李 明,馬家辰,李紅梅,熊行創(chuàng),江 游,黃澤建,方 向
(1.中國(guó)計(jì)量科學(xué)研究院,北京 100013;2.哈爾濱工業(yè)大學(xué)威海分校,山東 威海 264209)
靜電場(chǎng)軌道阱質(zhì)譜的進(jìn)展
李 明1,馬家辰2,李紅梅1,熊行創(chuàng)1,江 游1,黃澤建1,方 向1
(1.中國(guó)計(jì)量科學(xué)研究院,北京 100013;2.哈爾濱工業(yè)大學(xué)威海分校,山東 威海 264209)
靜電場(chǎng)軌道阱是近年來新興的一種質(zhì)譜質(zhì)量分析器,它利用離子在特定靜電場(chǎng)中運(yùn)動(dòng)頻率的不同對(duì)阱內(nèi)離子進(jìn)行質(zhì)量分析,由于其具有較高的分辨率和質(zhì)量準(zhǔn)確度,被廣泛應(yīng)用于化學(xué)、生物學(xué)、醫(yī)學(xué)等領(lǐng)域。本工作對(duì)靜電場(chǎng)軌道阱質(zhì)譜的形成過程和基本原理進(jìn)行了詳細(xì)介紹;對(duì)軌道阱質(zhì)譜在蛋白質(zhì)組學(xué)、代謝組學(xué)等方面的應(yīng)用做了簡(jiǎn)要綜述;對(duì)軌道阱質(zhì)譜與常壓電離技術(shù)聯(lián)用的最新進(jìn)展進(jìn)行了評(píng)述,并指出電噴霧萃取電離、低溫等離子體探針等常壓質(zhì)譜技術(shù)與軌道阱質(zhì)譜的聯(lián)用將在蛋白質(zhì)分析、化學(xué)合成、化學(xué)反應(yīng)機(jī)理研究等諸多領(lǐng)域發(fā)揮重要作用,旨在推動(dòng)我國(guó)相關(guān)質(zhì)譜儀器的國(guó)產(chǎn)化進(jìn)程。
軌道阱;質(zhì)譜;常壓離子化;蛋白質(zhì)組學(xué);代謝組學(xué)
質(zhì)譜技術(shù)具有分析速度快、動(dòng)態(tài)范圍寬、靈敏度高等優(yōu)點(diǎn),被廣泛應(yīng)用于國(guó)防、航天、海洋、醫(yī)藥、生物、化學(xué)、化工、食品安全、環(huán)境保護(hù)等諸多領(lǐng)域[1];近年來,諸如蛋白質(zhì)組學(xué)、代謝組學(xué)等領(lǐng)域的樣品復(fù)雜性推動(dòng)了質(zhì)譜技術(shù)和質(zhì)譜儀器的快速發(fā)展,已有人試圖將質(zhì)譜用于蛋白質(zhì)芯片的制備和在線表面化學(xué)反應(yīng)等相關(guān)研究[2-6]。質(zhì)譜對(duì)分子質(zhì)量測(cè)量的準(zhǔn)確度達(dá)到10-6時(shí),可以由分子質(zhì)量推測(cè)被測(cè)物的可能分子式[7]。通常質(zhì)譜儀按照質(zhì)量分析器的類型可分為6大類:四極桿質(zhì)譜、磁質(zhì)譜、離子阱質(zhì)譜、飛行時(shí)間質(zhì)譜、傅里葉變換離子回旋共振質(zhì)譜(FT-ICR MS)、軌道阱質(zhì)譜(Orbitrap)等。離子回旋共振質(zhì)譜的質(zhì)量準(zhǔn)確度可高達(dá)10-6級(jí)[8];飛行時(shí)間質(zhì)譜的質(zhì)量準(zhǔn)確度可達(dá)2×10-6~5×10-6級(jí)[9-10];四極離子阱質(zhì)譜的質(zhì)量準(zhǔn)確度最高能夠達(dá)到2×10-5[11]級(jí)。然而,離子回旋共振需在較高磁場(chǎng)下進(jìn)行,高磁場(chǎng)由液氦提供的超低溫環(huán)境(接近絕對(duì)零度)中的超導(dǎo)電流獲得,儀器操作復(fù)雜且維護(hù)費(fèi)用昂貴,每年液氦的費(fèi)用高達(dá)10萬元以上;飛行時(shí)間質(zhì)譜對(duì)電場(chǎng)的穩(wěn)定性要求極高,儀器的質(zhì)量準(zhǔn)確度受周圍環(huán)境(如溫度等)影響較大;而軌道阱質(zhì)譜具有較高的分辨率,且操作簡(jiǎn)單、易于維護(hù),被廣泛應(yīng)用于蛋白質(zhì)組學(xué)、代謝組學(xué)等領(lǐng)域。我國(guó)的科學(xué)儀器研發(fā)工作者已在飛行時(shí)間質(zhì)譜[12]、四極桿[13]和離子阱質(zhì)譜[14-15]方面取得了諸多豐碩成果,而基于軌道阱的質(zhì)譜儀器研發(fā)工作鮮有報(bào)道。本工作擬對(duì)軌道阱質(zhì)譜的工作原理和最新進(jìn)展進(jìn)行綜述,旨在推動(dòng)我國(guó)質(zhì)譜儀器國(guó)產(chǎn)化進(jìn)程,打破高端科學(xué)儀器長(zhǎng)期依賴進(jìn)口的現(xiàn)狀。
1.1軌道阱的形成
軌道阱質(zhì)量分析器是在早期的Kingdon阱[16]基礎(chǔ)上發(fā)展起來的。在Kingdon阱中,利用靜電場(chǎng)對(duì)離子進(jìn)行存儲(chǔ),結(jié)構(gòu)示于圖1。將絲陰極同軸放入兩邊配有端蓋電極的圓柱形陽極。加在絲陰極和圓柱陽極上的直流電壓產(chǎn)生徑向電勢(shì):
