孫勇
【教學(xué)目標(biāo)】
1.教學(xué)知識(shí)點(diǎn)
(1)等腰三角形的概念。
(2)等腰三角形的性質(zhì)。
(3)等腰三角形的概念及性質(zhì)的應(yīng)用。
2.能力訓(xùn)練要求
(1)經(jīng)歷作(畫(huà))出等腰三角形的過(guò)程,從軸對(duì)稱的角度去體會(huì)等腰三角形的特點(diǎn)。
(2)探索并掌握等腰三角形的性質(zhì)。
【教學(xué)重點(diǎn)】
1.等腰三角形的概念及性質(zhì)。
2.等腰三角形性質(zhì)的應(yīng)用。
【教學(xué)難點(diǎn)】
等腰三角形三線合一的性質(zhì)的理解及其應(yīng)用。
【教學(xué)方法】
探究歸納法。
【教學(xué)過(guò)程】
Ⅰ.提出問(wèn)題,創(chuàng)設(shè)情境
1.復(fù)習(xí)軸對(duì)稱和軸對(duì)稱圖形的知識(shí)。
2.三角形是軸對(duì)稱圖形嗎?什么樣的三角形是軸對(duì)稱圖形?
Ⅱ.導(dǎo)入新課,合作探究
滿足軸對(duì)稱圖形條件的三角形是軸對(duì)稱圖形——等腰三角形。
1.你會(huì)畫(huà)等腰三角形嗎?學(xué)生動(dòng)手,教師適當(dāng)提示,并演示。
2.等腰三角形有什么性質(zhì)?(提示:可從以下幾個(gè)方面探索:A.等腰三角形是軸對(duì)稱圖形嗎?請(qǐng)找出它的對(duì)稱軸.B.等腰三角形的兩底角有什么關(guān)系?C.頂角的平分線所在的直線是等腰三角形的對(duì)稱軸嗎?D.底邊上的中線所在的直線是等腰三角形的對(duì)稱軸嗎?底邊上的高所在的直線呢?)
經(jīng)過(guò)學(xué)生的探索、歸納及提示,我們得出等腰三角形的性質(zhì)。
等腰三角形的性質(zhì):
(1)等腰三角形的兩個(gè)底角相等(簡(jiǎn)寫(xiě)成“等邊對(duì)等角”)。
(2)等腰三角形的頂角平分線、底邊上的中線底邊上的高互相重合(通常稱作“三線合一”)。
你會(huì)證明這些性質(zhì)嗎?教師引導(dǎo)學(xué)生進(jìn)行規(guī)范的證明。
看我大顯身手:
1.如圖,在△ABC中,AB=AC,點(diǎn)D在AC上,且BD=BC=AD,求△ABC各角的度數(shù)。
2.在等腰△ABC中,AB=AC,∠B=75°,求∠A和∠C的度數(shù)。
3.在等腰三角形中,已知兩邊的長(zhǎng)為3 cm和4 cm,求它的周長(zhǎng)。
Ⅲ.隨堂練習(xí)
1.課本P51練習(xí)1、2、3。
2.解答下列各題。
(1)在等腰三角形中,有一個(gè)角為75°,求其余兩角的度數(shù)。
(2)在等腰三角形中,已知兩邊的長(zhǎng)為4 cm和5 cm,求它的周長(zhǎng)。
(3)在等腰三角形中,已知兩邊的長(zhǎng)為8 cm和3 cm,求它的周長(zhǎng)。
Ⅳ.課堂小結(jié)
1.知識(shí)小結(jié)
等腰三角形的定義、等腰三角形的性質(zhì)。
2.學(xué)習(xí)技能小結(jié)
探究學(xué)習(xí)、合作學(xué)習(xí)、實(shí)踐能力等。
Ⅴ.課后作業(yè)
1.課本P56第1,4,7題。
2.預(yù)習(xí)課本P51~P53。
3.預(yù)習(xí)等腰三角形的判定學(xué)案。
(作者單位 湖北省十堰市第五中學(xué))