馬曉春,尹曉晗,欒正剛
中國(guó)醫(yī)科大學(xué)附屬第一醫(yī)院重癥醫(yī)學(xué)科,遼寧沈陽110001
膿毒癥是由感染引發(fā)的全身炎癥反應(yīng)綜合征(the systemic inflammatory response syndrome,SIRS)[1],通常認(rèn)為是由機(jī)體過度炎癥反應(yīng)或炎癥失控所致。膿毒癥最常累及胃腸道。由于腸道有效循環(huán)血量減少、腸攝取氧和利用氧的能力降低、腸腔細(xì)菌過度繁殖和腸道抗原呈遞細(xì)胞激活等原因,導(dǎo)致腸黏膜屏障受損,腸道細(xì)菌及內(nèi)毒素移位,進(jìn)入循環(huán)系統(tǒng),同時(shí)免疫紊亂及炎癥因子信號(hào)表達(dá)、腸細(xì)胞凋亡,使SIRS加劇、失控,嚴(yán)重時(shí)誘發(fā)多器官功能障礙綜合征(multiple organ dysfunction syndrome,MODS),甚至危及患者生命。血紅素加氧酶-1(heme oxygenase-1,HO-1)作為一種應(yīng)激蛋白,不僅本身具有抗炎、抗氧化、抗凋亡作用,其降解血紅素產(chǎn)生的CO、膽紅素、二價(jià)鐵亦有抗氧化作用。HO-1對(duì)多種組織器官的細(xì)胞保護(hù)作用成為近年來的研究熱點(diǎn)之一。本文對(duì)近年來有關(guān)HO-1的生物學(xué)特性與表達(dá)調(diào)控及其對(duì)膿毒癥患者胃腸道功能保護(hù)作用的研究進(jìn)展作一綜述。
1.1 HO-1的生物學(xué)特性 HO是血紅素代謝過程中的限速酶,HO-1為其誘導(dǎo)型同工酶,由Wise等[2]首先在體外實(shí)驗(yàn)中發(fā)現(xiàn)。HO-1亦被稱為熱休克蛋白32(heat shock protein 32,HSP 32),相對(duì)分子質(zhì)量32 000,染色體定位22q12。HO-1降解由衰老或破損的紅細(xì)胞釋放出的血紅素,首先生成膽綠素、一氧化碳和二價(jià)鐵,膽綠素在膽綠素還原酶作用下轉(zhuǎn)換成膽紅素,二價(jià)鐵誘導(dǎo)并參與了體內(nèi)鐵蛋白的合成。HO-1本身及其代謝產(chǎn)物均具有抗氧化作用。第一例有關(guān)人類HO-1基因缺失的報(bào)道證實(shí)了這一觀點(diǎn):HO-1基因缺失男孩不能正常生長(zhǎng)發(fā)育,并伴有貧血、組織性鐵沉積、白血病,并且對(duì)氧化損傷的敏感性增加[3]。
1.2 HO-1的誘導(dǎo)產(chǎn)生與基因表達(dá)調(diào)控 HO-1在大多數(shù)組織內(nèi)呈低水平表達(dá),底物血紅素的濃度升高或者多種因素刺激如NO、細(xì)胞因子、重金屬、熱休克、紫外線、缺血再灌注損傷及生長(zhǎng)因子等,都可以使HO-1的基因表達(dá)上調(diào)。
HO-1基因含有4個(gè)內(nèi)含子和5個(gè)外顯子,5'非轉(zhuǎn)錄區(qū)有不同的作用元件,包括應(yīng)激反應(yīng)元件、金屬反應(yīng)元件、抗氧化反應(yīng)元件、熱休克反應(yīng)元件和血紅素反應(yīng)元件。在小鼠HO-1轉(zhuǎn)錄起始位點(diǎn)上游有一段重要的10 bp增強(qiáng)子序列,即應(yīng)激反應(yīng)元件(the stress-responsive elements,StRE),其結(jié)構(gòu)和功能與 Maf反應(yīng)元件(the Maf-response element,MARF)非常相似[4]。