Φ=Alnr+B
(1)
其中,r為徑向坐標(biāo),A和B是在給定電壓情況下的兩個(gè)常數(shù)。離子可以在阱內(nèi)直接產(chǎn)生或在阱外產(chǎn)生后從垂直于絲電極的方向被引入阱內(nèi),離子在阱內(nèi)特定軌道上做圍繞絲電極的旋轉(zhuǎn)運(yùn)動(dòng),而加在端蓋電極上的推斥電壓使離子在軸向保持穩(wěn)定。Kingdon阱被用于分子束[17]和離子光譜的研究[18-19]。單電荷的分子離子能夠在Kingdon阱中存活幾秒鐘。
圖1 Kingdon阱連接TOF質(zhì)譜的示意圖[20]Fig.1 Schematic of Kingdon trap coupled wih a TOF
1981年Knight[21]改變了Kingdon阱的外電極形狀,除了徑向的對(duì)數(shù)項(xiàng),Knight增加了軸向的四極項(xiàng)。在四極離子阱中的四極電勢(shì)為:
(2)
Knight阱電勢(shì)可近似用式(3)來表示:
(3)
這里,r和z代表圓柱坐標(biāo)系的變量(電勢(shì)的對(duì)稱平面處z=0),A和B是與阱形狀和電壓相關(guān)的參數(shù)。同Kingdon阱一樣,Knight阱中的離子在徑向上受到外電極與中間電極間產(chǎn)生的對(duì)數(shù)電勢(shì)的限制,在軸向上受四極電勢(shì)的限制,因此離子在z方向上做諧振蕩。Knight阱被用來監(jiān)測(cè)脈沖激光消融獲得的離子,離子從外電極z=0的切口處被引入阱中,可通過兩種方式對(duì)阱中的離子進(jìn)行監(jiān)測(cè):1) 離子流在軸向上隨時(shí)間減??;2) 在絲電極上施加脈沖正電壓,并在徑向上收集檢測(cè)離子。也有其他人對(duì)Kingdon阱進(jìn)行改進(jìn),例如Mcilraith[22]采用兩個(gè)絲電極作為內(nèi)電極;Blümel[23]在DC電壓上加一AC電壓以提高離子捕獲效率。然而,Kingdon阱一直被用于離子的儲(chǔ)存,并沒有用做質(zhì)譜的質(zhì)量分析器。
在Kingdon阱的基礎(chǔ)上,Makarov[24]發(fā)明了新的質(zhì)量分析器,即軌道阱,其結(jié)構(gòu)圖示于圖2。
圖2 軌道阱質(zhì)量分析器示意圖Fig.2 Schematic of Orbitrap analyzer
軌道阱可視為四極離子阱的變形,不同的是,軌道阱使用靜電場(chǎng),而四極離子阱使用射頻電場(chǎng)[14]。軌道阱在軸向上產(chǎn)生的電勢(shì)可由式(4)表示:
(4)
這里,r和z代表圓柱坐標(biāo)系的變量,k為場(chǎng)曲率,Rm為特性半徑。穩(wěn)定離子的運(yùn)動(dòng)軌跡包括圍繞絲電極的軌道運(yùn)動(dòng)和z方向的振蕩。從式(4)可看出,獨(dú)特的電極形狀產(chǎn)生的靜電場(chǎng)不存在r和z的交叉項(xiàng)。因此,在z方向上存在獨(dú)特的四極場(chǎng)。離子在z方向上的運(yùn)動(dòng)與運(yùn)動(dòng)半徑r和相位φ完全無關(guān)。離子的質(zhì)荷比(m/z)只與離子在z方向上的運(yùn)動(dòng)頻率相關(guān),即:
(5)
與傅里葉變換離子回旋共振質(zhì)譜[25]類似,軌道阱采用影像電流法[26]對(duì)阱內(nèi)離子進(jìn)行檢測(cè),通過傅里葉變換將得到的時(shí)域信號(hào)轉(zhuǎn)換為頻域信號(hào),而離子的運(yùn)動(dòng)頻率與離子的質(zhì)荷比相關(guān),從而可得到樣品的質(zhì)譜圖。盡管離子的徑向運(yùn)動(dòng)頻率和角頻率也與質(zhì)量相關(guān),而軸向頻率與離子能量和離子的空間位置完全無關(guān),因此檢測(cè)時(shí)使用軸向頻率。離子的運(yùn)動(dòng)頻率與離子能量無關(guān),所以軌道阱具有高分辨率和高質(zhì)量準(zhǔn)確度等優(yōu)點(diǎn)。由于阱電勢(shì)與質(zhì)荷比無關(guān),并且具有比FT-ICR和Paul離子阱更大的阱體積,軌道阱在高質(zhì)量端具有很高的空間電荷儲(chǔ)存能力,因此軌道阱具有較高的質(zhì)量范圍。
目前,軌道阱質(zhì)量分析器已被賽默飛世爾公司成功商品化[27],推出多款基于軌道阱技術(shù)的質(zhì)譜儀器。例如,Q Exactive 質(zhì)譜儀實(shí)現(xiàn)了四極桿的目標(biāo)離子選擇性能與高分辨、高準(zhǔn)確度的軌道阱檢測(cè)技術(shù)相結(jié)合;LTQ Orbitrap XL和LTQ Orbitrap Velos將線性離子阱與軌道阱聯(lián)用,多級(jí)碎裂技術(shù)能夠?qū)Ψ治鑫锾峁┳罴呀Y(jié)構(gòu)表征。此外,商品化的軌道阱質(zhì)譜在進(jìn)行串聯(lián)質(zhì)譜分析時(shí),除了碰撞誘導(dǎo)解離技術(shù)(CID),還可選擇使用更高能量碰撞誘導(dǎo)解離(HCD)以及電子轉(zhuǎn)移解離(ETD),可應(yīng)用于復(fù)雜體系目標(biāo)物的定性研究。
