朱專贏,吳昌達,婁童芳,杜學(xué)萍,屈建瑩
(河南大學(xué) 化學(xué)化工學(xué)院,環(huán)境與分析科學(xué)研究所,河南 開封 475004)
量子點(QDs)又稱半導(dǎo)體納米晶,是一種由Ⅱ-Ⅵ族或Ⅲ-Ⅴ族元素組成的納米顆粒, 直徑約1~100 nm[1-3]. 由于QDs具有較小的尺寸,使其具有特殊的小尺寸效應(yīng)[4]、表面效應(yīng)[5]、量子尺寸效應(yīng)[6]及宏觀量子隧道效應(yīng)[7]. 量子點表現(xiàn)出獨特的光學(xué)特性,如量子產(chǎn)率高、熒光壽命長、消光系數(shù)大、光耐受性強、發(fā)射光譜窄和激發(fā)光譜范圍較寬等[8-9]. 量子點的制備和應(yīng)用引起了人們廣泛的研究興趣[10],在生物醫(yī)學(xué)[11-13]和光電子[14]領(lǐng)域都擁有廣闊的應(yīng)用前景.
量子點的制備方法有很多種,如電化學(xué)沉積法、氣相沉積法、微乳液法、溶膠法等,其中溶膠法是最常用的制備方法. 溶膠法包括有機相合成法和水相合成法.水相合成法又可細分為傳統(tǒng)水相法、水熱法、微波輔助水相法等.
早期的量子點合成通常是采用有機相合成法. 1990年,BRUS等[15]在有機相中合成出了質(zhì)量好、發(fā)光效率高的CdSe量子點. 1993年,MURRAY等[16]通過有機金屬前驅(qū)體Cd(CH3)2和S、Se、Te等前驅(qū)體在三辛基氧膦(TOPO)溶劑中反應(yīng),直接合成高質(zhì)量的CdE(E=S, Se, Te)量子點. 2001年,PENG[17]對傳統(tǒng)有機相合成法進行改進,用金屬氧化物CdO代替有毒的有機鎘金屬化合物作為反應(yīng)前體,一步合成了CdS, CdSe,CdTe量子點. 隨后,他又提出非絡(luò)合溶劑合成方法,大大降低了量子點合成的難度[18].2005年,YANG等[19]提出了一種綠色的合成方法,他們不用有機膦和空氣中敏感的化合物,進一步改善和簡化了CdSe的合成途徑. 2007 年,PRADHAN等[20]提出了更加綠色的合成量子點的方法. 后來,YANG[21]在有機體系中制備出了發(fā)光性能優(yōu)異的Mn摻雜的CdS/ZnS核殼式量子點. DAI等[22]用橄欖油既作配體又作溶劑合成了分散性良好的ZnSe量子點和納米花. 2009年DENG等[23]用液體石蠟替換TOPO溶劑合成了ZnxCd1-xSySe1-y(0≤x≤1; 0≤y≤1)合金量子點.
1.2.1 傳統(tǒng)水相法
1994年,VOSSMEYER T等[24]首次使用巰基化合物1-硫代甘油為穩(wěn)定劑在水溶液中合成了CdS量子點. 陳啟凡等[25]用傳統(tǒng)水相合成法合成了半胱氨酸包覆的CdTe量子點,并將它用于生物體DNA的檢測. 1998年ZHANG等[26]以巰基乙酸為穩(wěn)定劑通過Cd2+與NaHTe在水相中的反應(yīng)合成出了水溶性量子點. 2003年,ZHUANG等[27]用巰基乙酸為穩(wěn)定劑制備了Mn摻雜ZnS量子點,并且研究了不同反應(yīng)條件對量子點熒光強度的影響. 2007年,QIAN等[28]在水相中制備出不同尺寸和組成的CdHgTe量子點. 2009年,LAW等[29]在水溶液中制備出了CdTe/ZnTe核殼量子點,并將它成功應(yīng)用于生物成像.
1.2.2 水熱法
2003年,ZHANG等[30]利用水熱法合成了CdTe納米粒子,并對各個反應(yīng)條件進行了研究. MAO等[31]采用水熱法以巰基丙酸作穩(wěn)定劑一步合成CdTeS合金量子點,并用于生物成像方面的研究. 2009年,ZHAO等[32]以N-乙酰-L-半胱氨酸作為穩(wěn)定劑合成了核殼結(jié)構(gòu)的CdTe/CdS量子點.
