRI101酶可以催化C3的乙?;磻?yīng)[25]。
隨之,C15位在細(xì)胞色素P450單氧酶TRI11的催化下被羥基化,生成15-脫乙酰麗赤殼菌素(15-deacetylcalonectrin)[14],該產(chǎn)物是 DON生成的直接底物,經(jīng)過(guò)C3位和C7位的羥基化作用及C8位變?yōu)橥?,最終生成DON。此外,15-脫乙酰麗赤殼菌素也可在乙酰化轉(zhuǎn)移酶TRI3催化下,C15位羥基被乙?;?,生成產(chǎn)物麗赤殼菌素[26],它是乙?;疍ON和NIV類產(chǎn)物生物合成的底物,隨后經(jīng)不同途徑可分別生成T-2,NIV與DON,這表明3種毒素在麗赤殼菌素生成前的合成途徑是相同的。
圖2 鐮刀菌中DON的生物合成途徑
在DON的生物合成過(guò)程中,每一步反應(yīng)都需要有相應(yīng)的TRI基因編碼的酶參與完成,目前許多研究正通過(guò)基因鑒定來(lái)闡明單端孢霉烯族的合成過(guò)程,因此,結(jié)合化學(xué)結(jié)構(gòu)和基因遺傳分析單端孢霉烯族的生物合成過(guò)程,可以更好的了解單端孢霉烯族的演變過(guò)程,同時(shí)對(duì)于DON生物降解的研究具有重要作用。
目前,國(guó)內(nèi)外有關(guān)DON生物降解的研究正成為熱點(diǎn)。主要包括酶降解法和微生物脫毒法兩種方式,而微生物降解是目前對(duì)真菌毒素污染削減研究的重點(diǎn)。
DON中推測(cè)的作用位點(diǎn)主要包括,C12,13位的環(huán)氧結(jié)構(gòu)、C3—OH基團(tuán)、C8酮基、C15位等(圖3)。研究表明,DON的C12、C13位的環(huán)氧結(jié)構(gòu)和C3—OH基團(tuán)是DON的主要致毒基團(tuán)[27],因此這兩個(gè)基團(tuán)是DON降解中主要研究的位點(diǎn)。早在20世紀(jì)70年代,Sato等[28]就明確了C12和C13位的環(huán)氧結(jié)構(gòu)是DON致毒的主要因素,該環(huán)氧結(jié)構(gòu)可抑制蛋白質(zhì)的合成,也是B類單端孢霉烯的作用方式。在單端孢霉烯中報(bào)道了2種破壞C12和C13位環(huán)氧結(jié)構(gòu)的方式,還原劑破壞環(huán)氧結(jié)構(gòu)后生成烯烴,水解作用破壞環(huán)氧結(jié)構(gòu)后生成兩個(gè)相鄰的—OH基團(tuán),推測(cè)環(huán)氧結(jié)構(gòu)的破環(huán)是植物中的硫醇類物質(zhì)對(duì)環(huán)氧結(jié)構(gòu)的親核攻擊所致[29]。Yoshizawa等[30]報(bào)道,動(dòng)物腸道中的細(xì)菌可以分解單端孢霉烯中的環(huán)氧結(jié)構(gòu),DON的降解產(chǎn)物為C9和C12形成雙鍵的物質(zhì)。隨后,兩個(gè)獨(dú)立研究均證實(shí)了牛瘤胃和腸道中的混合微生物可將單端孢霉烯中的環(huán)氧結(jié)構(gòu)破壞[31-32];而牛瘤胃和腸道中的純培養(yǎng)物很難破壞DON的環(huán)氧結(jié)構(gòu),因?yàn)檫@些細(xì)菌嚴(yán)格厭氧且具有復(fù)雜的營(yíng)養(yǎng)需求。在發(fā)現(xiàn)單端孢霉烯可以被脫環(huán)氧化之后,Matsushima等[33]從動(dòng)物消化系統(tǒng)中分離獲得了能夠水解單端孢霉烯酯鍵的厭氧菌。Binder等[34]首次從牛瘤胃的富集培養(yǎng)物中分離到一株厭氧優(yōu)桿菌屬細(xì)菌(EubacteriumBBSH797),該菌可以在24~48 h轉(zhuǎn)化DON和其他單端孢霉烯族毒素,從而部分地減輕飼料中毒素的毒性;Fuchs等[35]采用氣質(zhì)聯(lián)用(GC/MS)和顆粒束界面-質(zhì)譜聯(lián)用(LC-PB-MS)方法,重新確定了BBSH797菌株降解DON的代謝產(chǎn)物為DOM-1;He等[36]發(fā)現(xiàn),雞腸道中微生物在96 h內(nèi)可轉(zhuǎn)化98%以上的DON標(biāo)品,轉(zhuǎn)化產(chǎn)物鑒定為DOM-1,可將DON的環(huán)氧環(huán)打開(kāi),產(chǎn)物毒性遠(yuǎn)遠(yuǎn)低于DON。Eriksen等[37]通過(guò)毒性試驗(yàn)研究發(fā)現(xiàn),DOM-1的毒性為DON的1/55,目前它是DON毒素降解中毒性最低的產(chǎn)物。
圖3 推測(cè)DON降解方式及作用位點(diǎn)