1.2離子在靜電場(chǎng)軌道阱中的運(yùn)動(dòng)
1.2.1離子的捕獲 與其他線性離子阱類似,離子進(jìn)入軌道阱之前先進(jìn)入用于離子存儲(chǔ)的四極阱,在四極阱內(nèi)與中性氣體發(fā)生多次碰撞以降低離子能量,然后緩慢(20~50 ms)升高四極電勢(shì),當(dāng)控制離子引出的離子門被打開后,離子獲得進(jìn)行離子注入和進(jìn)入軌道運(yùn)動(dòng)的必要能量。
離子被引入軌道阱后,阱電場(chǎng)強(qiáng)度逐漸增加,離子隨場(chǎng)強(qiáng)增加的運(yùn)動(dòng)情況示于圖3[7]。在離子到達(dá)對(duì)面電極之前,增加阱電場(chǎng)是為了避免離子與絲電極發(fā)生碰撞,并通過擠壓離子軌跡,使更多的新離子(高質(zhì)荷比)被注入阱內(nèi)。當(dāng)所有離子都進(jìn)入阱內(nèi)后,調(diào)節(jié)絲電極的電壓為一固定值,隨即進(jìn)行影像電流檢測(cè)。場(chǎng)強(qiáng)增加的時(shí)間取決于分析物的質(zhì)量范圍,通常為20~100 ms。
1.2.2離子在軌道阱中的運(yùn)動(dòng) 離子圍繞絲電極的旋轉(zhuǎn)運(yùn)動(dòng)盡管與質(zhì)量分析沒有關(guān)系,但也同樣重要,因?yàn)楸仨氃趶较蛏蠈?duì)離子進(jìn)行限制,才能使離子在軌道阱中穩(wěn)定存在。離子繞絲電極的旋轉(zhuǎn)運(yùn)動(dòng)與離子的動(dòng)能有關(guān),可將其比作360 °靜電場(chǎng)分析器,其運(yùn)動(dòng)軌跡可用式(6)描述:
r=2eV/eE
(6)
這里,r為離子軌跡半徑,eV是離子動(dòng)能,eE是離子所受電場(chǎng)力。從式(6)可看出,離子軌跡半徑與離子質(zhì)量無關(guān),只與離子動(dòng)能有關(guān)。因此,在離子被注入軌道阱之前,仔細(xì)調(diào)節(jié)離子的能量是質(zhì)量分析順利進(jìn)行的關(guān)鍵。
圖3 軌道阱中離子隨場(chǎng)強(qiáng)增加被壓縮的運(yùn)動(dòng)情況Fig.3 The motion of ions in Orbitrap as the field strength is increased
1.2.3軸向運(yùn)動(dòng)和離子檢測(cè) 軌道阱采用影像電流檢測(cè)器[26]對(duì)阱內(nèi)離子進(jìn)行檢測(cè)。對(duì)于給定質(zhì)荷比的離子,其軸向頻率與離子的初始參數(shù)完全無關(guān),而徑向頻率和旋轉(zhuǎn)頻率與初始半徑和離子能量有關(guān)。因此,相同質(zhì)荷比的離子能夠沿z軸方向以同一頻率連續(xù)振蕩幾十次甚至幾百次;與之相反,離子的徑向運(yùn)動(dòng)和旋轉(zhuǎn)運(yùn)動(dòng)的頻率因離子初始參數(shù)不同而有所變化。在振蕩50~100次后,離子徑向運(yùn)動(dòng)和旋轉(zhuǎn)運(yùn)動(dòng)產(chǎn)生的影像電流分別被各自相反方向的影像電流所抵消,因此,徑向運(yùn)動(dòng)頻率和旋轉(zhuǎn)運(yùn)動(dòng)頻率不會(huì)在譜圖中出現(xiàn)。另一方面,軸向振蕩會(huì)保持不變,產(chǎn)生的影像電流信號(hào)差分放大后被檢測(cè)。由于軌道阱形狀的瑕疵、離子與少量中性分子的碰撞、空間電荷效應(yīng)等因素,軸向影像電流最終也會(huì)逐漸消失。
理論上,軌道阱也可采用電子倍增器作為檢測(cè)器。Makarov[24]提出在絲電極的靜電場(chǎng)上加一RF電壓,以改變阱內(nèi)離子在軸向和徑向所受電場(chǎng)力強(qiáng)度。此時(shí),離子徑向運(yùn)動(dòng)方程變得非常復(fù)雜,而軸向符合Mathieu方程[14],可在質(zhì)量選擇不穩(wěn)定模式下將離子從軸向引出并獲得信號(hào)。
1.3影響軌道阱性能的因素
1.3.1質(zhì)譜分辨率 通常四極質(zhì)譜的分辨率為0.6~0.8 u,離子回旋共振質(zhì)譜的分辨率為百萬,軌道阱質(zhì)譜的分辨率雖略低于離子回旋共振質(zhì)譜,也可高達(dá)幾十萬。電場(chǎng)缺陷引起的交叉項(xiàng)和非諧振效應(yīng)是影響軌道阱質(zhì)譜分辨率的重要因素。電場(chǎng)缺陷主要由以下因素產(chǎn)生[28]:電場(chǎng)形狀的缺陷,如離子注入的狹縫等;機(jī)械加工的精度;高壓電源的穩(wěn)定性。軌道阱的分辨能力隨質(zhì)量的增大而減弱,因?yàn)榇筚|(zhì)量的離子與背景氣體的碰撞截面增大,因此,對(duì)蛋白等高質(zhì)量化合物進(jìn)行高分辨測(cè)量時(shí),超高真空非常重要。另外,增加檢測(cè)時(shí)間,也可提高軌道阱質(zhì)譜的分辨率。