1.2.3 微波法
KOTVO等[33]首次使用微波輔助法合成量子點. 2005年,REN等[34]以巰基丙酸為穩(wěn)定劑,利用微波輔助法合成出來一系列的CdTe量子點. 利用微波輔助法,CdTe/CdS[35]、CdTe/CdS/ZnS[36]、CdSe/ZnS[37]等一系列的核殼結(jié)構(gòu)的量子點相繼被合成出來. 微波輔助法合成量子點目前已經(jīng)成為一種發(fā)展趨勢.
2.1.1 測定金屬離子的含量
XIA等[38]在水介質(zhì)中合成了巰基乙酸包覆的量子點,進一步采用變性的牛血清蛋白修飾CdS量子點,采用熒光猝滅法測定Hg2+,此方法檢出限為4.0×10-9mol·L-1.李夢瑩等[39]用半胱氨酸作修飾劑,水熱法合成CdS量子點,基于熒光猝滅作用,實現(xiàn)了對痕量Hg2+的定量檢測.
2.1.2 測定藥物含量
張犁黎等[42]在堿性溶液中使用硫代乙酰胺制備CdS熒光納米粒子. 該納米粒子的熒光強度能被藥物成分柳氮磺吡啶所猝滅,建立了一種高選擇性測定柳氮磺吡啶的熒光分析新方法,檢測下限達到0.1 mg·L-1. 此方法已用于對藥物中柳氮磺吡啶的測定,方法甚佳. 董學(xué)芝等[43]于水相中合成了CdS量子點,基于左氧氟沙星對CdS與牛血清白蛋白復(fù)合物的熒光有明顯的猝滅作用,建立了一種檢測左氧氟沙星的方法. 結(jié)果表明,在左氧氟沙星濃度為0.2~20 mg·L-1時,左氧氟沙星-CdS-BSA體系的熒光猝滅程度與左氧氟沙星的濃度存在良好的線性關(guān)系,檢出限為0.03 mg·L-1. 此方法已成功用于鹽酸左氧氟沙星片劑和膠囊的測定,與傳統(tǒng)方法相比,結(jié)果令人滿意.
2.2.1 熒光量子點探針的應(yīng)用
PAN[44]等用葉酸修飾可生物降解的聚丙交酯-維生素E琥珀酸酯(PLA-TPGS)納米粒子,并將量子點包裹進該納米粒子中,制備出一種新型熒光探針,該熒光探針具有靶向作用和降低細胞毒性的優(yōu)點. 該熒光探針還可用于葉酸受體高表達的乳腺癌細胞MCF-7的成像,熒光強度較大. BALLOU等[45]將PEG包裹的QDs作為熒光探針通過尾靜脈注入小鼠體內(nèi),間隔不同時間解剖后觀察QDs在體內(nèi)的熒光穩(wěn)定性,結(jié)果表明PEG修飾后的QDs不僅具有水溶穩(wěn)定性,可以有效降低探針在網(wǎng)狀內(nèi)皮系統(tǒng)的非特異性吸附,而目在肝臟、淋巴結(jié)和骨髓中至少可以保留1個月,同時可以增加QDs在循環(huán)中的半衰期,有助于實現(xiàn)QDs在活體內(nèi)長時間實時動態(tài)示蹤觀察.
2.2.2 熒光量子點在活體腫瘤細胞成像中的應(yīng)用
GAO等[46]采用聚乙二醇( PEG)包覆的QDs標記前列腺特異性膜抗原( PSMA) 的抗體,經(jīng)小鼠尾部靜脈注射,實現(xiàn)了對表達PSMA 前列腺癌細胞的靶向成像,探測了QDs 在動物體內(nèi)的生物分布、非特異性攝取、細胞毒性等.TAKEDA等[47]成功制備了HER2抗體與CdSe量子點復(fù)合的產(chǎn)物,該產(chǎn)物可使活體原發(fā)性腫瘤成像. 實驗結(jié)果表明,該復(fù)合物可靶向傳遞到表面表達HER2蛋白的乳腺癌細胞上,并提高熒光標記的特異性,可以很好的識別特定腫瘤細胞.
