陳華等
摘要:生命周期評(píng)價(jià)(LCA)已經(jīng)廣泛應(yīng)用于農(nóng)副產(chǎn)品和食品工業(yè)研究中,涉及到原材料獲取、能源消耗、污染物排放等多個(gè)方面,分析了其對(duì)環(huán)境的影響狀況??偨Y(jié)了國(guó)內(nèi)外近幾十年來(lái)生命周期評(píng)價(jià)在農(nóng)副產(chǎn)品和食品工業(yè)中的應(yīng)用研究,具體涉及到漁業(yè)、畜牧業(yè)、種植業(yè)、其他食品工業(yè)、包裝和廢棄物處理等6個(gè)方面,提出了生命周期評(píng)價(jià)在農(nóng)副產(chǎn)品和食品工業(yè)中的應(yīng)用趨勢(shì)。
關(guān)鍵詞:生命周期評(píng)價(jià)(LCA);農(nóng)副產(chǎn)品;食品工業(yè);應(yīng)用
中圖分類(lèi)號(hào):X822.1;N945.11 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):0439-8114(2013)07-1493-05
1969年美國(guó)中西部資源研究所(MRI)對(duì)可口可樂(lè)包裝類(lèi)型選擇的研究開(kāi)啟了生命周期評(píng)價(jià)(Life cycle assessment,LCA)。1990年國(guó)際環(huán)境毒理與化學(xué)學(xué)會(huì)(SETAC)首次召開(kāi)了LCA國(guó)際研討會(huì),隨后出版了綱領(lǐng)性報(bào)告《生命周期評(píng)價(jià)綱要:實(shí)用指南》,為L(zhǎng)CA方法提供了基本技術(shù)框架。農(nóng)副產(chǎn)品和食品工業(yè)生產(chǎn)涉及的環(huán)節(jié)多、范圍廣,不同產(chǎn)品產(chǎn)生的不良環(huán)境類(lèi)型和程度差別很大。LCA方法在農(nóng)副產(chǎn)品和食品工業(yè)應(yīng)用領(lǐng)域可主要分為漁業(yè)、畜牧業(yè)、種植業(yè)、其他食品工業(yè)、包裝和廢棄物處理等6個(gè)方面。綜述了LCA方法在農(nóng)副產(chǎn)品和食品工業(yè)中的應(yīng)用研究概況及其發(fā)展趨勢(shì)。
1 生命周期評(píng)價(jià)在農(nóng)副產(chǎn)品和食品工業(yè)中的應(yīng)用
1.1 漁業(yè)生命周期評(píng)價(jià)現(xiàn)狀
李君等[1]對(duì)扇貝的兩種利用模式進(jìn)行了對(duì)比評(píng)價(jià),顯示模式二(產(chǎn)品為扇貝柱、復(fù)合氨基酸、魚(yú)蝦餌料和貝殼工藝品)在資源消耗、溫室效應(yīng)、酸化影響、潛在健康影響方面比模式一(產(chǎn)品為扇貝柱、食用貝邊、魚(yú)蝦鮮餌料和飼料添加劑)低,而在固體廢棄物和富營(yíng)養(yǎng)化方面比模式一高。Vázquez-Rowe等[2]采用LCA方法評(píng)價(jià)了鱈魚(yú)的捕撈、加工、運(yùn)輸?shù)拳h(huán)節(jié)的環(huán)境影響后發(fā)現(xiàn)加工環(huán)節(jié)環(huán)境影響最大。Vázquez-Rowe等[3]運(yùn)用LCA方法評(píng)價(jià)了兩種捕魚(yú)方法后,獲知拖網(wǎng)捕魚(yú)產(chǎn)生的不良環(huán)境影響程度比鉤叉捕魚(yú)高,通過(guò)降低拖網(wǎng)捕魚(yú)的燃油消耗量能降低不良環(huán)境的影響。地中海貽貝加工和運(yùn)輸過(guò)程涉及到酸化、資源消耗、全球變暖、生態(tài)毒性、人體毒性、富營(yíng)養(yǎng)化、破壞臭氧層和形成光化學(xué)氧化劑等多項(xiàng)不良環(huán)境影響因子[4]。Ziegler等[5]將塞內(nèi)加爾兩種捕蝦方式對(duì)比后發(fā)現(xiàn)兩者主要環(huán)境影響環(huán)節(jié)差別很大,拖網(wǎng)捕蝦為捕撈環(huán)節(jié),垂釣捕蝦則為加工和貯藏環(huán)節(jié)。
1.2 畜牧業(yè)生命周期評(píng)價(jià)現(xiàn)狀