1.3.2質(zhì)量準(zhǔn)確度 質(zhì)量準(zhǔn)確度依賴于儀器對(duì)相鄰質(zhì)譜峰的分辨能力,因此影響分辨率的因素同樣會(huì)影響質(zhì)量準(zhǔn)確度。一些其他因素也會(huì)影響質(zhì)量準(zhǔn)確度,如空間電荷效應(yīng)、離子注入時(shí)初始位置的微小差別、微弱的電場(chǎng)交叉項(xiàng)等。優(yōu)化儀器參數(shù)后,軌道阱的質(zhì)量準(zhǔn)確度很容易達(dá)到2×10-6~5×10-6。選擇合適的信噪比、使用內(nèi)標(biāo)的情況下,質(zhì)量準(zhǔn)確度可達(dá)到1×10-6[29]。在使用外標(biāo)情況下,由于絲電極的散粒噪聲、熱敏感性、以及高壓電源輸出的微小變化都會(huì)影響測(cè)量的質(zhì)量準(zhǔn)確度,這些因素產(chǎn)生的質(zhì)量誤差比空間電荷效應(yīng)產(chǎn)生的誤差要大很多[30]。為獲取最佳分辨能力和質(zhì)量準(zhǔn)確度,商品化儀器配置的高壓電源都經(jīng)過熱校準(zhǔn),能夠在20 h內(nèi)穩(wěn)定工作。在使用外標(biāo)校正的情況下,軌道阱的質(zhì)量誤差可控制在5×10-6以內(nèi)。
高性能的質(zhì)譜儀器能夠在諸多領(lǐng)域發(fā)揮重要作用,例如,高效液相色譜的保留時(shí)間、串聯(lián)質(zhì)譜信息與準(zhǔn)確質(zhì)量測(cè)量結(jié)合能夠減少肽的候選物,有利于得到被測(cè)物的元素組成,這些能力可提供蛋白質(zhì)翻譯后修飾等信息。商品化的軌道阱質(zhì)譜具有較好的離子傳輸效率,因此具有較高的靈敏度,加上前面提到的高質(zhì)量準(zhǔn)確度和高分辨率等優(yōu)點(diǎn),軌道阱被廣泛應(yīng)用于食品安全[31-33]、法庭科學(xué)[34-35]、臨床醫(yī)學(xué)[36]、脂質(zhì)組學(xué)[37]、蛋白質(zhì)組學(xué)[38-45]、代謝組學(xué)[46-50]等領(lǐng)域。例如,軌道阱質(zhì)譜被用于蔬菜和水果中農(nóng)藥殘留的檢測(cè)[31-32];軌道阱質(zhì)譜與納升液相色譜聯(lián)用,用于尿液中違禁藥物的檢測(cè)[36];Jang等[39]采用高分辨LTQ-Orbitrap完成了人血漿中葡萄球菌脂磷壁酸結(jié)合蛋白的鑒定;Marie等[40]采用碰撞誘導(dǎo)解離技術(shù)、高能量碰撞誘導(dǎo)解離以及電子轉(zhuǎn)移解離等多種碎裂技術(shù)并結(jié)合Mascot和PEAKS DB軟件進(jìn)行搜索,成功完成了軟體動(dòng)物殼中低含量肽的分析和鑒定;軌道阱質(zhì)譜與親水相互作用色譜聯(lián)用,應(yīng)用于人體尿液代謝組學(xué)的研究,在人類尿液中檢出近千種代謝產(chǎn)物[44];高效液相色譜與軌道阱質(zhì)譜被用于何首烏中活性成分的研究,提供了一種對(duì)中藥的低豐度代謝產(chǎn)物進(jìn)行快速檢測(cè)的技術(shù)手段[47]。
近年來發(fā)展起來的常壓質(zhì)譜技術(shù)[51]能夠?qū)?fù)雜基體樣品進(jìn)行直接分析,無需萃取、色譜分離等樣品處理。由于未經(jīng)處理的樣品成分復(fù)雜,將這些常壓離子化方法與高性能質(zhì)量分析器耦合對(duì)準(zhǔn)確分析被測(cè)物的化學(xué)組成至關(guān)重要。
Hu等[52]將軌道阱質(zhì)譜與電噴霧解吸電離技術(shù)(desorption electrospray ionization, DESI)耦合,并用于肽和藥物中有效成分的檢測(cè),分析時(shí)間小于1 s,分辨率達(dá)6萬,使用VVK肽做內(nèi)標(biāo),對(duì)克敏能藥片的有效成分進(jìn)行檢測(cè)時(shí),質(zhì)量準(zhǔn)確度高達(dá)1×10-6。Mcewen等[53]將大氣壓固體分析探針(atmospheric solid analysis probe, ASAP)與軌道阱聯(lián)用,用于分析玉蜀黍黑粉菌(玉蜀黍黑穗病病原體)中麥角固醇的濃度;Zhang等[54]將低溫等離子體探針(low temperature probe, LTP)與軌道阱聯(lián)用,用于細(xì)菌樣品中脂肪酸乙酯的直接檢測(cè),利用軌道阱的高質(zhì)量準(zhǔn)確度和串聯(lián)質(zhì)譜信息,對(duì)脂肪酸乙酯的種類進(jìn)行鑒別,并結(jié)合主成分分析等數(shù)據(jù)處理方法對(duì)不同細(xì)菌進(jìn)行區(qū)分,能夠很容易區(qū)分革蘭氏陽性和革蘭氏陰性細(xì)菌;Edison等[55]將實(shí)時(shí)直接分析技術(shù)(direct analysis in real time, DART)與軌道阱聯(lián)用,用于葡萄、蘋果、桔子等水果表面殺蟲劑的快速檢測(cè);Cooks等[56]將DESI與軌道阱聯(lián)用,在正負(fù)離子模式下,分析了甜葉菊中主要成分二萜苷類化合物,通過精確質(zhì)量測(cè)量和串聯(lián)質(zhì)譜信息對(duì)其進(jìn)行確證,并在全掃描模式下,對(duì)其進(jìn)行半定量測(cè)量。在定量分析方面,Vaclavik等[57]將DART與軌道阱聯(lián)用,使用基體標(biāo)物或同位素內(nèi)標(biāo)技術(shù),對(duì)麥片中多種霉菌毒素進(jìn)行準(zhǔn)確定量分析,同位素稀釋方法的回收率為100%~108%,重現(xiàn)性5.4%~6.9%;基于基體匹配校準(zhǔn),回收率為84%~118%,重現(xiàn)性RSD為7.9%~12.0%。
