王 剛,唐志共,呂治國,姜 華,趙榮娟
(中國空氣動力研究與發(fā)展中心,四川綿陽 621000)
激波風(fēng)洞氣動力測量試驗是一項復(fù)雜的空氣動力試驗,從模型的設(shè)計與加工,天平的設(shè)計、加工、制作與校準(zhǔn),激波風(fēng)洞試驗運行與控制,數(shù)據(jù)采集與處理等過程到獲得試驗數(shù)據(jù),每一個環(huán)節(jié)都會受到各種誤差源的影響。試驗方法完善與否、流場品質(zhì)、測試儀器的選擇以及試驗人員的主觀因素都會帶來不同程度的誤差[1]。本研究的主要目的是量化激波風(fēng)洞氣動力測量試驗結(jié)果的不確定度,從誤差源頭分析試驗數(shù)據(jù)的可信度,監(jiān)測數(shù)據(jù)形成過程,據(jù)此采取相應(yīng)的措施,降低激波風(fēng)洞氣動力測量試驗不確定度,為高超聲速飛行器氣動力試驗提供高品質(zhì)的數(shù)據(jù)。
“誤差”表示試驗測量值與真值之間的差異。為了便于量化分析和比較,采用北大西洋公約組織[2]和美國AIAA[1]推薦的風(fēng)洞試驗不確定度的概念來評估誤差,應(yīng)用偏離極限B與精度極限P來描述數(shù)據(jù)不確定度。偏離極限表示測量值與真值的偏離程度;精度極限表示相同條件下,以相同的裝置重復(fù)測量結(jié)果的分散程度[3-5]。r是由i個被測自變量Xi確定的結(jié)果r=r(X1…Xi)(見圖1),Xi的每個測量系統(tǒng)都受到許多誤差源的影響,誤差通過數(shù)據(jù)表達(dá)式的傳遞,形成試驗結(jié)果r的偏離極限和精度極限,用公式表示為[6]:
其中,B'm和B'n是Xm和Xn測量值來自相同誤差源的偏離極限,假定它們是完全相關(guān)的。
圖1 不確定度評估方法概述[6]Fig.1 The evaluating method for uncertainty
試驗結(jié)果取決于過程,不確定度分析的第一步是梳理試驗數(shù)據(jù)從準(zhǔn)備到獲得結(jié)果的整個數(shù)據(jù)流過程可能引進的誤差。激波風(fēng)洞試驗的誤差源主要分為試驗技術(shù)相關(guān)類、模型相關(guān)類、風(fēng)洞相關(guān)類和測試技術(shù)相關(guān)類等,激波風(fēng)洞氣動力測量試驗的誤差源主要分為以下 4 個方面[7]:
(a)試驗技術(shù)相關(guān)類:試驗方案的選擇、模型設(shè)計與安裝、流向角修正、邊界層模擬等。對激波風(fēng)洞而言,在有效試驗時間內(nèi),模型產(chǎn)生的激波、膨脹波經(jīng)洞壁反射形成的反射波打不到模型上,就可以認(rèn)為模型不受洞壁干擾的影響[8],本文未考慮洞壁干擾的影響。
(b)模型相關(guān)類:模型的尺寸、角度誤差,模型的剛度、重量,連接部位的臺階,表面光潔度,模型與天平的相對位置等。
(c)風(fēng)洞相關(guān)類:驅(qū)動氣體及試驗氣體純度,驅(qū)動段和被驅(qū)動段充氣壓力控制,膜片質(zhì)量,破膜方式,環(huán)境差異(如溫度差異等),試驗段真空度,噴管的加工及安裝精度,迎角機構(gòu)定位精度,迎角機構(gòu)的隔振措施等。
(d)測試技術(shù)相關(guān)類:天平的加工與制作,壓力傳感器的質(zhì)量,校準(zhǔn)的砝碼精度,慣性補償方法及數(shù)據(jù)處理過程(流場校測處理,天平校準(zhǔn)公式,試驗數(shù)據(jù)處理)等。
激波風(fēng)洞氣動力測量試驗的誤差源有很多項,關(guān)注控制數(shù)據(jù)質(zhì)量的主要誤差源,可以簡化不確定度分析工作。這里忽略對試驗結(jié)果影響較小的誤差源,開展激波風(fēng)洞氣動力測量試驗不確定度計算工作。
應(yīng)用上述方法計算在CARDCΦ0.6m激波風(fēng)洞開展的B-2標(biāo)模三分量氣動力測量試驗流場參數(shù)與氣動力系數(shù)的不確定度,其中馬赫數(shù)Ma=10、迎角α=10°。
