• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      AM真菌在植物病蟲害生物防治中的作用機(jī)制

      2013-12-09 06:30:37羅巧玉王曉娟李媛媛林雙雙
      生態(tài)學(xué)報(bào) 2013年19期
      關(guān)鍵詞:菌根生物防治侵染

      羅巧玉, 王曉娟, 李媛媛, 林雙雙, 孫 莉, 王 強(qiáng), 王 茜, 金 樑

      (蘭州大學(xué) 草地農(nóng)業(yè)生態(tài)系統(tǒng)國家重點(diǎn)實(shí)驗(yàn)室 草地農(nóng)業(yè)科技學(xué)院, 蘭州 730020)

      AM真菌在植物病蟲害生物防治中的作用機(jī)制

      羅巧玉, 王曉娟, 李媛媛, 林雙雙, 孫 莉, 王 強(qiáng), 王 茜, 金 樑*

      (蘭州大學(xué) 草地農(nóng)業(yè)生態(tài)系統(tǒng)國家重點(diǎn)實(shí)驗(yàn)室 草地農(nóng)業(yè)科技學(xué)院, 蘭州 730020)

      叢枝菌根(Arbuscular Mycorrhizae,AM)真菌是一類廣泛分布于土壤生態(tài)系統(tǒng)中的有益微生物,能與大約80%的陸生高等植物形成共生體。由土傳病原物侵染引起的土傳病害被植物病理學(xué)界認(rèn)定為最難防治的病害之一。研究表明,AM真菌能夠拮抗由真菌、線蟲、細(xì)菌等病原體引起的土傳性植物病害,誘導(dǎo)宿主植物增強(qiáng)對(duì)病蟲害的耐/抗病性。當(dāng)前,利用AM真菌開展病蟲害的生物防治已經(jīng)引起生態(tài)學(xué)家和植物病理學(xué)家的廣泛關(guān)注。基于此,圍繞AM真菌在植物病蟲害生物防治中的最新研究進(jìn)展,從AM真菌改變植物根系形態(tài)結(jié)構(gòu)、調(diào)節(jié)次生代謝產(chǎn)物的合成、改善植物根際微環(huán)境、與病原微生物直接競(jìng)爭(zhēng)入侵位點(diǎn)和營養(yǎng)分配、誘導(dǎo)植株體內(nèi)抗病防御體系的形成等角度,探究AM真菌在植物病蟲害防治中的作用機(jī)理,以期為利用AM真菌開展植物病蟲害的生物防治提供理論依據(jù),并對(duì)本領(lǐng)域未來的發(fā)展方向和應(yīng)用前景進(jìn)行展望。

      AM真菌;宿主植物;病原體;抗病性;生物防治

      當(dāng)前,隨著化學(xué)農(nóng)藥的廣泛使用,農(nóng)田生態(tài)系統(tǒng)中真菌、細(xì)菌、線蟲等病原體對(duì)農(nóng)藥的耐藥性日益增強(qiáng),而其天敵則被大量殺滅,致使病蟲害日益猖獗。同時(shí),化學(xué)農(nóng)藥具有污染大氣、水體和土壤的特性,可以殘留在動(dòng)、植物體內(nèi),通過食物鏈進(jìn)入人體,危害人類健康[1]。隨著人民生活水平的不斷提高,由農(nóng)藥、化肥引起的食品安全問題已經(jīng)受到廣泛關(guān)注。因此,尋找防治植物病蟲害的綠色、環(huán)境友好型治理技術(shù)已經(jīng)成為環(huán)境科學(xué)家和植物病理學(xué)家研究的熱點(diǎn)之一。生物防治就是其中備受關(guān)注的一項(xiàng)技術(shù)與方法。

      生物防治(Biological Control)是指利用生物物種間的相互關(guān)系,以一種或一類生物抑制、消滅另一種或另一類有害生物的防治方法[2- 3]。因其具有高效低耗、對(duì)環(huán)境安全、功能多樣等諸多優(yōu)點(diǎn)而受到土壤學(xué)家、植物病理學(xué)家和生態(tài)學(xué)家的廣泛關(guān)注,目前采用寄生性和捕食性昆蟲(天敵)治理病蟲害的研究已取得重大突破,相關(guān)技術(shù)已經(jīng)推廣應(yīng)用。此外,采用微生物進(jìn)行生物防治也已取得顯著進(jìn)展[3- 4]。