生產(chǎn)牛奶會(huì)排放溫室氣體和引起富營(yíng)養(yǎng)化,從而造成環(huán)境惡化。運(yùn)用LCA方法評(píng)價(jià)歐洲牛奶后,發(fā)現(xiàn)通過(guò)降低牧場(chǎng)營(yíng)養(yǎng)過(guò)剩程度、減少進(jìn)口濃縮飼料和牧草飼養(yǎng)量、增加本地牧草供給比例等措施,可以降低不良環(huán)境影響程度[6,7]。Thomassen等[8]采用LCA方法對(duì)比了荷蘭傳統(tǒng)牛奶與有機(jī)牛奶的區(qū)別,結(jié)果表明生產(chǎn)等量牛奶,其中有機(jī)牛奶產(chǎn)生的不良環(huán)境影響更小。秦鳳賢[9]利用LCA方法對(duì)中國(guó)產(chǎn)牛奶分析后指出,其潛在環(huán)境影響因子依次為富營(yíng)養(yǎng)化、固體廢棄物和全球變暖與酸化。乳制品加工業(yè)主要環(huán)境影響因子為耗水量、有機(jī)污水排放量和能源消耗[10]。
Karen等[11]運(yùn)用LCA方法研究了加拿大西部牛肉造成的溫室氣體排放量,飼養(yǎng)環(huán)節(jié)的溫室氣體排放量占總排放量80%,另外20%來(lái)自飼料環(huán)節(jié)。Peters等[12]對(duì)澳大利亞3種牛肉生產(chǎn)系統(tǒng)引起的溫室氣體排放量和能源消耗量評(píng)估后發(fā)現(xiàn),兩者數(shù)值均低于國(guó)際平均標(biāo)準(zhǔn),提高生產(chǎn)和運(yùn)輸效率也可以降低能源消耗量。Nathan等[13]通過(guò)對(duì)比美國(guó)愛(ài)荷華州的3種牛肉生產(chǎn)方式(①采用愛(ài)荷華州的飼料飼養(yǎng)肉牛;②采用愛(ài)荷華州以外的其他州的飼料圈養(yǎng)肉牛;③在愛(ài)荷華州肉牛培育中心的牧場(chǎng)放養(yǎng)肉牛)的溫室氣體排放量,結(jié)果表明在產(chǎn)生等量牛肉條件下,第三種牛肉生產(chǎn)方式溫室排放量最少,提高飼料利用效率能顯著降低溫室氣體排放量。肉牛育肥環(huán)節(jié)中飼養(yǎng)時(shí)間、飼料類(lèi)型、畜舍建設(shè)和糞便儲(chǔ)存等均會(huì)產(chǎn)生不良環(huán)境影響,其中飼養(yǎng)階段是最主要的環(huán)境影響環(huán)節(jié),其時(shí)間越短,環(huán)境影響程度越低[14,15]。有機(jī)方式飼養(yǎng)肉牛雖然能減少藥物使用量,但需要更大面積的牧場(chǎng)才能滿(mǎn)足飼養(yǎng)要求[16]。英國(guó)肉雞有室內(nèi)圈養(yǎng)、室外散養(yǎng)、有機(jī)喂養(yǎng)等3種喂養(yǎng)方式,Leinonen等[17]評(píng)價(jià)后指出與室內(nèi)圈養(yǎng)相比,室外散養(yǎng)和有機(jī)喂養(yǎng)的能源消耗量較少。在拓寬調(diào)查范圍后,發(fā)現(xiàn)農(nóng)業(yè)階段是豬肉生產(chǎn)中最主要的環(huán)境影響環(huán)節(jié)[18]。采用有機(jī)方式比常規(guī)方式生產(chǎn)豬肉排放的氨和磷酸鹽更少,采用密集種植和多添加氮肥的方式種植草料能減少豬肉生產(chǎn)中產(chǎn)生的環(huán)境影響[19,20]。以蛋白質(zhì)為功能單位,最高效環(huán)保肉制品為雞肉,其次為豬肉,最后為牛肉。然而,當(dāng)以能量為功能單位時(shí),最高效環(huán)保肉制品為豬肉,其次為雞肉,最后為牛肉。在兩種功能單位下,牛肉效率都是最低的,可能與其飼料轉(zhuǎn)化率低有關(guān)[21]。
1.3 農(nóng)產(chǎn)品生命周期評(píng)價(jià)現(xiàn)狀