LTP曾被用于化學(xué)反應(yīng)研究,例如苯的還原[58],將LTP與軌道阱聯(lián)用將有利于反應(yīng)產(chǎn)物和反應(yīng)中間體的元素分析和結(jié)構(gòu)確證;電噴霧萃取電離(extractive electrospray ionization, EESI)過程能夠保持蛋白質(zhì)的天然結(jié)構(gòu)[59-60],將其與軌道阱質(zhì)譜聯(lián)用,并結(jié)合氫/氘交換質(zhì)譜,可應(yīng)用于蛋白質(zhì)的四級(jí)結(jié)構(gòu)定量研究??梢灶A(yù)見,常壓離子化方法與高性能的軌道阱質(zhì)譜聯(lián)用將會(huì)在化學(xué)反應(yīng)、反應(yīng)機(jī)理研究及蛋白質(zhì)四級(jí)結(jié)構(gòu)定量等應(yīng)用領(lǐng)域發(fā)揮重要作用,并成為質(zhì)譜技術(shù)研究的新熱點(diǎn)。
軌道阱質(zhì)譜具有較高的分辨率和較高的質(zhì)量準(zhǔn)確度,在靜電場(chǎng)下工作,無需超低溫環(huán)境,操作簡(jiǎn)單、易于維護(hù),并可與液相色譜、毛細(xì)管電泳等高效分離技術(shù)聯(lián)用,結(jié)合碰撞誘導(dǎo)解離、高能碰撞誘導(dǎo)解離以及電子轉(zhuǎn)移解離等母離子碎裂技術(shù),軌道阱質(zhì)譜必將在蛋白質(zhì)組學(xué)、代謝組學(xué)、脂質(zhì)組學(xué)等領(lǐng)域發(fā)揮重要作用。
[1] 陳煥文, 李 明, 金欽漢. 質(zhì)譜儀器及其發(fā)展 [J]. 大學(xué)化學(xué), 2004, 19(3): 9-15.
CHEN Huanwen, LI Ming, JIN Qinhan. Mass spectrometric instrumentation and the progress[J]. Chinese Journal of Collegial Chemistry, 2006, 19(3): 9-15 (in Chinese).
[2] OUYANG Z, TAKATS Z, COOKS R G, et al. Preparing protein microarrays by soft-landing of mass selected ions [J]. Nature, 2003, 301(5 638): 1 351-1 354.
[3] NIE Z X, LI G T, COOKS R G, et al. In situ SIMS analysis and reactions of surfaces prepared by soft landing of mass-selected cations and anions using an ion trap mass spectrometer [J]. J Am Soc Mass Spectrom, 2009, 20(6): 949-956.
[4] BANTSCHEFF M, LEMEER S, SAVITSKI M M, et al. Quantitative mass spectrometry in proteomics: Critical review update from 2007 to the present [J]. Anal Bioanal Chem, 2012, 404(4): 939-965.
[5] CAMERON L C. Mass spectrometry imaging: Fa-cts and perspectives from a non-mass spectrometrist point of view [J]. Methods, 2012, 57(4): 417-422.
[6] PERRY R H, COOKS R G, NOLL R J. Orbitrap mass spectrometry: Instrumentation, ion motion and applications [J]. Mass Spectrom Rev, 2008, 27(6): 661-699.
[7] HU Q Z, NOLL R J, COOKS R G, et al. The Or-bitrap: A new mass spectrometer [J]. J Mass Spectrom, 2005, 40(4): 430-443.