轉(zhuǎn)錄因子AP-1家族的結(jié)合位點(diǎn)正位于這段序列,該家族中NF-E 2相關(guān)因子(nuclear factor erythroid 2-related factor-2,Nrf 2)在 HO-1的轉(zhuǎn)錄調(diào)節(jié)中扮演重要的角色。Nrf 2中含有一段轉(zhuǎn)錄活化功能區(qū),起到上調(diào)HO-1轉(zhuǎn)錄水平的作用,而Bach 1(BTB and CNC homolog 1)與Nrf 2競(jìng)爭(zhēng)性抑制 HO-1 的轉(zhuǎn)錄[5,6]。正常情況下,位于胞質(zhì)的Nrf 2與Keap1(Kelch-like ECH associating protein 1)相互作用,經(jīng)泛素-蛋白酶體途徑迅速降解,胞核內(nèi)低濃度 Nrf 2使得 HO-1基因呈低表達(dá)狀態(tài)[7]。氧化應(yīng)激時(shí),各種刺激因子使Nrf 2轉(zhuǎn)移至胞核內(nèi),Nrf 2轉(zhuǎn)錄活化功能區(qū)磷酸化并與StRE結(jié)合,使HO-1基因表達(dá)上調(diào),與此同時(shí),Keap 1半胱氨酸殘端氧化發(fā)生構(gòu)象改變,使得 Nrf 2更容易與其解離[8,9]。
正常生理情況下,Bach1與MARF形成雜二聚體,與HO-1 5'非轉(zhuǎn)錄區(qū)的增強(qiáng)子中的MARE序列結(jié)合,抑制HO-1的轉(zhuǎn)錄。當(dāng)體內(nèi)膽紅素過多時(shí),膽紅素與Bach 1結(jié)合,共同游離至細(xì)胞核外,使得Nrf 2與MARE區(qū)域結(jié)合,HO-1轉(zhuǎn)錄上調(diào)。此外,膽紅素還可以促進(jìn)Nrf 2向胞核內(nèi)移位,增強(qiáng)Nrf 2的穩(wěn)定性[10]。
Panchenko等[11]的實(shí)驗(yàn)證明,氧化應(yīng)激時(shí),HO-1的誘導(dǎo)表達(dá)是在轉(zhuǎn)錄水平的,而缺氧狀態(tài)下,不僅在轉(zhuǎn)錄水平上低氧誘導(dǎo)因子(hypoxia-inducible factor-1,HIF-1)與HO-1基因相應(yīng)片段結(jié)合誘導(dǎo)其基因表達(dá),在轉(zhuǎn)錄后水平由于缺氧延長(zhǎng)HO-1 mRNA的半衰期,HO-1的基因表達(dá)同樣上調(diào)。
2.1 HO-1在胃腸道的表達(dá) 生理狀態(tài)下,消化道中主要表達(dá)HO同工酶中的HO-2。當(dāng)出現(xiàn)缺血缺氧等刺激時(shí),正常不分泌HO-1的腸道開始分泌HO-1,起到細(xì)胞保護(hù)作用[12]。
LPS誘導(dǎo)的膿毒癥大鼠模型[13]研究證實(shí),LPS誘導(dǎo)組中,十二指腸和空腸段腸黏膜上皮細(xì)胞中HO-1 mRNA和蛋白的表達(dá)水平明顯高于回腸和結(jié)腸段的表達(dá),回腸和結(jié)腸段的TNF-α mRNA的表達(dá)則明顯高于十二指腸和空腸段。當(dāng)給予HO-1抑制劑時(shí),十二指腸和空腸段的TNF-α mRNA表達(dá)上調(diào)、氧化應(yīng)激反應(yīng)加重。實(shí)驗(yàn)結(jié)果提示,膿毒癥時(shí),HO-1的表達(dá)主要位于十二指腸和空腸,并且在保護(hù)腸黏膜免受應(yīng)激損傷中扮演重要的角色。失血性休克大鼠模型實(shí)驗(yàn)[14]也證實(shí)了上述研究。