2000年,美國的 MENZEL 等[48-49]首次報道了CdS量子點用于易拉罐表面的指紋顯現(xiàn),開創(chuàng)了量子點作為新材料在指紋顯現(xiàn)方面應(yīng)用的先例. 隨后,MENZEL等[50]利用 PAMAM(聚酰胺-胺型樹形分子)作為模板,通過樹形分子的空間限閾效應(yīng)來控制包裹在樹形分子內(nèi)的 CdS量子點的生長,合成的CdS/PAMAM聚合物用甲醇作為溶劑稀釋后,成功地用于鋁箔和聚乙烯樣品上的潛指紋顯現(xiàn). 他們認為,CdS/PAMAM表面的氨基或羧基等官能團能與指紋殘留物作用使CdS/PAMAM沉積到指紋紋線上,在紫外光照射下,通過CdS/PAMAM聚合物的熒光顯現(xiàn)指紋. 熊海等[51]在有機相中合成了InP量子點,通過相轉(zhuǎn)移、紫外光照復(fù)合等過程得到了巰基乙酸修飾的InP/ZnS量子點,其熒光發(fā)射波長從450 nm紅移至575 nm,在紫外光照下可以清晰顯現(xiàn)出指紋圖像. 該方法可用于不同背景顏色的多種客體(如透明膠帶、黑色塑料袋、錫紙等)表面指紋的鑒定.
2008年,GUO等[52]采用熱注入法制備出均一的六邊形環(huán)狀黃銅礦結(jié)構(gòu)的CuInSe2,并采用成膜高溫熱硒化法,制備出結(jié)構(gòu)為Mo/CuInSe2/CdS/ZnO/ITO的電池器件,能量轉(zhuǎn)換效率為3.2%. 隨后,GUO等[53]將制備的Cu(In1-xGax) S2納米晶“墨水”制成薄膜后,采用加熱硒化法,制備出Cu( In1-xGax) ( Se1-ySy)2薄膜,將該薄膜作為吸收層,得到能量轉(zhuǎn)換效率為4.76%的太陽能器件. 除太陽能電池之外,納米晶還可用在發(fā)光二極管和光探測器等器件中,ZHONG等[54]利用CuInSe2/ZnS納米晶作發(fā)光層成功制備了紅光和近紅外發(fā)光的發(fā)光二極管. ZHANG等[55]利用紅光量子點ZnCuInS/ZnS和藍綠光有機物作為發(fā)光層制備了白光發(fā)光二極管.
結(jié)語:量子點以獨特的物理和化學(xué)特性而成為研究的熱點,制備量子產(chǎn)率高、生物相溶性好的量子點和簡單化的合成方法將成為量子點合成的發(fā)展趨勢. 量子點在化學(xué)、生物、醫(yī)藥、材料等方面都得到了一定的應(yīng)用,擴展量子點的應(yīng)用范圍也將成為量子點研究的一個重要方向.
參考文獻:
[1] GAO Xiao Hu, YANG Lily, PETROS J A, et al. Invivo molecular and cellular imaging with quantum dots [J]. Curr Opiniotech, 2005, 16(1): 63-72.
[2] MICHALET X, PINAUD F F, BENTOLILA L A, et al. Quantum dots for live cells in vivo imaging and diagnostics [J]. Science, 2005, 307(5709): 538-544.
[3] HAHN M A, TABB J S, KRAUSS T D. Detection of single bacterial pathogens with semiconductor quantum dots [J]. Anal Chem, 2005, 77(15): 4861-4869.
[4] HALPERIN W P. Quantum size effects in metal particles [J]. Rev Mod Phys, 1986, 58(3): 533-606.
[5] NAKAMURA S, MUKAI T, SENOH M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes [J]. Appl Phys Lett, 1994, 64(13): 1687-1689.
[6] EYCHMüLLER A. Stucture and photophysics of semiconductor nanocrystals [J]. J phys Chem B, 2000, 104(28): 6514-6518.
[7] NAKAMURA S. First Ⅲ-Ⅴ-nitride violet laser diodes [J]. J Crystal Growth, 1997, 170(1/4): 11-15.
[8] MATTOUSSI H, MAURO J M, GOLDMAN E R, et al. Banwendi, self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein [J]. J Am Chem Soc, 2000, 122: 12142-12150.
[9] JAISWAL J K, SIMON S M. Potentials and pitfalls of fluorescent quantum dots for biological imaging [J]. Trends Cell Biol, 2004, 14: 497-504.
[10] MA Qiang, SU Xin Guang. Recent advances and application in QDs-based sensors [J]. Analyst, 2011, 136: 4883-4893.
[11] GOLDMAN E R, ANDERSON G P, MAURO J M, et al. Conjugation of luminescent quantum dots with anti bodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays [J]. Anal Chem, 2002, 74: 841-847.
[12] PARAK W J, BOUDREAU R, LARABELL C, et al. Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks [J]. Adv Mater, 2002, 14:882-885.
[13] SAMIA A C, CHEN X, BURDA C. Semiconductor quantum dots for photodynamic therapy [J]. J Am Chem Soc, 2003, 125: 15736-15737.
