何 隕,牛 蓓
(成都大學(xué)醫(yī)護(hù)學(xué)院,四川成都 610106)
鈦基/涂層型羥基磷灰石功能梯度生物材料研究進(jìn)展
何 隕,牛 蓓
(成都大學(xué)醫(yī)護(hù)學(xué)院,四川成都 610106)
鈦及鈦合金是常用的醫(yī)用生物材料,雖具有良好的生物相容性,但缺乏骨誘導(dǎo)能力,而羥基磷灰石(HA)有良好的生物活性能誘導(dǎo)骨生長(zhǎng),鈦基/涂層型HA功能梯度生物材料(FGM)為解決二者的結(jié)合提供了新的思路.鈦基/涂層型HA FGM其設(shè)計(jì)主要分為組成成分的梯度設(shè)計(jì)與孔隙梯度變化2種,通過(guò)基體與涂層表面之間形成逐漸過(guò)渡的功能梯度,能顯著提高材料的機(jī)械強(qiáng)度和生物骨誘導(dǎo)能力.概述其設(shè)計(jì)、制備及性能評(píng)價(jià)等最新研究,為臨床運(yùn)用提供參考.
鈦;羥基磷灰石;功能梯度生物材料
羥基磷灰石(Hydroxyapatite,HA)以其良好的生物活性及生物相容性而被成功應(yīng)用于骨組織的修復(fù)與重建上[1],同時(shí),由于具有易脆性、抗彎強(qiáng)度小、斷裂韌性低等特點(diǎn)限制了其臨床應(yīng)用[2].為改善HA的機(jī)械力學(xué)性能,功能梯度生物材料(functionally graded biomaterial,F(xiàn)GM)應(yīng)運(yùn)而生.PGM材料借鑒了功能梯度材料的設(shè)計(jì)思路,使材料的各種組分、結(jié)構(gòu)、物性參數(shù)和理化、生物性能呈現(xiàn)連續(xù)變化,內(nèi)部界面消失,從而為提高生物材料的整體性能開辟了一條新的思路[3].涂層型HA FGM材料是針對(duì)涂層與基體之間存在的界面及熱膨脹系數(shù)不匹配問題提出的,主要指在基體與涂層表面之間形成逐漸過(guò)渡的功能梯度涂層,其設(shè)計(jì)思路大致有組成成分的梯度設(shè)計(jì)、孔隙梯度變化等.在醫(yī)學(xué)領(lǐng)域中,鈦(Ti)及其合金復(fù)合HA涂層的研究相對(duì)集中[4].
本綜述應(yīng)用計(jì)算機(jī)檢索PubMed數(shù)據(jù)庫(kù)、CNKI數(shù)據(jù)庫(kù)中關(guān)于鈦及鈦合金表面HA FGM的文章,英文檢索詞為“titanium,titanium alloy,coating,HA,F(xiàn)GM”,限定文獻(xiàn)語(yǔ)言種類為“English”;中文檢索詞為“鈦,鈦合金,涂層,羥基磷灰石,功能梯度生物材料”,限定文獻(xiàn)語(yǔ)言種類為中文,就鈦基/涂層型HA PGM的設(shè)計(jì)、制備與性能評(píng)價(jià)等最新研究進(jìn)展進(jìn)行了概述.
涂層成分的梯度設(shè)計(jì)是指鈦基表面的涂層,除了含有HA之外,還包括其他元素物質(zhì),其含量、梯度趨勢(shì)不盡相同,具體可分為以下幾種.