除了C12、C13位的環(huán)氧結(jié)構(gòu)外,C3—OH基團(tuán)對(duì)DON的毒性也起著主要作用。DON中C3位的降解方式主要有乙酰化、糖基化、氧化和差向異構(gòu)(圖3)。在DON的合成過(guò)程中,C3位羥基的乙?;问娇梢宰鳛橹虚g產(chǎn)物抑制DON的合成,從而保護(hù)作物抵制DON的毒害,因此DON乙?;敢呀?jīng)被應(yīng)用在植物抗病育種中。Kimura等[38]首先從禾谷鐮刀菌(F.graminearum)中分離獲得了編碼單端孢酶烯3-O-乙酰轉(zhuǎn)移酶的Tri101基因,并證實(shí)Tri101能使單端孢酶烯轉(zhuǎn)化為類似單端孢酶烯C—3羥基變種的乙酰基衍生物,從而降低其毒性,結(jié)果表明,DON的C3—OH乙酰化后減少了DON對(duì)家兔紅細(xì)胞的毒性。同時(shí),研究者從擬分枝孢鐮刀菌(F.sporotrichioides)中分離到同源的Tri101基因,并通過(guò)轉(zhuǎn)基因的方法將其成功地轉(zhuǎn)到酵母和煙草中[39-40]。由于Tri101基因能降低單端孢酶烯的毒性,Alexander等[41]將Tri101基因?qū)胄←満痛篼溨?,結(jié)果顯示,導(dǎo)入該基因的轉(zhuǎn)基因植物的病害程度降低了,從而證明通過(guò)導(dǎo)入一個(gè)毒素修飾基因,能夠降低小粒谷類作物赤霉病和DON的積累。基于上述研究,研究者對(duì)Tri101基因的結(jié)構(gòu)和功能進(jìn)行了全面深入的研究,Garvey等[42]詳細(xì)分析了3-O-乙酰轉(zhuǎn)移酶的三維結(jié)構(gòu)和動(dòng)力學(xué)特性;Khatibi等[43]表達(dá)純化了Fusarium中7個(gè)種的3-O-乙酰轉(zhuǎn)移酶,通過(guò)對(duì)比Fusarium不同種的3-O-乙酰轉(zhuǎn)移酶的特性,獲得了適合生物應(yīng)用的最優(yōu)的酶資源。上述研究表明,Tri101基因的表達(dá)在轉(zhuǎn)基因育種中具有潛在的應(yīng)用前景。
DON的C3—OH基團(tuán)另一種轉(zhuǎn)化方式為糖基化,Miller等[44]提出在小麥懸浮液中存在DON和葡萄糖結(jié)合態(tài)的產(chǎn)物,Sewald等[45]隨后也提出在玉米懸浮液中也存在該產(chǎn)物,并命名C3—OH糖基化后的結(jié)合態(tài)產(chǎn)物為3-β-D-glucopyranosyl-4-DON(圖4a),降解產(chǎn)物的相對(duì)分子質(zhì)量為458,Poppenberger等[46]證實(shí)了完整結(jié)合態(tài)產(chǎn)物的產(chǎn)生,并申請(qǐng)了專利保護(hù)。Lemmens等[47]進(jìn)一步定位了DON到DON-3-glucoside的轉(zhuǎn)化,并研究了其存在于小麥中時(shí)小麥對(duì)FHB的抗性能力,證明DON糖基化的形式是小麥抵抗FHB侵染的一個(gè)主要的抗性因子。Berthiller等[48]首次報(bào)道了在鐮刀菌侵染的小麥和玉米中自然存在的DON-3-glucoside,表明該產(chǎn)物在DON污染的小麥和玉米中的比例為46%,以人工合成的DON-glucoside為對(duì)照,采用液質(zhì)聯(lián)用(LC/MS)的方法,驗(yàn)證了DON-3-glucoside及其產(chǎn)物。綜上所述,葡萄糖基轉(zhuǎn)移酶的研究對(duì)于作物抗性育種將會(huì)是一個(gè)潛在的策略。
DON的C3—OH基團(tuán)的氧化作用和差向異構(gòu)形式也逐漸被研究和報(bào)道,DON的C3—OH氧化后的產(chǎn)物為3-酮基-DON(圖4b)降解產(chǎn)物的分子質(zhì)量為294。研究證實(shí),可以將DON的C3—OH氧化后變?yōu)?-酮基-DON的菌株有3種:Shima等[49]從土壤中分離到一株屬于土壤桿菌—根瘤菌屬的細(xì)菌Agrobacterium-Rhizobium;Volkl等[50]從德國(guó)分離獲得一種混合培養(yǎng)物D107;Zhou等[51]從加拿大分離獲得一株未命名的細(xì)菌。以上3種該菌能夠把DON轉(zhuǎn)化為3-酮基-DON,從而減少DON在免疫抑制方面的毒性。DON的C3位差向異構(gòu)方式為C3—OH先變?yōu)镃3=O,后C3=O又變?yōu)?C3—OH,O原子和H原子在空間位置上相互異構(gòu)。目前報(bào)道有3種菌中存在DON C3—OH的差向異構(gòu)方式:Ikunaga等[52]從土壤中分離到一株諾卡氏菌(Nocardioidessp.WSN05-2),在MM培養(yǎng)基中10 d后可以完全降解DON;Volkl等[50]從混合培養(yǎng)物D107中分離獲得一株α-變形桿菌HOH107,該菌與Devosia riboflavina相近,轉(zhuǎn)化DON的順序?yàn)镈ON→3-oxo-DON→3-epi-DON;另外一株為 Zhou等[51]從加拿大分離獲得的未命名細(xì)菌。此3種菌株轉(zhuǎn)化DON的差向異構(gòu)方式相同,中間產(chǎn)物3-oxo-DON均不能積累,且轉(zhuǎn)化均不可逆。
研究報(bào)道,其他一些微生物也可以將DON降解,但無(wú)具體產(chǎn)物結(jié)構(gòu)的報(bào)道。盡管這些菌株降解DON的過(guò)程沒(méi)有明確,但為后續(xù)的研究提供了菌株資源。如絲狀真菌可以將DON轉(zhuǎn)化為毒性不同的產(chǎn)物。He等[53]分離到一株能夠氧化DON的塔賓曲霉(Aspergillus tubingensis)NJA-1,14 d內(nèi)對(duì) DON的平均降解率為94.4%,但降解產(chǎn)物未知;徐劍宏等[54]利用富集培養(yǎng)的方法,從土壤和麥穗樣品中分離獲得一株徳沃斯氏菌(Devosiasp.),將該菌添加到小麥飼料中后,飼料中的 DON毒素降解率達(dá)到75.47%,未明確降解產(chǎn)物結(jié)構(gòu)。