      叢枝菌根(Arbuscular Mycorrhizae,AM)是陸地生態(tài)系統(tǒng)中廣泛分布的一類與植物根系共生的有益微生物。地球上80%的陸生高等植物均能與其建立共生關(guān)系,形成特定的“菌根”結(jié)構(gòu)[5]。菌根共生體的形成能夠改善宿主植物的營養(yǎng)狀況,促進(jìn)宿主植物提高對(duì)土壤中P、N、K、Zn、Mn、Fe、Cu、Ca等礦質(zhì)元素的吸收[6],提高植物的生物量生產(chǎn)[5],增強(qiáng)宿主植物對(duì)非生物脅迫,如干旱[7]、鹽漬[8]、重金屬污染[9]等的耐受能力。菌根際(Mycorrhizosphere)是由植物根系、線蟲、細(xì)菌、AM真菌和其他真菌通過競(jìng)爭(zhēng)、拮抗、協(xié)同效應(yīng)等種間關(guān)系相互作用構(gòu)成的集合體,對(duì)保持土壤生態(tài)系統(tǒng)的動(dòng)態(tài)平衡發(fā)揮重要作用,其中微生物-微生物之間的相互作用對(duì)植物生長影響顯著[5]。AM真菌又是菌根際內(nèi)最普遍、生物量最大、作用最顯著的有益真菌類群,對(duì)土傳病原體具有一定的拮抗或抑制效應(yīng)[10- 12]。研究表明,AM真菌能夠通過改變植物根系形態(tài)或解剖結(jié)構(gòu),調(diào)控宿主植物體內(nèi)次生代謝產(chǎn)物的形成,改善根際環(huán)境的理化性狀,與病原物競(jìng)爭(zhēng)光合產(chǎn)物和侵染空間,激活、誘導(dǎo)植株體內(nèi)抗病防御體系的啟動(dòng)等多種機(jī)制,降低真菌、線蟲、細(xì)菌等病原體對(duì)黃瓜(Cucumissativus)、草莓(Fragariaananassa)、西紅柿(lycopersiconesculentum)、柑橘(Citrusreticulata)、油橄欖(Oleaeuropaea)、截形苜蓿(Medicagotruncatula)、香瓜(Cucumismelo)、玉米(Zeamays)、馬鈴薯(Solanumtuberosum)、香蕉(Musanana)等植物的危害程度,減少農(nóng)藥使用量[13- 16]。目前已經(jīng)證實(shí)的可有效控制植物土傳病害的AM真菌超過30種[17],因此研究AM真菌在植物病蟲害生物防治中的作用機(jī)制具有重要的理論和應(yīng)用價(jià)值?;诖?,本文就近年來國內(nèi)外有關(guān)AM真菌在生物防治中增強(qiáng)宿主植物耐/抗病性的機(jī)制進(jìn)行綜述,同時(shí)對(duì)利用AM真菌進(jìn)行植物病蟲害防治的前景進(jìn)行展望。

      目前,利用AM真菌進(jìn)行植物病蟲害防治的研究日趨增多,分析其相關(guān)機(jī)理主要包括改變植物根系形態(tài)結(jié)構(gòu)、調(diào)節(jié)次生代謝產(chǎn)物的合成、改善植物根際微環(huán)境、直接與病原微生物競(jìng)爭(zhēng)入侵位點(diǎn)和營養(yǎng)、誘導(dǎo)植株抗病防御體系的形成等(圖1),現(xiàn)分述如下:

      1 改變植物根系形態(tài)結(jié)構(gòu)

      病原體侵染植物根系必須通過細(xì)胞壁進(jìn)入細(xì)胞,而AM真菌共生能夠使宿主植物根系增長、增粗,分枝增加;加速細(xì)胞壁木質(zhì)化,使根尖表皮加厚、細(xì)胞層數(shù)增多;改變根系形態(tài)結(jié)構(gòu),從而有效減緩病原體侵染根系的進(jìn)程[18](圖1A)。在大麗輪枝孢(Verticilliumdahliae)脅迫下,與摩西球囊霉(Glomusmosseae)和幼套球囊霉(G.etunicatum)共生的陸地棉(Gossypiumhirsutum)根系木質(zhì)部結(jié)構(gòu)增多,柵欄組織和導(dǎo)管變形,導(dǎo)管處產(chǎn)生膠狀物質(zhì),細(xì)胞變形固縮,顏色加深,細(xì)胞壁明顯加厚、木質(zhì)化,液泡數(shù)量顯著減少,線粒體內(nèi)褶消失,根系產(chǎn)生的一系列結(jié)構(gòu)性變化均有利于提高宿主植物對(duì)大麗花輪枝孢的抵抗能力[19]。AM真菌能在宿主植物根系表皮和內(nèi)皮層形成菌絲體網(wǎng)絡(luò)、胼胝質(zhì)及由非酯化果膠堆積的乳頭狀結(jié)構(gòu)(圖1B),對(duì)病原體穿透根系細(xì)胞組織及進(jìn)一步侵染起到阻礙作用[20],根系解剖結(jié)構(gòu)的變化改變病原物的侵染動(dòng)力學(xué)。菌根化植株根系的變化還體現(xiàn)在誘導(dǎo)細(xì)胞壁產(chǎn)生富含羥基脯氨酸糖蛋白(Hydroxyproline-rich Glycoprotein,HRGP)。HRGP是植物細(xì)胞壁上的糖-蛋白質(zhì)線性復(fù)合分子,作為細(xì)胞壁結(jié)構(gòu)物質(zhì),可以提高宿主植物細(xì)胞壁的強(qiáng)度,使細(xì)胞壁不能被病原物侵染過程中分泌的蛋白酶、纖維素酶、半纖維素酶等分解。另一方面,病原體入侵植物過程中HRGP起凝集素作用,把病原體固定在細(xì)胞壁上(圖1C),從而阻止病原體侵入植物細(xì)胞[21]。