Kumar等[5]以 Ti-6Al-4V為基體,再以 HA分別復(fù)合生物玻璃陶瓷(G)和磷酸鈣(TCP),其百分比為,G/HA 100%/0%→75%/25%→50%/50%→25%/75%,TCP/HA 0%/100%→25%/75%→50%/50%→75%/25%,制備成HA FGM:HA-G-Ti和HATCP-Ti.HA-G-Ti的涂層中有較高的彈性模量和顯微硬度,提示HA-G-Ti較HA-TCP-Ti有更強(qiáng)的機(jī)械性能.而HA與β-TCP的復(fù)合可以控制材料的降解速度,使其降解速度與周圍骨組織的生長(zhǎng)速度相匹配[6].Kumar等[7]以不同的燒結(jié)溫度得到不同的 HA晶粒,再以晶?;旌喜煌|(zhì)量百分比的生物玻璃,HA/G比例為,0 wt%/100 wt%→30 wt%/70 wt%→50 wt%/50 wt%→70 wt%/30 wt%→100 wt%/0 wt%,再將該涂層與Ti復(fù)合,涂層中HA在高溫?zé)Y(jié)時(shí)顯示出較高的結(jié)晶性和低溶解性,HA與生物玻璃有少量、輕微的反應(yīng).該研究考察的HA粒度體系中,HA 1200-GTi的拉伸強(qiáng)度值最高,為20.6 MPa,并且具有良好的生物相容性.此外,Kumar等[8]采用 Ti-6Al-4V 為基體,再以HA與SiO2按照質(zhì)量百分比SiO2/HA為75%/25%→50%/50%→25%/75%→0%/100%復(fù)合,通過(guò)XRD、SEM、FTIR等方法檢測(cè),得出該實(shí)驗(yàn)使用的納米壓痕技術(shù)能使材料的彈性模量達(dá)到15.1 GPa,硬度值為0.405 GPa.研究發(fā)現(xiàn),在鈦基上制備含硅HA涂層能促進(jìn)細(xì)胞的增殖與分化,與HA涂層相比,其具有更好的生物活性[9],而含氟HA/TiO2涂層,除具有良好的生物學(xué)性能外,與HA涂層相比有較高的結(jié)合強(qiáng)度和較低的溶解速率[10].
另外,林東洋等[11]采用射頻磁控濺射法,在Ti6Al4V基體上制備了HA/YSZ(釔穩(wěn)定氧化鋯,Yttria stabilized zirconia)生物梯度涂層,該涂層與基體結(jié)合緊密,與基體界面結(jié)合處約5.0 μm范圍內(nèi)存在Ti、Ca、P、Zr的相互擴(kuò)散層,與基體的界面結(jié)合強(qiáng)度達(dá)60.5 MPa.劉亮等[12-13]通過(guò)微弧氧化在鈦基表面形成陶瓷膜時(shí)發(fā)現(xiàn),當(dāng)電解液中的乙酸鈣為20 g/L、多聚磷酸鈉為9.3 g/L時(shí),陶瓷膜的鈣磷比為1.69,接近羥基磷灰石中鈣磷的比例,此提示電解液中鈣磷含量能對(duì)微弧氧化形成的鈦基表面陶瓷膜的相結(jié)構(gòu)產(chǎn)生影響.張曉光等[14]使用3倍模擬體液,可快速誘導(dǎo)Ti-6AL-4V合金表面類HA的沉積,從而縮短涂層成形時(shí)間.
研究發(fā)現(xiàn),用于Ti及其合金基體表面并且與HA復(fù)合的金屬元素僅限于一些有抑菌作用的金屬元素.例如,張靜瑩等[15]在制備含鋅 HA/TiO2生物涂層時(shí)觀察到,牙齦卟啉單胞菌在涂層鈦樣品表面生長(zhǎng)受到明顯的抑制,黏附在材料表面的細(xì)菌形態(tài)發(fā)生改變,此提示含鋅HA/TiO2生物涂層具有較好的抑菌性能.Bai等[16]用離子束輔助沉積法沉積不同濃度的銀于HA FGM涂層中,觀察發(fā)現(xiàn),從涂層基體界面到涂層表層,納米銀的結(jié)晶及顆粒分布減少,涂層靠近表層部分的外側(cè)面銀含量質(zhì)量百分比為,1.09%~6.59%,大約占整個(gè)涂層平均銀含量的一半,含銀HA FGM涂層平均粘附強(qiáng)度為,83±6~88±3 MPa.