除了上述主要的降解途徑外,推測(cè)DON還存在其他可能的降解途徑。DON中O1和C11間斷裂,通過(guò)水合作用水解后均變?yōu)椤狾H(圖4c),研究推測(cè)分離得到的塔賓曲霉NJA-1是通過(guò)水合作用的方式降解DON[55],DON中C8位的酮基也容易受到親核基團(tuán)的攻擊變?yōu)榱u基,并從化學(xué)角度分析,C8位的O原子可能被水解,變成2個(gè)—OH(圖4d)。馮培生等[56]利用UPLC-Q/TOF-MS技術(shù)分析了大鼠體外腸道微生物中DON的代謝產(chǎn)物,研究表明,DON中C15去掉—CH2O,形成分子質(zhì)量為265的中間產(chǎn)物(圖4e),在此基礎(chǔ)上,C5和 C6同時(shí)去掉一個(gè)CH2O和一個(gè)H2O,形成產(chǎn)物分子質(zhì)量為247(圖4f),C6和C7在247的基礎(chǔ)上去掉一個(gè)H2O,形成分子質(zhì)量為227的終產(chǎn)物(圖4g),產(chǎn)物247降解的另一種方式為C14去掉—CH3,C7去掉—OH,C3和C4形成雙鍵的終產(chǎn)物217(圖4h)。總之,明確DON的降解和轉(zhuǎn)化途徑,可為實(shí)際應(yīng)用中DON的清除提供可靠的理論依據(jù)。
國(guó)內(nèi)外的研究表明,DON的生物降解是目前的研究熱點(diǎn),是具有應(yīng)用潛力的方法。雖然目前有很多關(guān)于DON生物降解的研究,但對(duì)于DON的轉(zhuǎn)化機(jī)理、轉(zhuǎn)化產(chǎn)物的毒性作用及對(duì)處理DON污染糧食和飼料后的安全性評(píng)價(jià)等研究較少,因此,了解DON的物理化學(xué)性質(zhì),生物合成途徑及DON可能的降解方式及作用位點(diǎn),可為今后研究DON有效的降解途徑提供新的思路。
隨著生物技術(shù)的迅速發(fā)展,DON降解酶基因的外源重組表達(dá)為真菌毒素污染的削減進(jìn)行了有益的探索。DON降解酶基因的表達(dá)不僅能應(yīng)用在轉(zhuǎn)基因作物中,使植株自身獲得抵抗病菌(如小麥赤霉?。┑那秩?,從而提高作物產(chǎn)量,而且在污染糧食的處理中也具有廣闊的應(yīng)用前景。目前國(guó)內(nèi)外關(guān)于DON降解酶基因及酶制劑的應(yīng)用較少,期望能獲得高效降解DON的菌株,為DON污染糧食的處理提供行之有效的技術(shù)和策略,確保糧食和食品安全、保護(hù)消費(fèi)者健康。
圖4 推測(cè)DON的降解途徑及降解產(chǎn)物
[1]Yoshizawa T,Morooka N.Deoxynivalenol and its monoacetate:new mycotoxins fromFusarium roseumand moldy barley[J].Agricultural and Biological Chemistry,1973,37(12):2933-2934
[2]Liddell CM.Systematics ofFusariumspecies and allies associated with fusarium head blight.[M]//Leonard K J,Bushnell W R.Fusarium Head Blight of Wheat and Barley.St.Paul,Minnesota,USA:The American Phytopathological Society,2003:35-43
[3]Bottalico A,Perrone G.ToxigenicFusariumspecies and mycotoxins associated with head blight in small-grain cereals in Europe[J].European Journal of Plant Pathology,2002,108:611-624
[4]Sobrova P,Adam V,Vasatkova A,et al.Deoxynivalenol and its toxicity[J].Interdisciplinary Toxicology,2010,3(3):94-99
[5]Pestka J J.Deoxynivalenol:mechanisms of action,human exposure,and toxicological relevance[J].In Archives of Toxicology,2010,84(9):663-679
[6]Mirocha C J,Xie W,F(xiàn)ilho E R.Chemistry and detection ofFusariummycotoxins[M]//Leonard K J,Bushnell W R.Fusarium Head Blight of Wheat and Barley.St.Paul,Minnesota,USA:The American Phytopathological Society,2003:144-164