農(nóng)業(yè)溫室氣體排放量占全球排放總量25%~30%。研究發(fā)現(xiàn)通過(guò)減少農(nóng)業(yè)生產(chǎn)面積和提高糧食單位面積產(chǎn)量,歐盟農(nóng)業(yè)年溫室氣體排放量可減少3 200萬(wàn)t[22]。Thomas等[23]采用LCA方法評(píng)價(jià)了農(nóng)業(yè)和環(huán)境負(fù)擔(dān)之間的關(guān)聯(lián)度。水稻是世界上最重要的農(nóng)產(chǎn)品之一,按照生命周期研究,水稻可分為收獲前和收獲后兩個(gè)階段。Phong等[24]通過(guò)調(diào)查湄公河三角洲3種種植類(lèi)型(O-LF、R-HF、R-MF)在土地利用率、能源消耗、廢物產(chǎn)出等方面的區(qū)別,結(jié)果顯示,當(dāng)R-HF效率較低時(shí),不良環(huán)境影響最大。過(guò)量或低效使用肥料和CH4排放是水稻生產(chǎn)過(guò)程中的主要環(huán)境影響因子。Breiling等[25]評(píng)估了日本水稻生產(chǎn)溫室氣體(GHG)排放后,指出其數(shù)值與種植規(guī)模、品種和種植地點(diǎn)密切相關(guān)。Roy等[26]運(yùn)用LCA方法評(píng)價(jià)了小規(guī)模生產(chǎn)蒸谷米的環(huán)境負(fù)荷類(lèi)型,發(fā)現(xiàn)其會(huì)隨著生產(chǎn)進(jìn)程而發(fā)生變化,且比其他品種變化更大。Sakaorat等[27]分析了泰國(guó)水稻種植及其加工的環(huán)境影響,顯示獲得1 kg大米會(huì)產(chǎn)生2 927 g CO2(全球變暖)、3.187 g SO2(酸化)、12.896 g NO■■(富營(yíng)養(yǎng)化),95% CO2產(chǎn)生于種植環(huán)節(jié),3% CO2產(chǎn)生于播種環(huán)節(jié),其余2% CO2產(chǎn)生于碾磨工藝。中國(guó)太湖水稻種植會(huì)引起酸化、富營(yíng)養(yǎng)化、水源枯竭、全球變暖和能源枯竭,提高氮肥利用效率能降低資源消耗和廢氣排放量[28]。
栽培方法(溫室或常溫、有機(jī)或常規(guī)、水培或土培)、品種、地點(diǎn)、包裝和運(yùn)輸均會(huì)影響番茄生命周期評(píng)價(jià)結(jié)果[29-34]。據(jù)報(bào)道,溫室氣體排放量與番茄品種和溫室結(jié)構(gòu)有關(guān)[31]。溫室內(nèi)栽培番茄產(chǎn)生的溫室氣體高于常規(guī)栽培[35],塑料薄膜大棚比溫室栽培消耗資源少[36]。種植方式、病蟲(chóng)害防治方法和廢棄物管理等對(duì)番茄環(huán)境效益都有影響[37],化學(xué)防治害蟲(chóng)比綜合防治產(chǎn)生的溫室氣體更多[38]。加工和包裝是番茄醬生產(chǎn)中的環(huán)境熱點(diǎn),可通過(guò)改變番茄醬類(lèi)型或降低番茄醬濃縮程度來(lái)降低酸化程度[39]。
Point等[40]評(píng)價(jià)了加拿大新斯科舍省750 mL瓶裝葡萄酒的環(huán)境影響,結(jié)果顯示其種植、運(yùn)輸和消費(fèi)是最大環(huán)境影響環(huán)節(jié),通過(guò)提高肥料利用效率、種植高產(chǎn)有機(jī)品種、采用輕質(zhì)玻璃瓶能降低環(huán)境影響。Humbert等[41]比較了滴濾咖啡、特濃咖啡膠囊、噴霧干燥速溶咖啡環(huán)境負(fù)擔(dān),顯示50%的環(huán)境問(wèn)題是由種植、處理、加工、包裝、銷(xiāo)售和廣告等環(huán)節(jié)產(chǎn)生的,另外50%的環(huán)境問(wèn)題是由制造、購(gòu)置和使用生產(chǎn)工具、廢物處置等產(chǎn)生的。
與常規(guī)品種相比,轉(zhuǎn)基因甜菜品種因?yàn)槭褂贸輨┝可?,從而減少了對(duì)環(huán)境和人類(lèi)健康的危害[42]。以單位面積(hm2)和單位產(chǎn)量(t)為功能單位,比較德國(guó)阿爾高地區(qū)3種耕作方式(密集型:N 80.1、P5.3 kg/hm2;粗放型:N31.4、P4.5 kg/hm2;有機(jī)型:N31.1、P2.3 kg/hm2)的環(huán)境影響區(qū)別后,發(fā)現(xiàn)粗放型和有機(jī)型比集約型化肥使用量更少,能源消耗量也更低[43]。
1.4 其他食品工業(yè)產(chǎn)品生命周期評(píng)價(jià)現(xiàn)狀