      AM真菌除了影響宿主植物根系結(jié)構(gòu)外,其細(xì)胞壁上存在的一些物質(zhì)也能起到抑制病原菌的作用(圖1C)。研究表明,一些球囊霉屬(Glomus)的AM真菌根外菌絲、芽管的內(nèi)壁及孢子細(xì)胞壁上存在β-1,3-葡聚糖,而盾巨孢囊霉屬(Scutellospora)或巨孢囊霉屬(Gigaspora)真菌中不存在β-1,3-葡聚糖[22]。β-1,3-葡聚糖是細(xì)胞壁的結(jié)構(gòu)成分,其在AM真菌體內(nèi)的存在說明AM真菌對(duì)病原微生物具有一定的屏障作用。可見,AM真菌能夠通過改變植物根系的解剖結(jié)構(gòu)及自生的結(jié)構(gòu)物質(zhì)來增強(qiáng)宿主植物對(duì)病蟲害的抵御性,達(dá)到生物防治的作用。

      圖1 AM真菌-植物共生體對(duì)病蟲害進(jìn)行生物防治的作用機(jī)制示意圖Fig.1 Schematic diagram of biological control mechanisms in arbuscular mycorrhizal (AM) fungi symbiosis with plantsA: 根系分枝增多, 根尖表皮加厚, 細(xì)胞壁木質(zhì)化;B: AM真菌菌絲體網(wǎng)絡(luò)在根系表皮起屏障作用;C: Hydroxyproline-rich Glycoprotein (HRGP), β-1,3-葡聚糖等物質(zhì)將病原物凝集于細(xì)胞壁;D: 改善土壤結(jié)構(gòu);E: 根系分泌物殺死病原物;F: AM真菌刺激有益微生物生長繁殖;G: AM真菌寄生在病原物體內(nèi);H: 改善植株對(duì)養(yǎng)分、水分的吸收狀況,同時(shí)與病原物競(jìng)爭(zhēng)營養(yǎng)物質(zhì)

      2 調(diào)節(jié)次生代謝產(chǎn)物的合成

      菌根共生體能夠調(diào)節(jié)宿主植物生理代謝過程中次生代謝產(chǎn)物的種類和數(shù)量,這是AM真菌誘導(dǎo)植株抗病性的一個(gè)重要機(jī)制[23- 24]。AM真菌根內(nèi)菌絲和根外菌絲表面均能產(chǎn)生植保素、胼胝質(zhì)、生物堿、酚類等化學(xué)物質(zhì),這些次生代謝產(chǎn)物有利于植株抵御病害所造成的逆境條件[25]。

      植保素是植物受病原微生物侵染過程中產(chǎn)生的一類抗性化合物,其產(chǎn)生速度和累積量與植物的抗病性有關(guān)。一般植保素在受侵染細(xì)胞周圍積累,起屏障隔離作用,防止病原體進(jìn)一步擴(kuò)散。摩西球囊霉可以誘導(dǎo)植物根系產(chǎn)生植保素應(yīng)激反應(yīng),提高植物抗病性[26]。接種根內(nèi)球囊霉(G.intraradices)促進(jìn)根系中胼胝質(zhì)沉積,保護(hù)黃瓜免受瓜炭疽菌(Colletotrichumorbiculare)毒害[27]。長春花(Catharanthusroseus)受AM真菌侵染后其葉片中長春花堿含量顯著增加,提高了植株對(duì)生物脅迫的抗逆性[28]。酚類物質(zhì)家族包含黃酮類、酚羧酸等多種化合物,這些物質(zhì)均與植物的信號(hào)分子及防御系統(tǒng)聯(lián)系在一起[29],而黃酮類物質(zhì)還能增加AM真菌的侵入位點(diǎn)并提高其侵染率[30]。研究發(fā)現(xiàn),菌根化植物根系酚類物質(zhì)含量發(fā)生變化,與AM真菌共生的陸地棉內(nèi)積累了大量酚類化合物,這些化合物可以提高宿主植物抵御大麗輪枝孢的能力[31]。接種摩西球囊霉的草莓地上部分和根系中草莓枯萎病(Fusariumoxysporumf. sp.fragariae)、膠孢炭疽菌(C.gloeosporioides)病害發(fā)生率及病癥嚴(yán)重程度均顯著降低,植株總多酚含量、抗壞血酸含量增加[32]。Zhu等通過分根試驗(yàn)發(fā)現(xiàn),地表球囊霉(G.versiforme)能夠誘導(dǎo)西紅柿植株產(chǎn)生對(duì)茄青枯病菌(Ralstoniasolanacearum)的系統(tǒng)抗性[32],其根系中酚類物質(zhì)含量顯著增加,酚類物質(zhì)的增加同時(shí)發(fā)生在茄青枯病菌侵染根段和未侵染根段[33],因此植物系統(tǒng)抗性與酚類物質(zhì)含量的增加密切相關(guān)。但也有研究發(fā)現(xiàn),接種AM真菌與未接種AM真菌的椰棗樹(Phoenixdactylifera)受椰棗失綠病菌(F.oxysporumf. sp.albedinis)感染后酚類化合物沒有顯著變化,但菌根化植株體內(nèi)積累了大量的內(nèi)羥基肉桂酸的衍生物,從而提高了其抵御椰棗失綠病菌的能力[34]。