[8] MARSHALL A G, HENDRICKSON C L, JAC-KSON G S. Fourier transform ion cyclotron resonance mass spectrometry: A primer [J]. Mass Spectrom Rev, 1998, 17(1): 1-35.
[9] MCLUCKEY S A, WELLS J M. Mass analysis at the advent of the 21st century [J]. Chem Rev, 2001, 101: 571-606.
[10] WILLIAMS J D, FLANAGAN M, LOPEZ L, et al.Using accurate mass electrospray ionization time-of-flight mass spectrometry with in-source cid to sequence peptide mixtures [J]. J Chromatogr A, 2003, 1020: 11-26.
[11] WELLS J M, GILL L A, OUYANG Z, et al. Factors affecting the mass measurement accuracy of quadrupole ion trap mass spectrometers. In Proceedings of the 46th ASMS Conference on Mass Spectrometry and Allied Topics, Orlando, 1998, 485.
[12] 何 堅(jiān), 楊芃原, 周 振, 等. 高分辨電噴霧離子源三級(jí)四極桿-飛行時(shí)間質(zhì)譜儀的研制 [J]. 儀器儀表學(xué)報(bào), 2003, 24(6): 50-52.
HE Jian, YANG Pengyuan, ZHOU Zhen, et al. The development of a high resolution ESI-QTOFMS coupled with three sect quadrupoles[J]. Chinese Journal of Scientific Instrument, 2003, 24(6): 50-52 (in Chinese).
[13] 江 游, 方 向, 黃澤建, 等. 大氣壓接口-單四極桿質(zhì)譜儀的研制 [J]. 質(zhì)譜學(xué)報(bào), 2010, 31(6):337-341.
JIANG You, FANG Xiang, HUANG Zejian, et al. Development of atmospheric pressure interface-single quadrupole mass spectrometer[J]. Journal of Chinese Mass Spectrometry Society, 2010, 31(6): 337-341 (in Chinese).
[14] 李 明, 費(fèi) 強(qiáng), 金欽漢,等. 離子阱質(zhì)譜儀小型化的最新研究進(jìn)展 [J]. 儀器儀表學(xué)報(bào), 2007, 28(6): 189-194.
LI Ming, FEI Qiang, JIN Qinhan, et al. The new progress of miniature ion trap [J]. Chinese Journal of Scientific Instrument, 2007, 28(6): 189-194 (in Chinese).
[15] NIE Z X, CUI F P, CHU M L, et al. Calibration of frequency-scan quadrupole ion trap mass spectrometer for microparticles mass analysis [J]. Int J Mass Spectrom, 2008, 270: 8-15.
[16] KINGDON K H. A method for the neutralization of electron space charge by positive ionization at very low gas pressures [J]. Phys Rev, 1923, 21(4): 408-418.
[17] BROOKS P R, HERSCHBACH D R. Kingdon cage as a molecular beam detector [J]. Rev Sci Inst, 1964, 35(11): 1 528-1 533.
[18] LEWIS R R. Motion of ions in the Kingdon trap [J]. J Appl Phys, 1982, 53(6): 3 975-3 980.
[19] YANG L, CHURCH D A. Confinement of injected beam ions in a kingdon trap [J]. Nucl Instrum Methods Phys Res Sect B, 1991, (B56/B57): 1 185-1 187.
[20] SEKIOKA T, TERASAWA M, AWAYA Y. Ion storage in Kingdon trap [J]. Radiat Eff Defects Solids, 1991, 117:253-259.
[21] KNIGHT K H. Storage of ions from laser-produced plasmas [J]. Appl Phys Lett, 1981, 38(4): 221-223.
[22] MCILRAITH A H. A charged particle oscillator [J]. Nature, 1996, 212(5 069): 1 422-1 424.
[23] BLUEMEL R. Dynamic kingdon trap [J]. Phys Rev A, 1995, 51(1): R30-R33.
[24] MAKAROV A A. Electrostatic axially harmonic orbital trapping: A high-performance technique of mass analysis [J]. Analy Chem, 2000, 72(6): 1 156-1 162.
[25] 李 明, 梁大鵬, 李紅梅, 等. 傅立葉變換離子回旋共振質(zhì)譜的最新進(jìn)展和展望 [J]. 儀器儀表學(xué)報(bào), 2011, 32(8): 1 195-1 120.
LI Ming, LIANG Dapeng, LI Hongmei, et al. New progress and prospect of Fourier transform ion cyclotron resonance mass spectrometry[J]. Chinese Journal of Scientific Instrument, 2011, 32(8): 1 195-1 120 (in Chinese).
[26] 李 明, 費(fèi) 強(qiáng), 金欽漢, 等. 質(zhì)譜檢測(cè)技術(shù)及其一些最新進(jìn)展 [J]. 儀器儀表學(xué)報(bào), 2007, 28(8): 1 532-1 536.
LI Ming, FEI Qiang, JIN Qinhan, et al. Detection techniques for mass spectrometry and some new progresses[J]. Chinese Journal of Scientific Instrument, 2007, 28(8): 1 532-1 536 (in Chinese).
[27] 賽默飛世爾公司. 賽默飛世爾推新一代離子阱軌道阱質(zhì)譜儀[EB/OL].[2012-03-08]. http://www.thermoscientific.com.
[28] HARDMAN M, MAKAROV A A. Interfacing the orbitrap mass analyzer to an electrospray ion source [J]. Anal Chem, 2003, 75(7): 1 699-1 705.
[29] MAKAROV A, DENISOV E, LANGE O, et al. Dynamic range of mass accuracy in LTQ orbitrap hybrid mass spectrometer [J]. J Am Soc Mass Spectrom, 2006, 17(7): 977-982.