[7]Shepherd M J,Gilbert J.Long-term storage stability of deoxynivalenol standard reference solutions[J].Journal of Agricultural and Food Chemistry,1988,36(2):305-308
[8]Betina V.Structure-activity relationships among mycotoxins[J].Chemico-Biological Interactions,1989,71(2-3):105-146
[9]Pronyk C,Cenkowski S,Abramson D.Superheated steam reduction of deoxynivalenol in naturally contaminated wheat kernels[J].Food Control,2006,17(10):789-796
[10]Hohn T M,Vanmiddlesworth F.Purification and characterization of the sesquiterpene cyclase trichodiene synthetase fromFusarium sporotrichioides[J].Archives of Biochemistry and Biophysics,1986,251(2):756-761
[11]Hohn T M,Beremand P.Isolation and nucleotide sequence of a sesquiterpene cyclase gene from the trichotheceneproducing fungusFusarium sporotrichioides[J].Gene,1989,79(1):131-138
[12]Brown D W,McCormick SP,Alexander N J,et al.A genetic and biochemical approach to study trichothecene diversity inFusarium sporotrichioidesandFusarium graminearum[J].Fungal Genetics and Biology,2001,32(2):121-33
[13]McCormick S P,Stanley A M,Stover N A,et al.Trichothecenes:From Simple to Complex Mycotoxins[J].Toxins(Basel),2011,3(7):802-814
[14]AlexanderN J,Hohn T M,McCormick SP.TheTRI11 gene ofFusarium sporotrichioidesencodes a cytochrome P450 monooxygenase required for C-15 hydroxylation in trichothecene biosynthesis[J].Applied and Environmental Microbiology,1998,64(1):221-225
[15]McCormickS P,Hohn T M.Accumulation of trichothecenes in liquid cultures of aFusarium sporotrichioidesmutant lacking a functional trichothecene C-15 hydroxylase[J].Applied and Environmental Microbiology,1997,63(5):1685-1688
[16]AlexanderN J,McCormick S P,Hohn T M.TRI12,a trichothecene efflux pump formFusarium sporotrichioides:gene isolation and expression in yeast[J].Molecular and General Genetics,1999,261(6):977-984
[17]McCormick S P,Alexander N J,Proctor R H.Heterologous expression of two trichothecene P450 genes inFusarium verticillioides[J].Canadian Journal of Microbiology,2006,52(3):220-226
[18]KimuraM,Tokai T,Takahashi-Ando N,et al.Molecular and genetic studies ofFusariumtrichothecene biosynthesis pathways,genes,and evolution[J].Bioscience Biotechnology and Biochemistry,2007,71(9):2105-2123
[19]Hohn T M,Desjardins A E.Isolation and gene disruption of theTox5 gene encoding trichodiene synthase inGibberella pulicaris[J].Molecular Plant-Microbe Interactions,1992,5(3):249-256