      3 改善植物根際微環(huán)境

      AM真菌與植物形成共生關(guān)系后,真菌菌絲的發(fā)育能夠改變宿主植物根細(xì)胞膜的通透性、改變根系分泌物的組分和數(shù)量,影響根際土壤物理、化學(xué)性狀,進(jìn)一步導(dǎo)致根圍微生物的種群結(jié)構(gòu)和數(shù)量發(fā)生變化(圖1D—F)。研究表明,菌根及其根外菌絲可貫穿于土壤顆粒間極小的孔隙,其分泌物如球囊霉素相關(guān)蛋白(GRSP)、有機(jī)酸、多胺等可作為土壤顆粒間粘著的吸附劑,促進(jìn)土壤團(tuán)粒結(jié)構(gòu)形成,改善土壤的pH、水穩(wěn)定性、通氣性、透水性,進(jìn)一步提高氧化還原電位(Eh),促進(jìn)植株正常生長以抵御病害侵入[35]。與AM真菌共生的植物根系產(chǎn)生的分泌物可直接影響其它土壤真菌[26, 36- 37]、線蟲[38]和細(xì)菌[39]的生長發(fā)育與繁殖,使土壤中微生物群落在結(jié)構(gòu)、性質(zhì)、數(shù)量及空間分布上發(fā)生變異。菌根化西紅柿根系滲出液可以持續(xù)的麻痹線蟲,從而減少線蟲對(duì)根系的侵入[38],也會(huì)排斥煙草疫霉菌(Phytophthoranicotianae)的游動(dòng)孢子,使其不能接近植物根系[40]。此外,AM真菌還可以與土壤有益微生物相互促進(jìn),產(chǎn)生協(xié)同效應(yīng),尤其是可以刺激對(duì)土傳病原菌具有拮抗作用的微生物活性,使根圍中對(duì)植物有益的微生物數(shù)量增加,如黏帚霉屬(Gliocladium)、鏈霉菌屬(Streptomyces)和木霉屬(Trichoderma)等真菌,固氮菌、溶磷細(xì)菌、熒光假單胞菌(Pseudomonasfluorescence)、芽孢桿菌等促進(jìn)植物生長的細(xì)菌(Plant Growth Promoting Rhinoacteria,PGPR)以及放線菌等[39,41],這些有益微生物也會(huì)減少病原體的數(shù)量、降低病原微生物對(duì)植株的侵染機(jī)會(huì),從而間接提高植物對(duì)病原體的抵御能力。PGPR還能強(qiáng)化AM真菌與植物的共生關(guān)系[42]。因此,改變植物根際土壤理化性質(zhì)及菌根際微生物區(qū)系是AM真菌重要的抗病機(jī)制之一。

      4 與病原微生物的競(jìng)爭(zhēng)效應(yīng)

      4.1 競(jìng)爭(zhēng)入侵位點(diǎn)

      AM真菌作為一種土壤根際活體營養(yǎng)(Biotrophic)共生微生物,常常與土傳病原體具有相同的生態(tài)位和入侵位點(diǎn),因此在自然生境條件下,AM真菌與病原體必然存在空間競(jìng)爭(zhēng)關(guān)系,其生防作用主要是減少根系表皮病原體的初侵染和再侵染。AM真菌侵染植物根系后,寄生類病原體的入侵位點(diǎn)數(shù)目明顯減少[42]。研究發(fā)現(xiàn),菌根化植株中受AM真菌侵染的根段及鄰近未被侵染根段均沒有或很少有大豆胞囊線蟲(Heteroderaglycines)[44]。補(bǔ)娟等以不同的順序?qū)﹃懙孛藿臃NAM真菌和病原菌,證實(shí)AM真菌與病原菌之間存在對(duì)侵染位點(diǎn)的競(jìng)爭(zhēng)[31]。當(dāng)先接種聚生球囊霉(G.fasciculatum)時(shí),根系位點(diǎn)被AM真菌侵染,則可顯著抑制瓜果腐霉菌(Pythiumaphanidermatum)在沉香(Aquilariaagallocha)根系組織中的發(fā)展,降低植株的發(fā)病指數(shù)和猝倒癥狀[45]。菌根化植株中未被AM真菌菌絲侵染的根段也具有抵御病原體的系統(tǒng)抗性,且增加了植物地上部分對(duì)某些病害的抵抗能力[24],是AM真菌提高宿主植物系統(tǒng)抗性的重要組成部分。同時(shí),線蟲的蟲癭中往往可以看到AM真菌的泡囊、菌絲甚至叢枝侵入的現(xiàn)象,形成AM真菌對(duì)線蟲的寄生效應(yīng)(圖1 G)。Francl等報(bào)道,聚生球囊霉能侵染大豆胞囊線蟲的卵[46]。1994年,劉杏忠等研究發(fā)現(xiàn)大豆孢囊線蟲的孢囊內(nèi)有AM真菌的厚垣孢子定殖[47],也表明AM真菌對(duì)病原體具有一定的寄生作用,但有關(guān)AM真菌對(duì)病原微生物的寄生關(guān)系及其生防效應(yīng)尚待深入研究。