通過對(duì)潰瘍性結(jié)腸炎患者的結(jié)腸標(biāo)本中HO-1 mRNA及相應(yīng)蛋白的研究發(fā)現(xiàn),炎性結(jié)腸黏膜中HO-1 mRNA和蛋白表達(dá)較對(duì)照組明顯升高,提示HO-1蛋白的調(diào)控主要在轉(zhuǎn)錄水平上[10]。相關(guān)的組織學(xué)研究還發(fā)現(xiàn),炎性腸黏膜中HO-1的表達(dá)主要源自于結(jié)腸黏膜下層中的單核細(xì)胞,部分可以轉(zhuǎn)錄HO-1的細(xì)胞CD 68表達(dá)陽性。Maestrelli等[15]的相關(guān)研究表明,肺泡腔中絕大多數(shù)HO-1陽性表達(dá)的細(xì)胞CD 68表達(dá)陽性。Yoshiki等[16]的實(shí)驗(yàn)結(jié)果證實(shí),HO-1的表達(dá)為CD 68陽性的巨噬細(xì)胞。因此認(rèn)為HO-1的表達(dá)主要在各組織器官中的巨噬細(xì)胞。然而,另外一些有關(guān)人類結(jié)腸黏膜的研究發(fā)現(xiàn),炎性細(xì)胞和上皮細(xì)胞都存在HO-1的表達(dá)[17]。
最近研究發(fā)現(xiàn),腸道中的主要能量來源—谷氨酰胺能誘導(dǎo)大鼠和人類腸道黏膜HO-1表達(dá)[18,19]。給予谷氨酰胺治療后,HO-1的表達(dá)主要來自絨毛上皮細(xì)胞、隱窩和肌層。大鼠的缺血再灌注損傷模型實(shí)驗(yàn)證實(shí),谷氨酰胺對(duì)胃腸道的保護(hù)作用與HO-1的產(chǎn)生相關(guān)[20]。在人類十二指腸中,HO-1幾乎持續(xù)表達(dá)于各型腸道上皮細(xì)胞和約10%的絨毛核心固有層細(xì)胞,而深層黏膜則很少表達(dá)。谷氨酰胺促進(jìn)腸上皮細(xì)胞和固有層細(xì)胞HO-1的表達(dá)上調(diào),HO-1 mRNA水平同樣升高。結(jié)果表明,谷氨酰胺通過對(duì)HO-1表達(dá)的調(diào)節(jié)對(duì)腸道損傷起保護(hù)作用,同時(shí)減少促炎因子釋放。
2.2 HO-1在胃部疾病的作用 實(shí)驗(yàn)證實(shí),多種胃黏膜保護(hù)劑或抑酸劑的作用機(jī)制是通過上調(diào)HO-1表達(dá)發(fā)揮作用的。Shibuya等[21]實(shí)驗(yàn)發(fā)現(xiàn),胃黏膜保護(hù)劑索法酮(sofalcone)作用于小鼠胃黏膜上皮細(xì)胞RGM-1,活化Nrf 2,上調(diào)HO-1表達(dá),促進(jìn)血管內(nèi)皮因子產(chǎn)生,從而達(dá)到保護(hù)胃黏膜的作用。Takagi等[22]的實(shí)驗(yàn)證明,H+/K+-ATP酶抑制劑—蘭索拉唑(lansoprazole)通過上調(diào)大鼠胃上皮細(xì)胞HO-1的表達(dá),起到抗炎的作用。蘭索拉唑使Nrf 2的活化、磷酸化、向胞核內(nèi)移位并與氧化的Keap 1解離,從而誘導(dǎo)HO-1產(chǎn)生。聚普瑞鋅(polaprezinc)、澤蘭林素(enpatilin)和氯胺酮的相關(guān)研究也證明了其對(duì)胃黏膜的保護(hù)作用是通過調(diào)節(jié)HO-1而發(fā)揮。Uc等[23]對(duì)吲哚美辛誘導(dǎo)的胃潰瘍大鼠研究發(fā)現(xiàn),預(yù)先給予HO-1誘導(dǎo)劑鈷原卟啉(Cobalt protoporphyrin,CoPP)治療的大鼠,MPO活性、TNF-α和 IL-6水平顯著降低,也證實(shí)HO-1在非甾體類抗炎藥介導(dǎo)的胃黏膜損傷中起保護(hù)作用。