研究發(fā)現(xiàn),人體硬組織的無(wú)機(jī)成分中除含磷灰石外,稀土元素含量也高[17].稀土元素鑭(La)可部分取代HA中的鈣離子而使晶體的結(jié)構(gòu)更加穩(wěn)定,提高涂層與鈦基材料表面的抗拉結(jié)合強(qiáng)度,改善鈦表面的耐磨性和耐蝕性能[18].此外,稀土元素La不僅可以占據(jù)鈣的位置與生物大分子結(jié)合,而且還可取代已經(jīng)結(jié)合的鈣離子,形成更穩(wěn)定的化合物,并隨著La含量增加,對(duì)鈣的拮抗作用增強(qiáng)[19-20].唐霞等[21]在制備不同含量的含La HA FGM涂層發(fā)現(xiàn),添加適量La的材料對(duì)細(xì)胞生物相容性與單純HA涂層材料沒有區(qū)別,但隨著La含量增加,細(xì)胞的生長(zhǎng)量有所下降,研究得出濃度為0.3 g/L的硝酸鑭電解液其La含量最合適.
Lin等[22]研究發(fā)現(xiàn),HA可與膠原蛋白復(fù)合制備成HAP/Col FGM,通過(guò)4年的臨床觀察,HAP/Col FGM比單純的HA FGM具有更為顯著的骨再生能力.
涂層孔隙的梯度變化設(shè)計(jì),是指鈦基表面的涂層僅含有HA,其梯度變化體現(xiàn)在HA的物理結(jié)構(gòu)變化.
Khor等[23]用 Ti-6Al-4V 與 HA 涂層復(fù)合,涂層中HA/Ti-6Al-4V比例為50 wt%/50 wt%→80 wt%/20 wt%→100 wt%/0,發(fā)現(xiàn)功能梯度涂層能降低涂層的熱應(yīng)力,提高涂層的性能,且在涂層中,密度和孔隙率呈漸進(jìn)變化,該涂層的拉伸強(qiáng)度比純HA涂層高,楊氏模量和斷裂韌性表現(xiàn)出各相異性.葉迅等[24-25]在純鈦表面制備出多孔的HA涂層,其結(jié)構(gòu)特征是內(nèi)層致密氧化鈦膜過(guò)渡到多孔氧化鈦膜,再到表層多孔HA涂層,結(jié)果提示該鈦基HA FGM具有良好的生物相容性和骨誘導(dǎo)能力.研究發(fā)現(xiàn),利用微弧氧化法制備的鈦基HA FGM,外層HA疏松多孔,內(nèi)層TiO2致密,且與鈦合金基體有著較強(qiáng)的結(jié)合力,粗糙多孔的表面也易于成骨細(xì)胞的附著于生長(zhǎng),表現(xiàn)出良好的生物活性[26].Kawanabe 等[27]在鈦表面制備疏松多孔結(jié)構(gòu),并對(duì)使用該材料的70例全髖置換術(shù)的患者進(jìn)行平均4.8年的隨訪,發(fā)現(xiàn)患處均未發(fā)生松動(dòng),并顯示出良好的骨傳導(dǎo)性能.此外,研究還發(fā)現(xiàn),制備多孔鈦基HA FGM,能夠顯著促進(jìn)成骨細(xì)胞的黏附增殖[28-29],促進(jìn)成骨細(xì)胞的礦化[29].Cannillo 等[30]采用大氣噴射法制備 TiO2/HA涂層,發(fā)現(xiàn)隨著溫度的升高,HA結(jié)晶及維氏硬度增加,但在溫度超過(guò)750℃時(shí),重結(jié)晶的應(yīng)力將使涂層基體界面的裂縫及薄弱部位增加.另外,納米級(jí)HA梯度涂層是將納米級(jí)的HA或者其他納米顆粒多層涂于鈦合金表面,納米級(jí)HA梯度涂層材料能促進(jìn)成骨細(xì)胞表型因子的表達(dá)[31].