      4.2 競(jìng)爭(zhēng)營養(yǎng)分配

      1993年,Eissenstatet等采用14C標(biāo)記技術(shù)檢測(cè)菌根化柑橘根系,發(fā)現(xiàn)釋放到根圍中的14C很少[48],因此根圍微生物之間必然存在對(duì)光合產(chǎn)物的競(jìng)爭(zhēng)效應(yīng)。AM真菌和病原物相互競(jìng)爭(zhēng)來自宿主植物根系的光合產(chǎn)物,當(dāng)光合產(chǎn)物首先被AM真菌利用時(shí),病原物獲取的機(jī)會(huì)就會(huì)減少,從而限制病原物的生長和繁殖。另外,AM真菌能夠改善宿主植物對(duì)礦質(zhì)營養(yǎng)和水分的吸收(圖1 H)。研究發(fā)現(xiàn),廣泛分布于土壤中的AM真菌根外菌絲體相互交錯(cuò)形成龐大的菌絲網(wǎng),從而擴(kuò)大了根系對(duì)水分、營養(yǎng)物質(zhì),尤其是磷酸鹽和硝酸鹽的吸收范圍,同時(shí)對(duì)不同植物間的水分和養(yǎng)分進(jìn)行再分配,使植物在一定程度上獲得了另一條有效的水分、養(yǎng)分傳輸途徑[49]。菌根通過增強(qiáng)植株對(duì)營養(yǎng)物質(zhì)和水分的吸收,補(bǔ)償了因病原菌侵染造成的根系生物量和功能的損失,從而間接減輕病原微生物引起的危害,提高宿主植物的耐病能力[50]。對(duì)尖鐮孢(F.oxysporum)脅迫條件下的西紅柿接種AM真菌能夠促進(jìn)植株對(duì)K、N、P、Ca、Mn、Zn等元素的吸收,提高葉綠素及可溶性糖含量,促進(jìn)植株分支、葉片數(shù)增多,生物活力增強(qiáng),間接提高植株對(duì)病蟲害的耐受性[51]。研究發(fā)現(xiàn),受南方根結(jié)線蟲(Meloidogyneincognita)和爪哇根結(jié)線蟲(M.javanica)危害的油橄欖,接種AM真菌后其生長狀況顯著改善,生物量增加88.9%[52]。

      5 誘導(dǎo)植株抗病防御體系的形成

      5.1 促進(jìn)植物激素合成

      植物激素作為植株內(nèi)的痕量信號(hào)分子,在調(diào)節(jié)植物的生長發(fā)育和對(duì)環(huán)境的應(yīng)答過程起十分重要的作用。在AM真菌生長及與宿主植物建立共生關(guān)系過程中AM真菌能夠直接合成或者誘導(dǎo)植物體內(nèi)產(chǎn)生一些激素類物質(zhì),如生長素(Auxin,IAA)、細(xì)胞分裂素(Cytokinin,CK)、赤霉素(Giberellin Acid,GA)、油菜素內(nèi)酯(Brassinosteroids,BR)、茉莉酸(Jasmonic Acid,JA)、水楊酸(Salicylic Acid,SA)、乙烯(Ethylene,ET)、脫落酸(Abscisic Acid,ABA)等,這些激素也參與了AM真菌誘導(dǎo)宿主植物產(chǎn)生病蟲害防御體系的建立[53]。

      研究發(fā)現(xiàn),接種地表球囊霉的黃瓜植株具有較高含量IAA、GA、玉米素(Zeatin),生長促進(jìn)物質(zhì)含量的相對(duì)增加與增強(qiáng)植株對(duì)茄絲核菌的抗病能力有關(guān),其中IAA 在植株對(duì)病菌侵染的防御過程中具有一定的作用[54]。Ortu等發(fā)現(xiàn)受AM真菌侵染后截形苜蓿體內(nèi)GA合成基因上調(diào)[55]。菌根化植株莖葉內(nèi)IAA、GA、ET、CK和ABA等內(nèi)源激素的含量均高于未接種植株,AM真菌通過影響植物內(nèi)源激素含量和它們之間的平衡,促進(jìn)植物生長,間接增強(qiáng)抗病性;植物激素可能是逆境基因表達(dá)的啟動(dòng)因子,它能誘導(dǎo)許多新基因表達(dá)及蛋白質(zhì)合成[56]。