面包是歐美國(guó)家的主要食品之一。多個(gè)國(guó)家和地區(qū)研究人員運(yùn)用LCA方法評(píng)價(jià)面包加工的環(huán)境影響[44],評(píng)價(jià)范圍包括小麥種植方式(常規(guī)和有機(jī))、小麥磨粉工藝和面包生產(chǎn)流程(包裝工藝和清潔劑類(lèi)型),結(jié)果表明采用有機(jī)方式種植小麥、工業(yè)化磨粉和大型面包廠(chǎng)聯(lián)合生產(chǎn)面包為環(huán)境負(fù)擔(dān)最小的生產(chǎn)方式。烘烤和運(yùn)輸階段是面包生產(chǎn)中環(huán)境影響的最大環(huán)節(jié),烘烤階段環(huán)境因子為光氧化和能源消耗。
啤酒釀造也是LCA方法評(píng)價(jià)的重要研究對(duì)象之一。啤酒系統(tǒng)邊界不同可能導(dǎo)致最終結(jié)果差別很大。若啤酒邊界只考慮啤酒生產(chǎn)、運(yùn)輸、啤酒容器、廢物處理,環(huán)境影響只考慮溫室氣體排放量[45-47],啤酒生產(chǎn)過(guò)程的最大環(huán)境影響環(huán)節(jié)就為麥汁生產(chǎn),其次為過(guò)濾和包裝,最次為發(fā)酵和儲(chǔ)存[45]。擴(kuò)大系統(tǒng)邊界后,Koroneos等[46]確定啤酒瓶生產(chǎn)為最大環(huán)境影響環(huán)節(jié),其次為啤酒包裝和啤酒生產(chǎn)階段。Hospido等[47]發(fā)現(xiàn)啤酒生產(chǎn)、包裝和大麥?zhǔn)斋@與運(yùn)輸是最大能源消耗環(huán)節(jié)。任輝等[48]發(fā)現(xiàn)啤酒主要環(huán)境影響因子影響潛值依次為:富營(yíng)養(yǎng)化(0.061)、工業(yè)煙塵和粉塵(0.015)、固體廢棄物(0.003),建議通過(guò)廢水處理設(shè)施、改進(jìn)物料粉碎方式和回收利用廢硅藻土降低環(huán)境影響。
Roes等[49]評(píng)價(jià)了速食食品的環(huán)境影響,發(fā)現(xiàn)最大環(huán)境負(fù)荷環(huán)節(jié)為獲取食品原料和固體廢物處理環(huán)節(jié)。Zufia等[50]調(diào)查了番茄金槍魚(yú)環(huán)境影響,并提出改進(jìn)方法以減少潛在環(huán)境負(fù)擔(dān)。
1.5 包裝生命周期評(píng)價(jià)現(xiàn)狀
包裝能使食品與外界環(huán)境如氧氣、水分、光照和微生物等隔離,并為食品運(yùn)輸和儲(chǔ)存提供緩沖和保護(hù)作用。食品包裝是造成食品環(huán)境負(fù)擔(dān)的主要根源之一。提高食品包裝回收利用率,降低主包裝重量能降低環(huán)境負(fù)擔(dān)。Hospido等[47]研究表明玻璃瓶生產(chǎn)和運(yùn)輸造成的環(huán)境影響占全球包裝系統(tǒng)總量的1/3,回收再利用玻璃瓶能顯著降低環(huán)境負(fù)擔(dān)[51]。采用多層塑料袋代替金屬罐包裝小袋咖啡,雖然不利于包裝材料的回收,但對(duì)環(huán)境影響更小[52]。對(duì)比雞蛋兩種不同包裝后發(fā)現(xiàn),聚苯乙烯包裝產(chǎn)生煙霧、粉塵和環(huán)境酸化等不良環(huán)境影響,而再生包裝紙的不良環(huán)境影響為重金屬污染和產(chǎn)生致癌物質(zhì)[53]。Ross等[54]研究表明制定和實(shí)施塑料包裝回收和再利用政策可以產(chǎn)生顯著的環(huán)境效益。Mourad等[55]探討提高牛奶無(wú)菌包裝回收再利用可行性后發(fā)現(xiàn),當(dāng)回收率增加70%時(shí),其不良環(huán)境影響可降低48%。Hyde等[56]認(rèn)為食品和飲料行業(yè)的包裝原材料使用量可以減少12%。Humbert等[57]對(duì)比了玻璃瓶和塑料瓶包裝嬰兒食品在環(huán)境影響方面的區(qū)別,發(fā)現(xiàn)塑料瓶環(huán)境影響更小。Sonesson等[58]報(bào)道大量使用包裝材料給瑞典牛奶供應(yīng)鏈造成巨大環(huán)境壓力。