[20]Proctor R H,Hohn T M,McCormick SP.Reduced virulence ofGibberella zeaecaused by disruption of a trichothecene toxin biosynthectic gene[J].Molecular Plant-Microbe Interactions,1995,8(4):593-601
[21]Hohn T M,Desjardins A E,McCormick S P.The Tri4 gene ofFusarium sporotrichioidesencodes a cytochrome P450 monooxygenase involved in trichothecene biosynthesis[J].Molecular Genetics and Genomics,1995,248(1):95-102
[22]McCormick SP,Alexander N J,Proctor R H.FusariumTri4 encodes a multifunctional oxygenase required for trichothecene biosynthesis[J].Canadian Journal of Microbiology,2006,52(7):636-642
[23]Tokai T,Koshino H,Takahashi-Ando N,et al.Fusarium Tri4 encodes a key multifunctional cytochrome P450 monooxygenase for four consecutive oxygenation steps in trichothecene biosynthesis[J].Biochemical and Biophysical Research Communications,2007,353(2):412-417
[24]McCormick SP,Taylor S L,Plattner R D,et al.Bioconversion of possible T-2 toxin precursors by a mutant strain ofFusarium sporotrichioidesNRRL 3299[J].Applied and Environmental Microbiology,1990,56(3):702-706
[25]McCormick SP,Alexander N J,Trapp SE,et al.Disruption of TRI101,the gene encoding trichothecene 3-O-acetyltransferase,fromFusarium sporotrichioides[J].Applied and Environmental Microbiology,1999,65(12):5252-5256
[26]McCormick S P,Hohn T M,Desjardins A E.Isolation and characterization of Tri3,a gene encoding 15-O-acetyltransferase from Fusarium sporotrichioides[J].Applied and Environmental Microbiology,1996,62(2):353-359
[27]Pestka J J.Deoxynivalenol:toxici tymechanisms and animal health risks[J].Animal Feed Science and Technology,2007,137(3-4):83-298
[28]Sato N,Ueno A.Comparative toxicities of trichothecenes[M]//Rodricks J V.Mycotoxins in human and animal health.Park Forest South:Pathotox Publishers IL,1977:295-307
[29]Subramanian V.DNA shuffling to produce nucleic acids for mycotoxin detoxification:US,6500639[P],2002-12-31
[30]Yoshizawa T,Takeda H,Ohi T.Structure of a novel metabolite from deoxynivalenol,a trichothecene mycotoxin,in animals[J].Agricultural and Biological Chemistry,1983,47(9):2133-2135
[31]Yoshizawa T,Sakamoto T,Kuwamura K.Structures of deepoxytrichothecene metabolites,from 3'-h(huán)ydroxy HT-2 toxin and T-2 tetraol in rats[J].Applied and Environmental Microbiology,1985,50(3):676-679