除了HO-1本身具有細(xì)胞保護(hù)作用外,其代謝產(chǎn)物CO還具有調(diào)節(jié)胃部平滑肌緊張性的作用。Choi等[24]通過對(duì)糖尿病胃輕癱模型小鼠的研究發(fā)現(xiàn),在Cajal間質(zhì)細(xì)胞,由于HO-1表達(dá)水平下降,氧化應(yīng)激反應(yīng)加重,Kit基因表達(dá)缺失,而CD 206(+)M2巨噬細(xì)胞通過表達(dá)HO-1能夠減緩糖尿病所致的胃排空延遲。
2.3 HO-1在腸道疾病中的作用 多項(xiàng)實(shí)驗(yàn)證實(shí),對(duì)于由缺血再灌注損傷、脂多糖等造成的小腸黏膜損傷,HO-1誘導(dǎo)劑可發(fā)揮抗炎和細(xì)胞保護(hù)作用。Pang等[25]利用分泌生物活性HO-1的乳酸乳球菌(heme oxygenase-1-secreting Lactococcus lactis LLHO-1)治療脂多糖誘導(dǎo)的腸黏膜損傷的大鼠,同給予野生菌株治療的大鼠對(duì)照,經(jīng)過具有HO-1生物活性的乳酸乳球菌菌株治療的大鼠,黏膜損傷、髓過氧化物酶活性(myeloperoxidase,MPO)、細(xì)菌移位和TNF-α水平顯著降低。這個(gè)實(shí)驗(yàn)組的另一項(xiàng)關(guān)于失血性休克造成腸黏膜損傷大鼠模型的研究也發(fā)現(xiàn)了類似的改變,而給予HO-1抑制劑鋅原卟啉(Zinc protoporphyrin,ZnPP)時(shí),這些保護(hù)作用被部分抵消[26]。
Yoda等[27]的實(shí)驗(yàn)發(fā)現(xiàn),蘭索拉唑可以通過抑制MPO活性減輕吲哚美辛造成的腸道損傷,HO-1蛋白的表達(dá)在此時(shí)也顯著上調(diào),但當(dāng)預(yù)先給予HO-1抑制劑錫卟啉(tin protoporphyrin,SnPP)時(shí),誘導(dǎo)型一氧化氮合酶(inducible nitric oxide synthase,iNOS)mRNA表達(dá)上調(diào),腸道黏膜損傷加重,蘭索拉唑的保護(hù)作用被部分逆轉(zhuǎn)。當(dāng)預(yù)先給予CO的供體一氧化碳釋放分子(carbon monoxide-releasing molecule,CORM)時(shí),iNOS mRNA的表達(dá)和腸道損傷情況顯著減輕。結(jié)果提示,蘭索拉唑?qū)δc道的保護(hù)作用是通過上調(diào)腸黏膜HO-1/CO的產(chǎn)生,從而抑制iNOS的表達(dá)實(shí)現(xiàn)的。由此可見,HO-1的細(xì)胞保護(hù)作用部分是依賴CO發(fā)揮的。CO亦是膿毒癥時(shí)機(jī)體主動(dòng)防御應(yīng)答時(shí)HO-1代謝產(chǎn)物中重要的調(diào)節(jié)因子。Chung等[28]證實(shí),靶向作用于血管和腸道的成纖維細(xì)胞和平滑肌細(xì)胞的HO-1可改善糞腸球菌相關(guān)的膿毒癥的病死率,這一作用通過增強(qiáng)吞噬作用和內(nèi)源性抗炎反應(yīng)發(fā)揮,外源性給予野生型大鼠CORM可以降低膿毒癥的HO-1缺失型大鼠的致死率。同時(shí),研究發(fā)現(xiàn),CO釋放因子可以改善腸梗阻手術(shù)的預(yù)后和肌層的炎癥,這種保護(hù)作用部分是通過p 38通路誘導(dǎo)HO-1產(chǎn)生,同時(shí)減少ERK 1/2活化而發(fā)揮。