1.6 食品廢棄物生命周期評(píng)價(jià)研究
食品工業(yè)通常產(chǎn)生淤泥、有機(jī)污水和固體廢料。提高廢棄物利用率可以減少原材料使用量和水資源消耗量[59]。Ramjeawon[60]認(rèn)為把甘蔗糖廠(chǎng)廢水中的重污染水與冷凝水區(qū)分開(kāi)能降低廢水處理規(guī)模和費(fèi)用。Hirai等[61]運(yùn)用LCA方法評(píng)估了4種食品廢物處理方案(①焚燒;②生產(chǎn)生物燃料后焚燒;③生產(chǎn)生物燃料后堆肥;④直接堆肥)造成的環(huán)境影響區(qū)別,表明方案3潛在環(huán)境影響最小。Lundie等[62]研究表明在有氧操作處理食品廢物情況下,家庭堆肥對(duì)環(huán)境影響最小。焚燒已經(jīng)生物降解的固體廢物比直接焚燒食品工業(yè)廢棄物產(chǎn)生的不良環(huán)境影響更小[63],從源頭減少?gòu)U物或污染源對(duì)環(huán)境影響更小[64]。食品廢物處理方法與環(huán)境負(fù)擔(dān)密切相關(guān),采用食品廢物綜合管理系統(tǒng)能更好地降低環(huán)境影響。
2 結(jié)論
LCA方法能有效評(píng)價(jià)農(nóng)副產(chǎn)品和食品工業(yè)的環(huán)境影響狀況,研究表明通過(guò)變換生產(chǎn)、加工、包裝、銷(xiāo)售和消費(fèi)模式可以減少農(nóng)副產(chǎn)品和食品工業(yè)的環(huán)境負(fù)荷。預(yù)測(cè)或衡量農(nóng)副產(chǎn)品和食品工業(yè)的環(huán)境負(fù)荷,需要深入地了解研究系統(tǒng)范圍和應(yīng)用程序。LCA方法引入到農(nóng)副產(chǎn)品和食品工業(yè)評(píng)價(jià)中,將為具有環(huán)保意識(shí)的決策者、生產(chǎn)者、消費(fèi)者選擇環(huán)境友好型農(nóng)副產(chǎn)品和食品提供可靠的信息。
參考文獻(xiàn):
[1] 李 君,孫恢禮,吳園濤,等.海洋貝類(lèi)利用模式生命周期評(píng)價(jià)方法研究[J].熱帶海洋學(xué)報(bào),2007,26(4):70-75.
[2] V?魣ZQUEZ-ROWE I, MOREIRA M T, FEIJOO G. Life cycle assessment of fresh hake fillets captured by the Galician fleet in the Northern Stock[J]. Fisheries Research,2011,110(1):128-135.
[3] V?魣ZQUEZ-ROWE I, MOREIRA M T, FEIJOO G. Estimating global discards and their potential reduction for the Galician fishing fleet (NW Spain)[J]. Marine Policy,2011,35(2):140-147.
[4] LOZANO S, IRIBARREN D, MOREIRA M T, et al. Environmental impact efficiency in mussel cultivation[J]. Resources, Conservation and Recycling,2010,54(12):1269-1277.
[5] ZIEGLER F, EICHELSHEIM J L, EMANUELSSON A, et al. Life cycle assessment of southern pink shrimp products from Senegal [A]. DAVIS J. An Environmental Comparison between Artisanal Fisheries in the Casamace Region and a Trawl Fishery Based in Dakar[C]. Italy, Rome:Food and Agriculture Organization of the United Nations, SIK Report 789, 2009. 234-237.