[14] LI X, FRYER J R, COLE-HAMILTON D J. A new, simple and versatile method for the production of nano-scale particles of semiconductors[J]. Chem Commun, 1994, 14: 1715-1716
[15] STEIGERWALD M L, BRUS L E.Semiconductor crystallites: a class of large molecules [J]. Acc Chem Res, 1990,23(6): 183-188.
[16] MURRAY C B, NORRIS D J, BAWENDI M G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites [J]. J Am Chem Soc, 1993, 115: 8706-8715.
[17] PENG Z A, PENG X G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor [J]. J Am Chem Soc, 2001, 123: 183-184.
[18] YU W W, PENG X G. Formation of high-quanlity Cds and otherⅡ-Ⅵ semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers[J]. Angew Chem Int Ed, 2002, 41(13): 2368-2371.
[19] YANG Yong An, WU Hui Meng, WILLAMS K R, etal. Synthesis of CdSe and CdTe nanocrystals without precursor injection[J]. Angew Chem Int Ed, 2005, 117(44): 6870-6873.
[20] PRADHAN N, REIFSNYDER D, XIE R G, et al. Surface ligand dynamics in growth of nanocrystal [J]. J Am Chem Soc, 2007, 129(30): 9500-9509.
[21] YANG Yong An, CHEN Ou, ANGERHOFER A, et al. Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals [J]. J Am Chem Soc, 2005, 128(41):12428-12429.
[22] DAI Quan Qin, XIAO Ning Ru, NING Jia Jia, et al. Synthesis and mechanism of particle and flower-shaped ZnSe nanocrystals: green chemical approaches toward green nanoproducts[J]. J Phys Chem C, 2008, 112(20): 7567-7571.
[23] DENG Zheng Tao, YAN Hao, LIU Yan. Band gap engineering of quaternary-alloyed ZnCdSSe quantum dots via a facile phosphine-free colloidal method [J]. J Am Chem Soc, 2009, 131: 17744-17745.
[24] VOSSMEYER T, KATSIKAS L, GIERSIG M, et al. CdS nanoclusters: synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift [J]. J Phys Chem, 1994, 98:7665-7673.
[25] 陳啟凡,王文星,葛穎欣.半胱胺包被的碲化鎘量子點的直接水相制備及其與DNA鏈接[J].分析化學(xué),2007, 35(1): 135-138.
[26] ZHANG Hao, ZHOU Zhen, YANG Bai. The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles [J]. J Phys Chem B, 2003, 107: 8-13.
[27] ZHUANG Jia Qi, ZHANG Xiao Dong, WANG Gang, et al. Synthesis of nanocrystals by using mercaptopropionic acid as stabilizer [J]. J Mater Chem, 2003, 13: 1853-1857.
[28] QIAN Hui Feng, DONG Chao Qian, PENG Jin Liang, et al. High-quality and water-soluble near-infrared photoluminescent CdHgTe/CdS quantum dots prepared by adjusting size and composition [J]. J Phys Chem C, 2007, 111: 16852-16857.
[29] LAW W C, YONG K T, PRASAD P N, et al. Aqueous-phase synthesis of highly luminescent CdTe/ZnTe core/shell quantum dots optimized for targeted bioimaging [J]. Small, 2009, 5: 130.
[30] ZHANG Hao, ZHOU Zhen, YANG Bai, et al. The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles [J]. J Phys Chem B, 2003, 107:1302-1310.
[31] MAO Wei Yong, GUO Jia, YANG Wu Li, et al. Synthesis of high-quality near-infrared-emitting CdTeS alloyed quantum dots via the hydrothermal method [J]. Nanotechnology, 2007, 18: 485611.
[32] ZHAO Dan, HE Zhi Ke, CHAN W H, et al. Synthesis and characterization of high-quality water-soluble near-infrared-emitting CdTe/CdS quantum dots capped by N-acetyl-L-cysteine via hydrothermal method [J]. J Phys Chem C, 2009, 113: 1293-1300.
[33] CORREA-DUARTE M A, GIERSIG M, KOTOV N A, et al. Control of packing order of self-assembled monolayers of magnetite nanoparticles with and without SiO2coating by microwave irradiation [J]. Langmuir, 1998, 14: 6430-6435.
[34] LI L, QIAN H F, REN J C. Rapid synthesis of highly luminescent CdTe QDs in the aqueous phase by microwave irradiation with controllable temperature[J]. Chem Commun, 2005(4): 528-530.
[35] HE Yao, LU Hao Ting, SAI Li Man, et al. Microwave-assisted growth and characterization of water-dispersed CdTe/CdS core-shell nanocrystals with high photoluminescence[J]. J Phys Chem B, 2006, 110: 13370-13374.