Wang 等[29]利用 2,4,6-三硝基苯磺酸(trinitrobenzene sulfonic acid,TNBS)誘導(dǎo)的大鼠腸道炎癥模型研究發(fā)現(xiàn),TNBS誘導(dǎo)后,HO活性及HO-1基因表達(dá)顯著升高,而給予SnPP后HO-1活性下降并出現(xiàn)結(jié)腸損傷。實(shí)驗(yàn)結(jié)果提示,TNBS灌腸誘導(dǎo)的結(jié)腸損傷模型中,HO-1起到保護(hù)作用。通過對(duì)葡聚糖硫酸鈉(dextran sulfate sodium,DSS)誘導(dǎo)的結(jié)腸炎小鼠的研究發(fā)現(xiàn),炎癥結(jié)腸組織中HO-1 mRNA水平顯著升高,并且HO-2 mRNA持續(xù)表達(dá)。給予ZnPP后,腸道炎癥加重,相關(guān)疾病指數(shù)上升[30]。
多項(xiàng)研究表明,通過應(yīng)用HO-1誘導(dǎo)劑使HO-1表達(dá)上調(diào),能顯著減輕DSS或TNBS造成的腸道損傷[31-34]。HO-1 誘導(dǎo)劑促進(jìn)腸黏膜表達(dá) HO-1,緩解黏膜損傷,通過抑制NF-κB依賴性促炎細(xì)胞因子而減少炎性細(xì)胞浸潤(rùn)。Zhong等[31]利用 DSS構(gòu)建結(jié)腸炎模型發(fā)現(xiàn),氯高鐵血紅素顯著提高CD4+CD 25+Foxp3+Treg細(xì)胞的濃度,減少IL-17和TH 17相關(guān)細(xì)胞因子的表達(dá)。Brusko等[35]試驗(yàn)證明,HO-1通過調(diào)節(jié)Treg細(xì)胞功能而發(fā)揮免疫調(diào)節(jié)作用,抗原呈遞細(xì)胞中的HO-1的活性對(duì)調(diào)節(jié)性T細(xì)胞的抑制作用至關(guān)重要。
胃腸道炎癥中HO-1表達(dá)上調(diào)的分子機(jī)制和生物學(xué)意義還未完全闡明,但研究表明,HO-1本身及其降解產(chǎn)物,尤其是CO在代謝過程中可發(fā)揮顯著抗氧化和細(xì)胞保護(hù)作用。同時(shí),HO-1對(duì)機(jī)體是否存在負(fù)面效應(yīng)仍需進(jìn)一步探究??煞駥⒄T導(dǎo)HO-1表達(dá)的方法應(yīng)用于臨床,如何通過安全而有效的方法誘導(dǎo)腸道內(nèi)上皮細(xì)胞HO-1或其代謝產(chǎn)物的表達(dá),使靶器官或血清中HO-1蛋白濃度迅速上升,預(yù)防和治療膿毒癥患者胃腸功能障礙,降低并發(fā)癥發(fā)生及致死率,將是未來的研究方向。
[1]Matsuda N,Hattori Y.Systemic inflammatory response syndrome(SIRS):molecular pathophysiology and gene therapy[J].J Pharmacol Sci,2006,101(3):189 -198.
[2]Wise C D,Drabkin D L.Degradation of haemoglobin and hemin to biliverdin by a new cell-free system obtained from the hemophagous organ of dog placents[J].Fed Proc,1964,23:189.
[3]Poss K D,Tonegawa S.Heme oxygenase 1 is required for mammalian iron reutilization[J].Proc Natl Acad Sci U S A,1997,94(20):10919-10924.