[6] WILLIAMS A G, AUDSLEY E, SANDARS D L. Determining the EnvironmentaL Burdens and Resource Use in the Production of Agricultural and Horticultural Commodities[M]. England, London:Cranfield University and Defra,2006.
[7] CEDERBERG C, MATTSSON B. Life cycle assessment of milk production-a comparison of conventional and organic farming [J]. Journal of Cleaner Production,2000,8(1):49-60.
[8] THOMASSEN M A, CALKER K J, SMITS M C J, et al. Life cycle assessment of conventional and organic milk production in the Netherlands [J]. Agricultural Systems,2008,96(1-3):95-107.
[9] 秦鳳賢.生命周期評(píng)價(jià)在牛奶生產(chǎn)中的應(yīng)用研究[J]. 乳業(yè)科學(xué)與技術(shù),2006(5):224-226.
[10] BERLIN J, SONESSON U, TILLMAN A M. A life cycle based method to minimize environmental impact of dairy production through product sequencing [J]. Journal of Cleaner Production,2007,15(4):347-356.
[11] KAREN A B, JANZEN H H, SHANNAN M L, et al. Life cycle assessment of greenhouse gas emissions from beef production in western Canada: A case study [J]. Agricultural Systems,2010,103(6):371-379.
[12] PETERS G M, ROWLEY H V, WIEDEMANN S, et al. Red meat production in Australia: Life cycle assessment and comparison with overseas studies [J]. Environmental Science & Technology, 2010,44(4):1327-1332.
[13] NATHAN P, RICH P, REBECCA R. Comparative lifecycle environmental impacts of three beef production strategies in the Upper Midwestern United States [J]. Agricultural Systems, 2010,103(6):380-389.
[14] ERZINGER S, DUX D, ZIMMERMANN A, et al. LCA of animal products from different housing system in Switzerland: Relevance of feedstuffs, infrastructure and energy use [A]. HALBERG N. Proceedings of the Fourth International Conference on Life Cycle Assessment in the Agri-Food Sector [C]. Denmark, Horsens:Danish Institute of Agricultural Sciences,2003.55-63.
[15] N■EZ Y, FERMOSO J, GARCIA N, et al. Comparative life cycle assessment of beef, pork and ostrich meat: A critical point of view[J]. International Journal of Agricultural Resources, Governance and Ecology,2005,4(2):140-151.
[16] PORITOSH R, DAISUKE N, TAKAHIRO O, et al. A review of life cycle assessment (LCA) on some food products[J]. Journal of Food Engineering,2009,90(1):1-10.
[17] LEINONEN I, WILLIAMS A G, WISEMAN J, et al. Predicting the environmental impacts of chicken systems in the United Kingdom through a life cycle assessment: Egg production systems [J].Poultry Science,2012,91(1):26-40.
[18] FOSTER C, GREEN K, BLEDA M, et al. Environmental Impacts of Food Production and Consumption: A Final Report to the Department for Environment, Food and Rural Affairs [M]. England, London:Manchester Business School,2006. 15-18.
[19] BASSET-MENS C, VAN DER WERF H M J. Environmental assessment of contrasting pig farming systems in France [A]. HALBERG N. Proceedings of the Fourth International Conference on Life Cycle Assessment in the Agri-Food Sector [C]. Denmark, Bygholm: Danish Institute of Agricultural Sciences, 2003. 45-54.
[20] BASSET-MENS C, VAN DER WERF H M J. Scenario-based environmental assessment of farming systems: The case of pig production in France [J]. Agriculture Ecosystems and Environment,2005,105(1-2):127-144.
[21] ROY P, ORIKASA T, NEI D, et al. A comparative study on the life cycle of different types of meat [A]. HAUGEN T I. Proceedings of the Third LCA Society Research Symposium [C]. Japan,Nagoya:International House of Japan,2008.74-79.
[22] WIRSENIUS S, HEDENUS F, MOHLIN K. Greenhouse gas taxes on animal food products: Rationale, tax scheme and climate mitigation effects [J]. Climatic Change,2011,108(1-2):159-184.
[23] THOMAS N, DAVID D, OLIVIER H E, et al. Life cycle assessment of Swiss farming systems: I. Integrated and organic farming [J]. Agricultural Systems,2011,104(3):217-232.
[24] PHONG L T, BOER I J M, UDO H M J. Life cycle assessment of food production in integrated agriculture-aquaculture systems of the Mekong Delta[J]. Livestock Science,2011,139(1-2):80-90.