總而言之,鈦基/涂層型HA FGM因其將線性的鈦基涂層界面轉(zhuǎn)化為逐層變化的梯度界面,在兼顧鈦基與涂層結(jié)合強(qiáng)度的同時(shí),增強(qiáng)其生物學(xué)活性、促進(jìn)骨組織生長(zhǎng).可以預(yù)見,鈦基/涂層型HA FGM會(huì)越來(lái)越廣泛地應(yīng)用于實(shí)際的臨床上.
:
[1]Ayers R A,Simske S J,Nunes C R,et al.Long-term bone in
growthandresidualmicro-hardnessofporousblock hydroxyapatite implants in humans[J].Journal of Oraland Maxillofacial Surgerg,1998,56(11):1297-1302.
[2]Choi J W,Kong Y M,Kim H E,et al.Reinforcement of hydroxyapatite bioceramic by addition of Ni3Al and Al2O3[J].Journal of the American Ceramic Society,1998,81(7):1743-1748.
[3]Hedia H S,Mahmoud N A.Design optimization of functionally graded dental implant[J].Bio-medical Materials and Engineering,2004,14(2):133-143.
[4]Ong J L,Carnes D L,Bessho K.Evaluation of titanium plasma-sprayed and plasma-sprayed hydroxyapatite implants in vivo[J].Biomaterials,2004,25(19):4601-4606.
[5]Roop Kumar R,Wang M.Modulus and hardness evaluations of sintered bioceramic powdersand functionally graded bioactive composites by nano-indentation technique[J].Materials Science and Engineering,2002,A(338):230-236.
[6]張彩珍,李運(yùn),湯玉斐,等.射頻磁控濺射法制備羥基磷灰石/β-磷酸三鈣生物涂層[J].生物骨材料與臨床研究,2008,5(2):48-50.
[7]Kumar R,Maruno S.Functionally graded coatings of HA-G-Ti composites and theirin vivo studies[J].Materials Science and Engineering,2002;A(334):156-162.
[8]Kumar R,Wang M.Functionally graded bioactive coatings of hydroxyapatite/titaniumoxide composite system[J].Materials Letters,2002,55(3):133-137.
[9]Gomes P S,Botelho C,Lopes M A,et al.Evaluation of human osteoblastic cell response to plasma-sprayed silicon-substituted hydroxyapatite coatings over titanium substrates[J].Journal of Biomedical Materials Research Part B:Applied Biomaterials,2010,94(2):337-346.
[10]Wang J,Chao Y,Wan Q,et al.Fluoridated hydroxyapatite/titanium dioxide nanocomposite coating fabricated by a modified electrochemical deposition[J].Journal of Materials Science:Materials in Medicine,2009,20(5):1047-1055.
[11]林東洋,趙玉濤,甘俊旗,等.鈦合金表面磁控濺射制備HA/YSZ 梯度涂層[J].材料工程,2008,53(5):34-38.
[12]劉亮,郭鋒,李鵬飛,等.電解液鈣磷含量對(duì)醫(yī)用TC4鈦合金微弧氧化膜的影響[J].金屬熱處理,2010,53(1):77-80.
[13]劉亮,郭鋒,李鵬飛,等.鈦生物種植體表面微弧氧化膜制備的電解液研究[J].表面技術(shù),2009,38(3):37-40.
[14]張曉光,張揚(yáng).鈦合金種植體表面制備的生物活性膜[J].中國(guó)組織工程研究與臨床康復(fù),2009,13(38):7489-7492.
[15]張靜瑩,孫慎霞,齊民,等.含鋅羥基磷灰石二氧化鈦復(fù)合涂層的抗菌性能[J].中國(guó)組織工程研究,2012,16(38):7092-7095.
[16]Bai X,More K,Rouleau C M,et al.Functionally graded hydroxyapatite coatings doped with antibacterial components[J].Acta Biomaterialia,2010,6(6):2264-2273.
[17]Zaichick S,Zaichick V,Karandashev V,et al.Accumulation of rare earth elements in human bone within the lifespan[J].Metallomics,2011,3(2):186-194.
[18]Guo D G,Wang A H,Han Y,et al.Characterization,physicochemical properties and biocompatibility of La-incorporated apatites[J].Acta Biomaterialia,2009,5(9):3512-3523.