[4]Alam J,Cook J L.How many transcription factors does it take to turn on the heme oxygenase-1 gene?[J].Am J Respir Cell Mol Biol,2007,36(2):166 - 174.
[5]Igarashi K,Sun J.The heme-Bach1 pathway in the regulation of oxidative stress response and erythroid differentiation[J].Antioxid Redox Signal,2006,8(1-2):107 -118.
[6]Sun J J,Piao S,Cha Y N,et al.Taurine chloramine activates Nrf2,increases HO-1 expression and protects cells from death caused by hydrogen peroxide[J].J Clin Biochem Nutr,2009,45(1):37-43.
[7]Cho H Y,Reddy S P,Kleeberger S R.Nrf2 defends the lung from oxidative stress[J].Antioxid Redox Signal,2006,8(1 - 2):76-87.
[8]Bloom D A,Jaiswal A K.Phosphorylation of Nrf2 at Ser40 by protein kinase C in response to antioxidants leads to the release of Nrf2 from INrf2,but is not required for Nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response element-mediated NAD(P)H:quinone oxidoreductase-1 gene expression[J].J Biol Chem,2003,278(45):44675-44682.
[9]Yamamoto T,Suzuki T,Kobayashi A,et al.Physiological significance of reactive cysteine residues of Keap1 in determining Nrf2 activity[J].Mol Cell Biol,2008,28(8):2758 - 2770.
[10]Naito Y,Takagi T,Uchiyama K,et al.Heme oxygenase-1:a novel therapeutic target for gastrointestinal diseases[J].J Clin Biochem Nutr,2011,48(2):126 -133.
[11]Panchenko Maria V,F(xiàn)arber H W,Korn J H.Induction of heme oxygenase-1 by hypoxia and free radicals in human dermal fibroblasts[J].Am J Physiol Cell Physiol,2000,278(1):C92-C101.
[12]Nakao A,Kimizuka K,Stolz D B,et al.Protective effect of carbon monoxide inhalation for cold-preserved small intestinal grafts[J].Surgery,2003,134(2):285 -292.
[13]Fujii H,Takahashi T,Nakahira K,et al.Protective role of heme oxygenase-1 in the intestinal tissue injury in an experimental model of sepsis[J].Crit Care Med,2003,31(3):893 -902.
[14]Inoue K,Takahashi T,Uehara K,et al.Protective role of heme oxygenase 1 in the intestinal tissue injury in hemorrhagic shock in rats[J].Shock,2008,29(2):252 - 261.
[15]Maestrelli P,El M A,De Fina O,et al.Increased expression of heme oxygenase(HO)-1 in alveolar spaces and HO-2 in alveolar walls of smokers[J].Am J Respir Crit Care Med,2001,164(8 Pt 1):1508-1513.
[16]Yoshiki N,Kubota T,Aso T.Identification of heme oxygenase in human endometrium[J].J Clin Endocrinol Metab,2001,86(10):5033-5038.
[17]Paul G,Bataille F,Obermeier F,et al.Analysis of intestinal haem-oxygenase-1(HO-1)in clinical and experimental colitis[J].Clin Exp Immunol,2005,140(3):547 -555.
[18]Tamaki T,Konoeda Y,Yasuhara M,et al.Glutamine-induced heme oxygenase-1 protects intestines and hearts from warm ischemic injury[J].Transplant Proc,1999,31(1 -2):1018 -1019.
[19]Ameho C K,Adjei A A,Harrison E K,et al.Prophylactic effect of dietary glutamine supplementation on interleukin 8 and tumour necrosis factor alpha production in trinitrobenzene sulphonic acid induced colitis[J].Gut,1997,41(4):487 -493.
[20]Umeda K,Takahashi T,Inoue K,et al.Prevention of hemorrhagic shock-induced intestinal tissue injury by glutamine via heme oxygenase-1 induction[J].Shock,2009,31(1):40 -49.