[30] MAKAROV A, DENISOV E, KHOLOMEEV A,et al. Performance evaluation of a hybrid linear ion trap/orbitrap mass spectrometer [J]. Anal Chem, 2006, 78(7): 2 113-2 120.
[31] MOL H G J, ZOMER P, DE KONING M. Qu-alitative aspects and validation of a screening method for pesticides in vegetables and fruits based on liquid chromatography coupled to full scan high resolution (Orbitrap) mass spectrometry [J]. Anal Bioanal Chem, 2012, 403(10): 2 891-2 908.
[32] PADILLA-SANCHEZ J A, PLAZA-BOLANOS P, ROMERO-GONZALEZ R, et al. Innovative determination of polar organophosphonate pesticides based on high-resolution Orbitrap mass spectrometry [J]. J Mass Spectrom, 2012, 47(11): 1 458-1 465.
[33] YANG L, DING J F, MAXWELL P, et al. Determination of arsenobetaine in fish tissue by species specific isotope dilution LC-LTQ-Orbitrap-MS and standard addition LC-ICPMS [J]. Anal Chem, 2011, 83(9): 3 371-3 378.
[34] HE X, KOZAK M, NIMKAR S. Ultra-sensitive measurements of 11-nor-delta(9)-tetrahydrocannabinol-9-carboxylic acid in oral fluid by microflow liquid chromatography-tandem mass spectrometry using a benchtop quadrupole/orbitrap mass spectrometer [J]. Anal Chem, 2012, 84(18): 7 643-7 647.
[35] THOMAS A, WALPURGIS K, KRUG O, et al.Determination of prohibited, small peptides in urine for sports drug testing by means of nano-liquid chromatography/benchtop quadrupole orbitrap tandem-mass spectrometry [J]. J Chromatogr A, 2012, 1 259: 251-257.
[36] BERUBE M, ESPOURTEILLE F. Analysis of 25-hydroxyvitamin D in serum using automated online sample preparation technique with high resolution benchtop orbitrap mass spectrometer [J]. Clin Biochem, 2012, 45(13/14): 1 101-1 101.
[37] SCHUHMANN K, ALMEIDA R, BAUMERT M,et al. Shotgun lipidomics on a LTQ Orbitrap mass spectrometer by successive switching between acquisition polarity modes [J]. J Mass Spectrom, 2012, 47(1): 96-104.
[38] MUNTEL J, HECKER M, BECHER D. An exclusion list based label-free proteome quantification approach using an LTQ Orbitrap [J]. Rapid Commun Mass Spectrom, 2012, 26(6): 701-709.
[39] JANG K S, BAIK J E, KANG S S, et al. Identification of staphylococcal lipoteichoic acid-binding proteins in human serum by high-resolution LTQ-Orbitrap mass spectrometry [J]. Mol Immunol, 2012, 50(3): 177-183.
[40] MARIE A, ALVES S, MARIE B, et al. Analysis of low complex region peptides derived from mollusk shell matrix proteins using CID, high-energy collisional dissociation, and electron transfer dissociation on an LTQ-orbitrap: Implications for peptide to spectrum match [J]. Proteomics, 2012, 12(19/20): 3 069-3 075.
[41] THEBERGE R, INFUSINI G, TONG W W, et al.Top-down analysis of small plasma proteins using an LTQ-Orbitrap. Potential for mass spectrometry-based clinical. assays for transthyretin and hemoglobin [J]. Int J Mass Spectrom, 2011, 300(2/3): 130-142.
[42] WYNNE C, EDWARDS N J, FENSELAU C. Phyloproteomic classification of unsequenced organisms by top-down identification of bacterial proteins using capLC-MS/MS on an Orbitrap [J]. Proteomics, 2010, 10(20): 3 631-3 643.
[43] PAPASOTIRIOU D G, JASKOLLA T W, MA-RKOUTSA S, et al. Peptide mass fingerprinting after less specific In-gel proteolysis using MALDI-LTQ-orbitrap and 4-chloro-alpha-cyanocinnamic acid [J]. J Proteome Res, 2010, 9(5): 2 619-2 629.
[44] MOHR J, SWART R, SAMONIG M, et al.High-efficiency nano- and micro-HPLC-High-resolution Orbitrap-MS platform for top-down proteomics [J]. Proteomics, 2010, 10(20): 3 598-3 609.
[45] ZHANG T, CREEK D J, BARRETT M P, et al.Evaluation of coupling reversed phase, aqueous normal phase, and hydrophilic interaction liquid chromatography with orbitrap mass spectrometry for metabolomic studies of human urine [J]. Anal Chem, 2012, 84(4): 1 994-2 001.
[46] WEN B, HUANG J S, MOORE D. Screening and characterization of chemically reactive metabolites using polarity switching of hybrid linear trap quadrupole orbitrap fourier transform mass spectrometry [J]. Drug Metab Rev, 2011, 43: 130-131.
[47] RAO Y L, MCCOOEYE M, WINDUST A, et al.Mapping of selenium metabolic pathway in yeast by liquid chromatography-orbitrap mass spectrometry [J]. Anal Chem, 2010, 82(19): 8 121-8 130.
[48] XU W, ZHANG J, HUANG Z H, et al. Identification of new dianthrone glycosides from Polygonum multiflorum Thunb. using high-performance liquid chromatography coupled with LTQ-Orbitrap mass spectrometry detection: A strategy for the rapid detection of new low abundant metabolites from traditional Chinese medicines [J]. Anal Methods, 2012, 4(6): 1 806-1 812.