[32]Worrell N R,Mallett A K,Cook W M,Baldwin N C,Shepherd M J.The role of gut micro-organisms in the metabolism of deoxynivalenol administered to rats[J].Xenobiotica,1989,19(1):25-32
[33]Matsushima T,Okamoto E,Miyagawa E,et al.Deacetylation of diacetoxyscirpenol to 15-acetoxyscirpenol by rumen bacteria[J].Journal of General and Applied Microbiology,1996,42:225-234
[34]Binder J,Horvath E M,Schatzmayr G,et al.Screening for deoxynivalenol-detoxifying anaerobic rumen microorganisms[J].Cereal Research Communications,1997,25:343-346
[35]Fuchs E,Binder E M,Heidler D,et al.Structural characterization of metabolites after the microbial degradation of type A trichothecenes by the bacterial strain BBSH 797[J].Food Additives and Contaminants,2002,19(4):379-386
[36]He P,Young LG,F(xiàn)orsberg C.Microbial transformation of deoxynivalenol(vomitoxin)[J].Applied and Environment Microbiology,1992,58(12):3857-3863
[37]Sundst?l Eriksen G,Pettersson H,Lundh T.Comparative cy-totoxicity of deoxynivalenol,nivalenol,their acetylated derivatives and de-epoxy metabolites[J].Food and Chemical Toxicology,2004,42(4):619-624
[38]KimuraM,Kaneko I,Komiyama M,et al.Trichothecene 3-O-acetyltransfease protects both the producing organism and transformed yeast from related mycotoxins[J].The Journal of Biological Chemistry,1998,273(3):1654-1661
[39]Mccomick SP,Alexander N J.Disruption of Tri101,the gene encodin trichothecene 3-O-acetyltransferase,fromFusarium sporptrichioid[J].Applied and Environmental Microbiology,1999,65(12):5252-5256
[40]Muhitch M J,McCormick S P,Alexander N J,et al.Transgenic expression of the Ti101 or PDR5 gene increases resistance of tobacco to the phytotoxic effects of the trichothecene 4,15-diacetoxyscirpenol[J].Plant Science,2000,157(2):201-207
[41]Alexander N J.The Tri101 story:engineering wheat and barley to resist Fusarium head blight[J].World Mycotoxin Journal,2008,1(1):31-37
[42]Garvey G S,McCormick SP,Rayment I.Structural and functional characterization of the TRI101 trichothecene 3-O-acetyltransferase fromFusarium sporotrichioidesandFusarium graminearum:kinetic insights to combating Fusarium head blight[J].Journal of Biological Chemistry,2008,283(3):1660-1669