在Φ0.6m激波風(fēng)洞的氣動力試驗中,總壓p0、皮托壓力pt、氣動力與力矩分量、激波管驅(qū)動段與被驅(qū)動段初始溫度以及運動激波速度是通過儀器、儀表直接測得的。流場壓力p、動壓q、馬赫數(shù)Ma則根據(jù)以總壓p0和皮托壓力pt為自變量的表達(dá)式求解得到(公式(4)~(6))。激波風(fēng)洞中,被驅(qū)動段末端反射激波后氣體基本處于靜止?fàn)顟B(tài),可以認(rèn)為反射激波后溫度T5與總溫T0同值,壓力p5與總壓p0同值(試驗中使用壓電式壓力傳感器,p0為p5測量值與低壓段初始壓力p1之和),雷諾數(shù)Re不僅與p0和pt有關(guān),被驅(qū)動段激波馬赫數(shù)Ms和靜溫T1也會將各自的誤差傳遞給Re數(shù)。
其中:
表1 測試系統(tǒng)的不確定度Table 1 The uncertainty of test system
表2 激波風(fēng)洞試驗不確定度結(jié)果Table 2 The uncertainty results in shock tunnel
本文中考慮的激波風(fēng)洞氣動力測量試驗數(shù)據(jù)不確定度的主要誤差源分別為p0、pt和氣動力各分量。在其它獨立參數(shù)不變的情況下研究主要誤差源的改變對流場參數(shù)和氣動力系數(shù)不確定度的影響,辨析對試驗數(shù)據(jù)不確定度起主要作用的基本參數(shù)。
壓力傳感器的校準(zhǔn)結(jié)果、數(shù)據(jù)采集系統(tǒng)、信號線的質(zhì)量以及環(huán)境溫度等因素都可能影響p0測量值的不確定度;pt通過壓電式壓力傳感器測量,不僅壓力傳感器、數(shù)據(jù)采集系統(tǒng)等會引進誤差,pt的數(shù)據(jù)處理過程也會引進誤差。分別改變B_p0與B_pt的值(B_p0表示總壓偏離極限,P_p0表示總壓精度極限,U_p0表示總壓的不確定度,下同),計算流場參數(shù)和氣動力系數(shù)不確定度的變化,結(jié)果見圖2、圖3(對每個參數(shù)做無量綱化,坐標(biāo)為不確定度與測量值或量程的比值)。
圖2 總壓偏離極限對流場參數(shù)不確定度和氣動力系數(shù)不確定度的影響Fig.2 The effect of bias limit of total pressure on uncertainty
U_M和U_Re受B_p0變化的影響不大,B_p0從原始值增大至10.00倍(取兩位有效數(shù)字,下同),二者只分別增大至1.14倍和1.05倍;隨著B_p0增大,U_q增大至2.41倍;U_p受B_p0變化的影響比U_q更顯著,因為從B_p0的第二個點開始,B_p0就已經(jīng)大于P_p0,所以隨著B_p0增大,U_p基本呈線性增大至3.96倍。
圖3 皮托壓力偏離極限對流場參數(shù)不確定度和氣動力系數(shù)不確定度的影響Fig.3 The effect of bias limit of pitot pressure on uncertainty
U_M隨B_pt的增大變化顯著,B_pt增大至10.00倍,U_M增大至7.83倍;U_q與U_p受B_pt變化影響較U_M略小些,二者分別增大至6.96倍和5.97倍;U_Re受變化的影響更小些,其值隨B_pt變化增大至4.71倍。
相比較而言,B_pt比B_p0對流場參數(shù)不確定度的影響更大。
改變B_pt和B_p0兩種情形都有以下特點:三分量氣動力系數(shù)不確定度由于q的影響,基本與U_q的變化趨勢一致,因此,B_pt比B_p0對三分量氣動力系數(shù)不確定度的影響更大。U_K和U_Xcp不受動壓變化的影響。
天平靜態(tài)校準(zhǔn)時各項誤差源(如天平校準(zhǔn)安裝精度、數(shù)據(jù)采集處理系統(tǒng)質(zhì)量、砝碼的質(zhì)量等級等)是影響天平分量精度極限的主要因素。以軸向力為例,分析P_A變化對氣動力系數(shù)不確定度的影響。
如圖4所示,U_CA和U_K隨P_A增大而增大,P_A增大至10.00倍,二者分別增大至1.63倍和2.79倍;由于未考慮天平校準(zhǔn)時干擾項對不確定度的影響,P_A對 U_CN、U_Cm0和 U_Xcp沒有影響。
P_A變化對U_CA的影響,不如B_pt和B_p0變化對U_CA的影響顯著。應(yīng)用同樣的方法,計算P_N變化對U_CN的影響、P_Mz變化對U_Mz的影響(限于篇幅,未列出其數(shù)據(jù)與圖表),可以得到類似的結(jié)論:從一定程度上講,提高流場校測質(zhì)量、改善皮托壓力和總壓等的測量系統(tǒng)和環(huán)節(jié),更容易降低激波風(fēng)洞氣動力測量結(jié)果的不確定度。