[49] ROUX A, XU Y, HEILIER J F, et al. Annotation of the human adult urinary metabolome and metabolite identification using ultra high performance liquid chromatography coupled to a linear quadrupole ion trap-orbitrap mass spectrometer[J]. Anal Chem, 2012, 84(15): 6 429-6 437.
[50] HEREBIAN D, LAMSHOFT M, MAYATEPE-KE, et al. Identification of NTBC metabolites in urine from patients with hereditary tyrosinemia type 1 using two different mass spectrometric platforms: Triple stage quadrupole and LTQ-Orbitrap[J]. Rapid Commun Mass Spectrom, 2010, 24(6): 791-800.
[51] 陳煥文, 胡 濱, 張 燮. 復(fù)雜樣品質(zhì)譜分析技術(shù)的原理與應(yīng)用 [J]. 分析化學(xué), 2010, 38(8): 1 069-1 088.
CHEN Huanwen, HU Bing, ZHANG Xie. Fundamental principles and practical applications of ambient ionization mass spectrometry for direct analysis of complex samples[J]. Chinese Journal of Analytical Chemistry, 2010, 38(8): 1 069-1 088 (in Chinese).
[52] HU Q Z, TALATY N, COOKS R G, et al. Desorption electrospray ionization using an orbitrap mass spectrometer: Exact mass measurements on drugs and peptides [J]. Rapid Commun Mass Spectrom, 2006, 20(22): 3403-340.
[53] MCEWEN C, GUTTERIDGE S. Analysis of the inhibition of the ergosterol pathway in fungi using the atmospheric solids analysis probe (ASAP) method [J]. J Am Soc Mass Spectrom, 2007, 18(7): 1 274-1 278.
[54] ZHANG J I, COSTA A B, COOKS R G, et al. Direct detection of fatty acid ethyl esters using low temperature plasma (LTP) ambient ionization mass spectrometry for rapid bacterial differentiation [J]. Analyst, 2011, 136(15): 3 091-3 097.
[55] EDISON S E, LIN L A, GAMBLE B M, et al. Surface swabbing technique for the rapid screening for pesticides using ambient pressure desorption ionization with high-resolution mass spectrometry [J]. Rapid Commun Mass Spectrom, 2011, 25(1): 127-139.
[56] JACKSON A U, TATA A, COOKS R G, et al. Direct analysis of stevia leaves for diterpene glycosides by desorption electrospray ionization mass spectrometry [J]. Analyst, 2009, 134(5): 867-874.
[57] VACLAVIK L, ZACHARIASOVA M, HRBEK V, et al. Analysis of multiple mycotoxins in cereals under ambient conditions using direct analysis in real time (DART ionization coupled to high resolution mass spectrometry [J]. Talanta, 2010, 82(5): 1 950-1 957.
[58] NA N, ZHANG X R,COOKS R G, et al. Birch reduction of benzene in a low-temperature plasma [J]. Angew Chem Int Edit, 2009, 48(11): 2 017-2 019.
[59] 李 明, 姜 杰, 李紅梅, 等. 電噴霧萃取電離技術(shù)在蛋白質(zhì)分析中的應(yīng)用 [J]. 生物物理與生物化學(xué)進(jìn)展, 2012, 39(2): 194-198.
LI Ming, JIANG Jie, LI Hongmei, et al. The application and perspective of extractive electrospray ionization on the protein analysis[J]. Progress in Biochemistry and Biophysics, 2012, 39(2): 194-198 (in Chinese).
[60] CHEN H W, YANG S P, LI M, et al. Sensitive detection of native proteins using extractive electrospray ionization mass spectrometry[J]. Angew Chem Int Edit, 2010, 49: 3 053-3 056.
ProgressonElectrostaticOrbitrapMassSpectrometer
LI Ming1, MA Jia-chen2, LI Hong-mei1, XIONG Xing-chuang1, JIANG You1,HUANG Ze-jian1, FANG Xiang1
(1.NationalInstituteofMetrology,Beijing100013,China;2.HarbinInstituteofTechnologyatWeihai,Weihai264209,China)
Electrostatic orbitrap is a newly developing mass analyzer in recent years. The information of ions in orbitrap can be obtained based on the different motion frequency of different ions in a specific electrostatic field. Orbitrap mass analyzer has the advantages of high mass resolution and high mass accuracy, therefore it has been widely used in chemistry, biology, medicine, et al. In this paper, the principle of electrostatic orbitrap mass spectrometer was introduced in detail; the applications of orbitrap in the fields of proteomics and metabolomics were briefly discussed; the recent progresses of coupling orbitrap with ambient ionization techniques were reviewed. Coupling orbitrap with ambient ionization techniques such as extractive electrospray ionization (EESI), low temperature probe (LTP) can potentially used for protein analysis, direct identification of product in the chemical synthesis, the study of mechanism of chemical reaction.
orbitrap; mass spectrometry; ambient ionization; proteomics; metabolomics
O 657.63
A
1004-2997(2013)05-0185-08
10.7538/zpxb.2013.34.03.0185
2012-10-08;
2012-12-31
國(guó)家自然科學(xué)基金(21005024);國(guó)家科技支撐計(jì)劃(2009BAK59B03)項(xiàng)目資助
李 明(1979~),男(漢族),吉林人,博士,從事質(zhì)譜學(xué)研究。E-mail: mingutah@hotmail.com
方 向(1963~),男(漢族),研究員,從事質(zhì)譜儀器研發(fā)工作。E-mail: fangxiang@china.com