[25] BREILING M, TATSUO H, MATSUHASHI R. Contribution of Rice Production to Japanese Greenhouse Gas Emissions Applying Life Cycle Assessment as a Methodology [M]. Japan, Tokyo:University of Tokyo,1999.24-29.
[26] ROY P, SHIMIZU N, KIMURA T. Life cycle inventory analysis of rice produced by local processes[J]. Journal of the Japanese Society of Agricultural Machinery,2005,67(1):61-67.
[27] SAKAORAT K, WORANEE P, PHANIDA S, et al. Life cycle assessment of milled rice production: Case study in Thailand[J]. European Journal of Scientific Research,2009,30(2):195-203.
[28] WANG M X, XIA X F, ZHANG Q J, et al. Life cycle assessment of a rice production system in Taihu region, China [J]. International Journal of Sustainable Development & World Ecology,2010,17(2):157-161.
[29] ANDERSSON K, OHLSSON T, OLSSON P. Screening life cycle assessment (LCA) of tomato ketchup: A case study [J]. Journal of Cleaner Production,1998,6(3-4):277-288.
[30] NIAES. Report on the Research Project on Life Cycle Assessment for Environmentally Sustainable Agriculture [M]. Japan,Ibaraki:National Institute for Agro-Environmental Sciences, 2003.83-87.
[31] ANT?魷N A, MONTERO J I, MU?譙OZ P, et al. LCA and tomato production in Mediterranean greenhouses [J]. International Journal of Agricultural Resources Governance and Ecology,2005,4(2):102-112.
[32] WILLIAMS A G, AUDSLEY E, SANDARS D L. Determining the environmental burdens and resource use in the production of agricultural and horticultural commodities [A]. WILLIAMS A G. Main Report, Defra Research Project IS0205 [C].England,London:Defra,2006.177-189.
[33] SHIINA T, ROY P, OKADOME H, et al. Life cycle assessment of food supply chain: A case study for inclusion of quality change aspect[A]. JOHN P C, ATTILA E P. Proceedings of the 33rd United States and Japan Cooperative Program in Natural Resources (UJNR) [C]. America,Hawaii: Food and Agriculture Panel,2004. 211-214.
[34] ROY P, NEI D, OKADOME H, et al.Life cycle inventory analysis of fresh tomato distribution systems in Japan considering the quality aspect [J]. Journal of Food Engineering,2008,86(2):225-233.
[35] CARLSSON-KANYAMA A. Climate change and dietary choices-how can emissions of greenhouse gases from food consumption be reduced[J].Food Policy,1998,23(3-4):277-293.
[36] ANT?魷N A, CASTELLS F, MONTERO J I, et al. Comparison of toxicological impacts of integrated and chemical pest management in Mediterranean greenhouses [J]. Chemosphere,2004,54(8):1225-1235.
[37] MU?譙OZ P, ANT?魷N A, MONTERO J I, et al. Using LCA for the improvement of waste management in greenhouse tomato production[A]. HALBERG N. Proceedings of the Fourth International Conference on Life Cycle Assessment in the Agri-Food Sector [C]. Danmark,Horsens:Danish Institute of Agricultural Sciences, 2003. 205-209.
[38] ANT?魷N M A, CASTELLS F, MONTERO J I, et al. Most significant substances of LCA to Mediterranean greenhouse horticulture[A]. HALBERG N. Proceedings of the Fourth International Conference on Life Cycle Assessment in the Agri-Food Sector[C]. Danmark,Horsens: Danish Institute of Agricultural Sciences,2003.199-204.
[39] ANDERSSON K, OHLSSON T. Including environmental aspects in production development: A case study of tomato ketchup[J]. LWT-Food Science and Technology,1999,32(3):134-141.
[40] POINT E, TYEDMERS P, NAUGLER C. Life cycle environmental impacts of wine production and consumption in Nova Scotia, Canada [J]. Journal of Cleaner Production,2012,27:11-20.
[41] HUMBERT S, LOERINCIK Y, ROSSI V, et al. Life cycle assessment of spray dried soluble coffee and comparison with alternatives (drip filter and capsule espresso) [J]. Journal of Cleaner Production,2009,17(15):1351-1358.
[42] BENNETT R, PHIPPS R, STRANGE A, et al. Environmental and human health impacts of growing genetically modified herbicide-tolerant sugar beet: A life cycle assessment [J]. Plant Biotechnology Journal,2004,2(4):272-278.
[43] HASS G, WETTERICH F, K?魻PKE U. Comparing intensive, extensified and organic grassland farming in southern Germany by process life cycle assessment [J]. Agriculture, Ecosystems and Environment, 2001,83(1-2):43-53.