      5.2 誘導(dǎo)植物信號(hào)物質(zhì)合成

      AM真菌與植物共生后能誘導(dǎo)合成一氧化氮(NO)、JA、SA、ET、過氧化氫(H2O2)、ABA、Ca2+信號(hào)、糖信號(hào)等多種信號(hào)物質(zhì),這些信號(hào)物質(zhì)在植物與AM真菌的識(shí)別、菌根共生體建立和激活植物防御系統(tǒng)過程中發(fā)揮著重要作用[53]。研究表明,JA和ET通常抵御腐生型病原物,而SA對(duì)活體營養(yǎng)病原物具有一定的抑制作用。當(dāng)植物被病原體侵染時(shí),JA和ET與植物系統(tǒng)誘導(dǎo)性抗性(ISR)有關(guān),SA與植物系統(tǒng)獲得性抗性(SAR)有關(guān)[57]。

      近年來,NO已經(jīng)成為植物細(xì)胞信號(hào)傳導(dǎo)研究領(lǐng)域的熱點(diǎn)之一。作為信號(hào)分子,NO參與一系列與植物防御系統(tǒng)相關(guān)的信號(hào)傳導(dǎo)和基因表達(dá)過程[58- 59]。NO在植物體內(nèi)的積累與AM真菌的共生密切相關(guān),接種珍珠巨孢囊霉(Gi.margarita)的截形苜蓿葉片和根系中NO含量分別是對(duì)照處理的3.3和1.9倍,說明AM真菌對(duì)與系統(tǒng)抗性相關(guān)的NO的積累起誘導(dǎo)作用[58]。菌根誘導(dǎo)產(chǎn)生的JA能夠激活植物體內(nèi)的防御系統(tǒng),從而提高植物對(duì)病原體的抗性[53]。西紅柿幼苗根系感染尖鐮孢20d后分別接種聚生球囊霉和大果球囊霉(G.macrocarpum),發(fā)現(xiàn)菌根化的西紅柿莖葉中JA含量是非菌根化植株的9倍,病害程度分別降低78%和75%[60]。目前,SA已經(jīng)被公認(rèn)為AM真菌誘導(dǎo)植物產(chǎn)生系統(tǒng)抗病性的主要信號(hào)物質(zhì)[61]。El-Khallal等研究發(fā)現(xiàn),接種摩西球囊霉同時(shí)外施SA能有效抑制尖鐮孢對(duì)西紅柿的感染,降低病情指數(shù)和枯萎程度[51]。根內(nèi)球囊霉能提高香瓜因受尖鐮孢侵染而降低的植物激素含量,誘導(dǎo)JA和SA信號(hào)途徑,使香瓜對(duì)尖鐮孢的防御系統(tǒng)增強(qiáng)[36]。但也有研究發(fā)現(xiàn)接種根內(nèi)球囊霉的煙草(Nicotianaattenuata)植株內(nèi)源JA和SA含量沒有發(fā)生顯著性變化,ET釋放量甚至輕微降低[62]??梢姡煌珹M真菌種類對(duì)不同宿主植物信號(hào)物質(zhì)的誘導(dǎo)存在差異,相關(guān)機(jī)制尚待深入研究。

      5.3 調(diào)控基因表達(dá)

      AM真菌能通過誘導(dǎo)與植物防御反應(yīng)相關(guān)基因的表達(dá),如PAL5基因和幾丁質(zhì)酶基因Chib1[63],或通過調(diào)控各種抗病基因的表達(dá)量及特異性表達(dá)來增強(qiáng)宿主植物的抗病性[64]。