[43]Khatibi P A,Newmister SA,Rayment I,et al.Bioprospecting for trichothecene 3-O-acetyltransferases in the fungal genusFusariumyields functional enzymes with different abilities to modify the mycotoxin deoxynivalenol[J].Applied and Environmental Microbiology,2011,77(4):1162-1170
[44]Miller J D,Arnison P G.Degradation of deoxynivalenol by suspension cultures of the Fusarium head blight resistant wheat cultivar Frontana[J].Canadian Journal of Plant Pathology,1986,8:147-150
[45]Sewald N,JvG L,Schuster M,et al.Structure elucidation of a plant metabolite of 4-desoxynivalenol.Tetrahedron-A-symmetry[J],1992,3(7□:953-960
[46]Poppenberger B,Berthiller F,Lucyshyn D,et al.Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana[J].Journal of Biological Chemistry,2003,278(48):47905-4714
[47]Lemmens M,Scholz U,Berthiller F,et al.The ability to detoxify the mycotoxin deoxynivalenol colocalizes with a major quantitative trait locus for Fusarium head blight resistance in wheat[J].Molecular Plant-Microbe Interactions,2005,18(12):1318-1324
[48]Berthiller F,Dall'Asta C,Schuhmacher R,et al.Masked mycotoxins:determination of a deoxynivalenol glucoside in artificially and naturally contaminated wheat by liquid chromatography-tandem mass spectrometry[J].Journal of Agricultural and Food Chemistry,2005,53(9):3421-3425
[49]Shima J,Takase S,Takahashi Y,et al.Novel detoxification of the trichothecene mycotoxin deoxynivalenol by a soil bacterium isolated by enrichment culture[J].Applied and Environmental Microbiology,1997,63(10):3825-3830
[50]V?lkl A,Vogler B,Schollenberger M,et al.Microbial detoxification of mycotoxin deoxynivalenol[J].Journal of Basic Microbiology,2004,44(2):147-156
[51]Zhou T,He J,Gong J.Microbial transformation of trichothecene mycotoxins[J].World Mycotoxin Journal,2008,1(1):23-30
[52]Ikunaga Y,Sato I,Grond S,et al.Nocardioides sp.strain WSN05-2,isolated from a wheat field,degrades deoxynivalenol,producing the novel intermediate 3-epi-deoxynivalenol[J].Applied Microbiology and Biotechnology,2011,89(2):419-427
[53]He C,F(xiàn)an Y,Liu G,et al.Isolation and identification of a strain ofAspergillus tubingensiswith deoxynivalenol biotransformation capability[J].International Journal of Molecular Sciences,2008,9(12):2366-2375
[54]徐劍宏,祭芳,王宏杰,等.脫氧雪腐鐮刀菌烯醇降解菌的分離和鑒定[J].中國(guó)農(nóng)業(yè)科學(xué),2010,43(22):4635-4641
[55]何成華.脫氧雪腐鐮刀菌烯醇毒性和生物轉(zhuǎn)化的研究[D].江蘇:南京農(nóng)業(yè)大學(xué),2007
[56]馮培生,沈建忠,吳海霞,等.體外大鼠腸道菌群代謝脫氧雪腐鐮刀菌烯醇的研究[J].分析化學(xué),2012,39(01):119-123.