[19]Kandori K,Toshima S,Wakamura M,et al.Effects of modification of calcium hydro-xyapatites by trivalent metal ions on the protein adsorption behavior[J].The Journal of Physical Chemistry B,2010,114(7):2399-2404.
[20]Mavropoulos E,Costa A M,Costa L T,et al.Adsorption and bioactivity studies of albumin onto hydroxyapatite surface[J].Colloids and Surfaces B:Biointerfaces,2011,83(1):1-9.
[21]唐霞,孟玉坤.鈦表面羥基磷灰石涂層含鑭量對(duì)附著細(xì)胞生物學(xué)性能的影響[J].第三軍醫(yī)大學(xué)學(xué)報(bào),2011,33(24):2592-2595.
[22]Lin D,Li Q,Li W,et al.Bone remodeling induced by dental implants of functionally graded materials[J].Journal of Biomedical Materials Research Part B:Applied Biomaterials,2010,92B(2):430-438.
[23]Khor K A,Gu Y W,Quek C H,et al.Plasma spraying of functionallygradedhydro-xyapatiteyTi-6Al-4VCoatings[J].Surface and Coatings Technology,2003,168(2-3):195-201.
[24]葉迅,朱琳,唐光昕,等.純鈦表面梯度生物活性涂層材料生物相容性研究[J].中華神經(jīng)外科疾病研究雜志,2011,10(6):543-547.
[25]葉迅,趙元立,朱琳,等.顱骨修補(bǔ)材料鈦金屬表面梯度生物活性涂層的生物相容性研究[J].北京醫(yī)學(xué),2008,30(1):8-12.
[26]Lim Y W,Kwon S Y,Sun D H,et al.Enhanced cell integration to titanium alloy by surface treatment with microarc oxidation:a pilot study[J].Clinical Orthopaedics and Related Research,2009,467(9):2251-2258.
[27]Kawanabe K,Ise K,Goto K,et al.A new cementless total hip arthroplasty with bioactive titanium porous-coating by alkaline and heat treatment:average4.8-year results[J].Journal of Biomedical Materials Research Part B:Applied Biomaterials,2009,93(1):476-481.
[28]聶蓉蓉,朱鋒,陳治清,等.種植體表面TiO2/HA梯度涂層的生物相容性研究[J].口腔醫(yī)學(xué)研究,2011,27(8):686-689.
[29]張羽中,趙寶紅,趙震錦,等.HA涂層—多孔TiO2—鈦基體梯度涂層對(duì) MG63的影響[J].上??谇会t(yī)學(xué),2009,18(4):411-414.
[30]Cannillo V,Lusvarghi L,Sola A,et al.Production and char
acterization of plasma-sprayed TiO2-hydroxyapatite functionally graded coatings[J].Journal of the European Ceramic Society,2008,28(11):2161-2169.
[31]劉世敏,周宇.鈦合金表面生物活性涂層的發(fā)展歷程及趨勢(shì)研究[J].材料工程,2009,54(7):88-92.
Research Progress of Titanium Matrix/Coating Hydroxyapatite Functionally Graded Biomaterials
HE Yun,NIU Bei
(School of Medicine and Nursing,Chengdu University,Chengdu 610106,China)
Titanium and titanium alloys are commonly used medical biomaterials,which lack osteoinductive capacity despite good biocompatibility.But hydroxyapatite(HA)has good biological activity being capable of inducing bone growth.Titanium-based coating HA functionally graded biomaterial(FGM)provides new ideas to solve the combination of both.The design of titanium based coating type HA FGM includes the gradient design of the components and the pore gradient change;and the functional gradient with a gradual transition is formed between the base body and the coating surface,which can significantly improve the mechanical strength and biological osteoinductive capability.This article outlines the design,preparation and performance evaluation of the latest research to provide reference for clinical use.
titanium;hydroxyapatite;functionally graded biomaterials
TB334
A
1004-5422(2013)03-0289-04
2013-05-12.
何 隕(1976—),女,博士,講師,從事生物材料學(xué)與細(xì)胞生物學(xué)研究.