      研究表明,對(duì)感染了大豆胞囊線蟲的大豆(Glycinemax)接種AM真菌,利用Northern雜交及逆轉(zhuǎn)錄Polymerase Chain Reaction(PCR)技術(shù)分析測(cè)定根系中與幾丁質(zhì)酶和苯丙氨酸解氨酶(Phenylalanine Ammonialyase,PAL)相關(guān)的基因Chib1、PAL5的mRNA表達(dá),發(fā)現(xiàn)AM真菌能夠在轉(zhuǎn)錄水平上調(diào)控這些與抵御線蟲相關(guān)的抗病基因,使其表達(dá)量和表達(dá)強(qiáng)度增強(qiáng)[63]。2002年Tahiri-Alaoui等從與摩西球囊霉共生的西紅柿根系中分離提取到基因Le-MI-13,該基因編碼一種與介導(dǎo)蛋白質(zhì)降解、開放或關(guān)閉基因轉(zhuǎn)錄的泛素相似的氫基酸序列;利用Northern雜交技術(shù)表明此基因的轉(zhuǎn)錄只存在于菌根化西紅柿根系中,而未接種西紅柿根系中未發(fā)現(xiàn),表明AM真菌是該基因特異性轉(zhuǎn)錄及提高植株抗病性的誘導(dǎo)因子[65]。通過16000式單核苷酸陣列和實(shí)時(shí)定量PCR研究發(fā)現(xiàn),AM真菌誘導(dǎo)截形苜蓿植株體內(nèi)與防御性相關(guān)的基因轉(zhuǎn)錄產(chǎn)物發(fā)生劇烈變化,導(dǎo)致植株體內(nèi)產(chǎn)生局部和系統(tǒng)性防御反應(yīng),抵御油菜黃單胞菌(Xanthomonascampestris)對(duì)植株的侵害[64]。對(duì)預(yù)先接種摩西球囊霉的兩個(gè)感病玉米品種(Yuenong-9、Gaoyou-115)接種茄絲核菌(Rhizoctoniasolani),發(fā)現(xiàn)菌根化植株體內(nèi)產(chǎn)生的防御反應(yīng)更加迅速和強(qiáng)烈,兩種玉米葉片內(nèi)與抗病性相關(guān)的AOS、PR2a和PAL基因,及丁布(2, 4-dihydroxy-7-methoxy-2 H-1, 4- benzoxazin-3(4 H)-one,DIMBOA)合成途徑中的關(guān)鍵基因BX9均被強(qiáng)烈誘導(dǎo)表達(dá)[26]。非菌根化的兩種不同基因型西紅柿(野生型76R和突變型rmc)感染茄絲核菌后體內(nèi)相關(guān)防御基因的表達(dá)量相同,當(dāng)接種菌根后突變型rmc植株胞外PR-1,胞內(nèi)GluBAS和Chi9的mRNA表達(dá)更加強(qiáng)烈[37]。通過實(shí)時(shí)定量PCR分析發(fā)現(xiàn),菌根化馬鈴薯葉片的疫霉菌(P.infestans)發(fā)病指數(shù)和病害癥狀之所以減輕,可能和菌根化馬鈴薯中與植株系統(tǒng)抗性相關(guān)的PRl和PR2基因的誘導(dǎo)表達(dá)有關(guān)[66]。AM真菌與植物建立互惠共生關(guān)系的過程中產(chǎn)生參與JA合成的關(guān)鍵酶,能有效催化JA合成,菌根化截型苜蓿根系中JA的主要合成酶丙二烯氧化物環(huán)化酶(Allene Oxide Cyclase,AOC)的cDNAs表達(dá)增強(qiáng),積累的內(nèi)源JA含量上升[67]。

      5.4 提高防御酶活性、誘導(dǎo)病程相關(guān)蛋白的合成

      AM真菌與宿主植物形成共生體的過程中,能夠激活很多防御性酶類,如參與酚類物質(zhì)代謝的多酚氧化酶(Polyphenol Oxidase,PPO)、過氧化物酶(Peroxidase,POD);參與植保素、木質(zhì)素、黃酮/異黃酮生物合成的查爾酮酶異構(gòu)酶(Chalcone Isomerase,CHI);參與類黃酮合成的查爾酮合成酶(Chalcone Synthase,CHS);參與苯丙烷類物質(zhì)代謝的苯丙氨酸解氨酶(PAL),同時(shí)一些與抗病相關(guān)的防御性蛋白(如Pathogenesis Related Protein,PR蛋白)也開始特異性表達(dá)[68- 69]。

      PAL的活性可以作為植物抗病性的一個(gè)生理指標(biāo),對(duì)感染尖鐮孢的西紅柿幼苗接種AM真菌,莖葉中PAL的活性明顯增強(qiáng),可以顯著減緩病害癥狀[60]。接種摩西球囊霉的草莓植株中超氧化物歧化酶(Superoxide Dismutase,SOD)活性和1,1-二苯基苦基苯肼(1, 1-Diphenyl-2-picrylhydrazyl,DPPH)自由基清除活性增強(qiáng),植株抗氧化能力顯著提高,進(jìn)而增強(qiáng)了對(duì)膠孢炭疽菌和尖鐮孢的抗性,其中對(duì)尖鐮孢的抵抗水平更高[32]。被摩西球囊霉侵染的西紅柿根系中葡聚糖酶、幾丁質(zhì)酶、PR蛋白等與過敏性壞死反應(yīng)有關(guān)的物質(zhì)含量均高于非菌根化植株[70]。接種單孢球囊霉(G.monosporum)、沙漠球囊霉(G.deserticola)、明球囊霉(G.clarum)等菌劑后椰棗樹體內(nèi)多酚氧化酶活性均顯著增強(qiáng),可抑制椰棗失綠病菌病害的發(fā)生[25]。最新研究發(fā)現(xiàn),根內(nèi)球囊霉能夠分泌一種可與細(xì)胞核中病程相關(guān)蛋白轉(zhuǎn)錄因子ERFl9產(chǎn)生相互作用的防御蛋白sp7,sp7的表達(dá)能夠減輕稻瘟病(Magnaportheoryzae)引起的根系腐爛癥狀[71]。