[21]Shibuya A,Onda K,Kawahara H,et al.Sofalcone,a gastric mucosa protective agent,increases vascular endothelial growth factor via the Nrf2-heme-oxygenase-1 dependent pathway in gastric epithelial cells[J].Biochem Biophys Res Commun,2010,398(3):581-584.
[22]Takagi T,Naito Y,Okada H,et al.Lansoprazole,a proton pump inhibitor,mediates anti-inflammatory effect in gastric mucosal cells through the induction of heme oxygenase-1 via activation of NF-E2-related factor 2 and oxidation of kelch-like ECH-associating protein 1[J].J Pharmacol Exp Ther,2009,331(1):255-264.
[23]Uc A,Zhu X,Wagner B A,et al.Heme oxygenase-1 is protective against nonsteroidal anti-inflammatory drug-induced gastric ulcers[J].J Pediatr Gastroenterol Nutr,2012,54(4):471-476.
[24]Choi K M,Gibbons S J,Nguyen T V,et al.Heme oxygenase-1 protects interstitial cells of Cajal from oxidative stress and reverses diabetic gastroparesis[J].Gastroenterology,2008,135(6):2055-2064.
[25]Pang Q,Ji Y,Li Y,et al.Intragastric administration with recombinant Lactococcus lactis producing heme oxygenase-1 prevents lipopolysaccharide-induced endotoxemia in rats[J].FEMS Microbiol Lett,2008,283(1):62 - 68.
[26]Pang Q F,Ji Y,Bermudez-Humaran L G,et al.Protective effects of a heme oxygenase-1-secreting Lactococcus lactis on mucosal injury induced by hemorrhagic shock in rats[J].J Surg Res,2009,153(1):39 -45.
[27]Yoda Y,Amagase K,Kato S,et al.Prevention by lansoprazole,a proton pump inhibitor,of indomethacin-induced small intestinal ulceration in rats through induction of heme oxygenase-1[J].J Physiol Pharmacol,2010,61(3):287 -294.
[28]Chung S W,Kwon M Y,Kang Y H,et al.Transforming growth factor-beta1 suppression of endotoxin-induced heme oxygenase-1 in macrophages involves activation of Smad2 and downregulation of Ets-2[J].J Cell Physiol,2012,227(1):351 -360.
[29]Wang W P,Guo X,Koo M W,et al.Protective role of heme oxygenase-1 on trinitrobenzene sulfonic acid-induced colitis in rats[J].Am J Physiol Gastrointest Liver Physiol,2001,281(2):G586-G594.
[30]Naito Y,Takagi T,Yoshikawa T.Heme oxygenase-1:a new therapeutic target for inflammatory bowel disease[J].Aliment Pharmacol Ther,2004,20 Suppl 1:177 -184.
[31]Zhong W,Xia Z,Hinrichs D,et al.Hemin exerts multiple protective mechanisms and attenuates dextran sulfate sodium-induced colitis[J].J Pediatr Gastroenterol Nutr,2010,50(2):132-139.
[32]Sun X,Suzuki K,Nagata M,et al.Rectal administration of tranilast ameliorated acute colitis in mice through increased expression of heme oxygenase-1[J].Pathol Int,2010,60(2):93 -101.
[33]Lee S H,Sohn D H,Jin X Y,et al.2',4',6'-tris(methoxymethoxy)chalcone protects against trinitrobenzene sulfonic acid-induced colitis and blocks tumor necrosis factor-alpha-induced intestinal epithelial inflammation via heme oxygenase 1-dependent and independent pathways[J].Biochem Pharmacol,2007,74(6):870-880.
[34]Erbil Y,Giris M,Abbasoglu S D,et al.Effect of heme oxygenase-1 induction by octreotide on TNBS-induced colitis[J].J Gastroenterol Hepatol,2007,22(11):1852 -1858.
[35]Brusko T M,Wasserfall C H,Agarwal A,et al.An integral role for heme oxygenase-1 and carbon monoxide in maintaining peripheral tolerance by CD4+CD25+regulatory T cells[J].J Immunol,2005,174(9):5181 -5186.