[36] HE Yao, LU Hao Ting, SAI Li Man, et al. Microwave synthesis of water-dispersed CdTe/CdS/ZnS core-shell-shell quantum dots with excellent photostability and biocompatibility [J]. Adv Mater, 2008, 20: 3416-3421.
[37] SCHUMACHER W, NAGY A, WALDMAN W J, et al. Direct synthesis of aqueous CdSe/ZnS-based quantum dots using microwave irradiation [J]. J Phys Chem C, 2009, 113: 12132-12139.
[38] XIA Yun Sheng, ZHU Chang Qiang. Use of surface-modified CdTe quantum dots as fluorescent probes in sensing mercury (II)[J]. Talanta, 2008, 75(1): 215.
[39] 李夢瑩, 周華萌, 董再蒸. 半胱氨酸包覆的CdTe量子點作為熒光離子探針測定痕量汞(Ⅱ)[J]. 冶金分析,2008, (12):7-11.
[41] 董海濤, 劉 巖. 量子點-銪復(fù)合納米粒子比率型熒光探針的制備與銅(Ⅱ)離子測定的應(yīng)用[J]. 分析化學(xué),2009(1):136.
[42] 張犁黎,鄭行望,屈穎娟. 硫化鎘納米粒子熒光淬滅測定柳氮磺吡啶[J]. 山西師范大學(xué)學(xué)報,2006,34(2):74-79.
[43] 胡衛(wèi)平,焦 嫚,董學(xué)芝. CdS量子點熒光光度法測定蛋白質(zhì)的含量[J]. 光譜學(xué)與光譜分析, 2011,31(2):444-447.
[44] PAN Jie, FENG Si Shen. Targeting and imaging cancer cells by folate-decorated, quantum dots(QDs)-loaded nanoparticles of biodegradable polymers [J]. Biomaterials, 2009, 30(6): 1176-1183.
[45] BALLOU B, LAGERHOLM BC, ERNST L A, et al. Nonivasive imaging of quantum dots in mice [J]. Bioconjug Chem, 2004, 15(1): 79-86.
[46] GAO Xiao Hu, CUI Yuan Yuan, LEVENSON R M, et al. In vivo cancer targeting and imaging with semiconductor quantum dots [J]. Nat Biotechnol, 2004, 22(8): 969-976.
[47] TAKEDA M, TADA H, HIGUCHI H, et al. In vivo single molecular imaging and sentinel node navigation by nanotechnology for molecular targeting drug-delivery systems and tailor-mademedicine [J]. Breast Cancer, 2008, 15 (2): 145-152.
[48] TAN Zha Nao, ZHANG Yu, XIE Chuang, et al. Near-band-edge electroluminescence from heavy-metal-free colloidal quantum dots [J]. Adv Mater, 2011, 23: 3553-3558.
[49] MENZEL E R, SAVOY S M, ULVICK S J,et al.Photoluminescent semiconductor nanocrystal for fingerprint detection[J]. J Forensic Sci, 2000, 45(3): 545-551.
[50] MENZEL E R, TAKASTU M, MURDOCK R H, et al. Photoluminescent CdS/dendrimer nanocomposites for fingerprint detection[J]. J Forensic Sci, 2000, 45(4): 770-773.
[51] 熊 海,王 珂,于迎春.水溶性InP/ZnS量子點的合成及其在指紋顯現(xiàn)中的應(yīng)用[J]. 化學(xué)研究,2011, 22(3): 11-16.
[52] GUO Qi Jie, KIM S J, KAR M, et al. Development of CuInSe2nanocrystal and nanoring inks for low-cost solar cells[J]. Nano Lett, 2008, 8: 2982-2987.
[53] GUO Qi Jie, FORD G M, HILLHOUSE H W, et al. Sulfide nanocrystal inks for dense Cu(In(1-x)Gax)(S(1-y)Sey)2absorber films and their photovoltaic performance [J]. Nano Lett, 2009, 9: 3060-3065.
[54] ZHONG Hai Zheng, WANG Zhi Bin, BORICO E, et al. Colloidal CuInSe2nanocrystals in the quantum confinement regime: synthesis, optical properties, and electroluminescence [J]. J Phys Chem C, 2011, 115: 12396-12402.
[55] ZHANG Yu, XIE Chuang, SU Hai Peng, et al. Employing heavy metal-free colloidal quantum dots in solution-processed white light-emitting diodes[J]. Nano Lett, 2010, 11(2):329-332.