圖4 軸向力精度極限對氣動力系數(shù)不確定度的影響Fig.4 The effect of precision limit of axial force on uncertainty
天平的加工、制作水平、以及校準(zhǔn)和測量系統(tǒng)是決定氣動力偏離極限的主要因素。以法向力為例,分析B_N變化對氣動力系數(shù)不確定度的影響,結(jié)果見圖5。
圖5 法向力偏離極限對氣動力系數(shù)不確定度的影響Fig.5 The effect of bias limit of normal force on uncertainty
因為P_N=0.209,B_N的值從第二點開始即可認(rèn)為遠(yuǎn)遠(yuǎn)大于P_N,所以U_CN和U_Cm0隨B_N變化基本呈線性增大,B_N增大至10.00倍,U_CN和U_Cm0分別增大至3.42和3.70倍。
U_K受B_N的影響相對要顯著一些,其值增大至6.78倍,比受軸向力影響更大,這主要是因為試驗狀態(tài)都處于小迎角狀態(tài),K的表達(dá)式中“N”的貢獻(xiàn)更大。
U_Xcp隨著B_N的增大先減小再變大,因為決定U_Xcp的主要項為“N”項和“N-Mz”交叉項,且“N-Mz”交叉項為負(fù)值,B_N增大至8.00倍時,“N-Mz”交叉項的絕對值大于“N”項,此時U_Xcp為極小值,其數(shù)值約為0.38倍,隨著B_N繼續(xù)增大,“N”項的值大于"N-Mz"交叉項,U_Xcp隨B_N增大而增大。直到B_N增大至約14倍時,U_Xcp的值與初始值大體相等。
本文描述的不確定度計算方法應(yīng)用于激波風(fēng)洞氣動力試驗數(shù)據(jù)分析,主要的B-2標(biāo)模測力試驗結(jié)果都落在不確定度范圍之內(nèi)。通過單因素對不確定度影響程度的分析研究,可得到以下結(jié)論:
(1)動壓和靜壓不確定度受總壓偏離極限的影響比較顯著,馬赫數(shù)和雷諾數(shù)不確定度受總壓偏離極限的影響相對較??;
(2)馬赫數(shù)、雷諾數(shù)、動壓、靜壓不確定度受皮托壓力偏離極限的影響比較顯著,皮托壓力偏離極限比總壓偏離極限對流場參數(shù)的影響更大;
(3)提高流場校測質(zhì)量、改善皮托壓力和總壓等測量環(huán)節(jié),更易于降低激波風(fēng)洞氣動力測量結(jié)果的不確定度;
(4)壓心系數(shù)不確定度隨法向力偏離極限變化呈現(xiàn)先減小后增大的變化趨勢;
(5)法向力偏離極限對升阻比不確定度的影響超過軸向力偏離極限。
[1] Fluid Dynamics Panel Working Group 15.Quality assessment for wind tunnel testing[R].AGARD-AR-304.
[2] Assessment of experimental uncertainty with application to wind tunnel testing[R].AIAA S-071A-1999,1999.
[3] COLEMAN H W,STEELE WG.Experimentation and uncertainty analysis for engineers[M].2nd edition.New York:John Wiley&Sons,Inc.,1999.
[4] Guide to the expression of uncertainty in measurement[M].ISO,1st edition,ISBN 92-67-10188-9,1995.
[5] Accuracy of measurement methods and results[M].ISO 5725,1994 and 1998,prepared by Tc69/SC6.
[6] 李建強,張平,王義慶.風(fēng)洞數(shù)據(jù)不確定度分析方法[J].空氣動力學(xué)學(xué)報,2000,18(3):300-306.
[7] 呂治國,李國君,李中華,等.激波風(fēng)洞測力試驗不確定度分析[J].江漢大學(xué)學(xué)報,2010,38(1):33-36.
[8] 惲起麟.風(fēng)洞試驗數(shù)據(jù)的誤差與修正[M].北京:國防工業(yè)出版社,1996.