[44] BRASCHKAT J, PATYK A, QUIRIN M, et al. Life cycle assessment of bread production——a comparison of eight different scenarios[A]. HALBERG N. Proceedings of the Fourth International Conference on Life Cycle Assessment in the Agri-Food Sector[C]. Danmark,Horsens:Danish Institute of Agricultural Sciences,2003. 9-16.
[45] TAKAMOTO Y, MITANI Y, TAKASHIO M, et al. Life cycle inventory analysis of a beer production process[J]. Master Brewers Association of the Americas,2004,41(4):363-365.
[46] KORONEOS C, ROUMBAS G, GABARI Z, et al. Life cycle assessment of beer production in Greece[J]. Journal of Cleaner Production,2005,13(4):433-439.
[47] HOSPIDO A, MOREIRA M T, FEIJOO G. Environmental analysis of beer production [J]. International Journal of Agricultural Resources, Governance and Ecology,2005,4(2):152-162.
[48] 任 輝,楊印生,曹利江.啤酒生產(chǎn)生命周期評(píng)價(jià)研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2006,37(2):80-83.
[49] ROES A L, PATEL M K. Environmental assessment of a sugar cane bagasse food tray produced by roots biopack-results of a shortcut-life cycle assessment[J]. Journal of Biobased Materials and Bioenergy,2011,5(1):140-152.
[50] ZUFIA J, ARANA L. Life cycle assessment to eco-design food products: Industrial cooked dish case study [J]. Journal of Cleaner Production,2008,16(17):1915-1921.
[51] EKAVALL T, PERSON L, RYBERG A, et al. Life cycle assessment on packaging systems for beer and soft drinks (Environmental Project 399)[M]. Danmark,Copenhagen: The Danish Environmental Protection Agency, Ministry of Environment and Energy,1998.127-139.
[52] MONTE M D, PADOANO E, POZZETTO D. Alternative coffee packaging: An analysis from a life cycle point of view [J]. Journal of Food Engineering,2005,66(4):405-411.
[53] ZABANIOTOU A, KASSIDI E. Life cycle assessment applied to egg packaging made from polystyrene and recycled paper[J]. Journal of Cleaner Production,2003,11(5):549-559.
[54] ROSS S, EVANS D. The environmental effect of reusing and recycling a plastic-based packaging system[J]. Journal of Cleaner Production,2003,11(5):561-571.
[55] MOURAD A L, GARCIA E E C, VILELA G B, et al. Influence of recycling rate increase of aseptic carton for long-life milk on GWP reduction[J]. Resources, Conservation and Recycling,2008,52(4):678-689.
[56] HYDE K, SMITH A, SMITH M, et al. The challenge of waste minimisation in the food and drink industry: A demonstration project in East Anglia, UK[J]. Journal of Cleaner Production,2001,9(1):57-64.
[57] HUMBERT S, ROSSI V, MARGNI M, et al. Life cycle assessment of two baby food packaging alternatives: Glass jars vs. plastic pots[J]. The International Journal of Life Cycle Assessment,2009,14(2):95-106.
[58] SONESSON U, BERLIN J. Environmental impact of future milk supply chains in Sweden: A scenario study[J]. Journal of Cleaner Production,2003,11(3):253-266.
[59] ANTONIO D, PILAR C, FATIMA K, et al.The sustainability of communicative packaging concepts in the food supply chain. A case study: Part 1. Life cycle assessment[J]. The International Journal of Life Cycle Assessment,2011,16(2):168-177.
[60] RAMJEAWON T. Cleaner production in Mauritian cane-sugar factories [J]. Journal of Cleaner Production,2000,8(6):503-510.
[61] HIRAI Y, MURATA M, SAKAIS, et al. Life cycle assessment for foodwaste recycling and management [A]. Proceedings of the Fourth International Conference on EcoBalance [C]. Japan,Tsukuba:Society of Non-Traditional Technology, 2000.313-325.
[62] LUNDIE S, PETERS G M. Life cycle assessment of food waste management options [J]. Journal of Cleaner Production,2005,13(3):275-286.
[63] NYLAND C A, MODAHL I S, RAADAL H L, et al. Application of LCA as a decision-making tool for waste management systems[J]. The International Journal of Life Cycle Assessment,2003,8(6):331-336.
[64] MCCOMAS C, MCKINLEY D. Reduction of phosphorus and other pollutants from industrial dischargers using pollution prevention[J]. Journal of Cleaner Production,2008,16(6):727-733.