      AM真菌提高宿主植物耐/抗病性的機(jī)制是多方面的,可能是某種機(jī)制單獨(dú)作用的結(jié)果,也可能受到多種機(jī)制的協(xié)同作用;AM真菌誘導(dǎo)的抗病性類型可能是系統(tǒng)的,也可能是局部的[24,50]。AM真菌對(duì)病原體潛在的拮抗作用有效性取決于AM真菌、宿主植物和病原體之間的相互關(guān)系,同時(shí)受接種量、接種時(shí)期及土壤因子(肥力、pH、溫度、濕度等)等非生物因素的影響。在農(nóng)田生態(tài)系統(tǒng)中,相關(guān)農(nóng)業(yè)管理措施如耕作制度、施肥管理及病蟲害管理等也會(huì)影響AM真菌生防作用的發(fā)揮[44],只有各種因素協(xié)調(diào)一致時(shí),才能真正發(fā)揮AM真菌的生物防治作用。

      6 展望

      綜上所述,AM真菌通過多種直接或間接作用,提高了宿主植物對(duì)病蟲害的耐/抗性,促進(jìn)植物生長。對(duì)易感病植株或病害高發(fā)區(qū)接種適宜的AM真菌可有效控制病蟲害的危害程度,起到生物防治作用。生物防治技術(shù)代表了植物病理學(xué)未來的發(fā)展方向之一,具有廣闊的前景。然而,利用AM真菌進(jìn)行生物防治是一項(xiàng)新興的病蟲害防治技術(shù),很多基本理論和實(shí)踐應(yīng)用中出現(xiàn)的問題亟待解決。因此,尚需加強(qiáng)對(duì)以下領(lǐng)域的研究:

      (1)選育、馴化、構(gòu)建抗/耐病性較強(qiáng)的AM真菌菌株。目前國內(nèi)外已經(jīng)篩選出多種抗病AM真菌,但大多為直接使用菌株或菌劑來防治病害,因此其活性有效期及效果穩(wěn)定性難以保證。未來應(yīng)系統(tǒng)普查各地AM真菌的種質(zhì)資源,以常規(guī)和非常規(guī)方法分離、篩選出適合不同宿主植物的耐/抗病性AM真菌菌株,建立AM真菌基因庫。提取、純化耐/抗病性AM真菌菌株內(nèi)抗菌物質(zhì)(如抗菌蛋白、抗生素等)。研究拮抗菌的遺傳背景,克隆、分離能夠表達(dá)抗菌物質(zhì)的基因,通過遺傳工程技術(shù),構(gòu)建高效、多抗轉(zhuǎn)基因工程菌。

      (2)進(jìn)行AM真菌與其他有益微生物的組合研究。研究表明,AM真菌和PGPR的雙接種比單接種更能有效控制病害[42]。因此開展AM真菌對(duì)其它土壤微生物活性及群落結(jié)構(gòu)影響的研究,探究AM真菌與其他有益微生物的協(xié)同效應(yīng),對(duì)強(qiáng)化AM真菌與宿主植物的生物防治效果具有重要意義。

      (3)建立不同生態(tài)環(huán)境條件下AM真菌生物防治有效性的評(píng)價(jià)體系。AM真菌的生防效果受眾多生物因子和非生物因子的影響[44],因此應(yīng)深入研究能夠使植物受益最大化的調(diào)控因素,如最佳接種時(shí)期、接種劑量、生態(tài)條件、耕作方式、施肥量等,建立一個(gè)科學(xué)的、有效的AM真菌生防效果評(píng)價(jià)標(biāo)準(zhǔn),為利用AM真菌開展生物防治工作提供理論依據(jù)。

      (4)深入探究AM真菌對(duì)植株地上部分的生物防治作用。植物除受地下部的生物脅迫外,還面臨著地上部分的生物脅迫。已有研究顯示接種AM真菌能夠防御地上有害昆蟲和病原微生物[24],但系統(tǒng)性的研究尚待加強(qiáng)。因此,AM真菌對(duì)植株地上部的防御作用及地上部分-病原體-AM真菌之間的三重營養(yǎng)關(guān)系尚需進(jìn)一步研究。

      (5)進(jìn)一步深入研究AM真菌的抗病機(jī)制。未來研究中應(yīng)利用同位素標(biāo)記、分子生物學(xué)、激光共聚焦掃描顯微等技術(shù)和基因工程手段深入研究AM真菌對(duì)各種信號(hào)途徑的影響及各信號(hào)物質(zhì)之間的相關(guān)性,探究AM真菌最先誘導(dǎo)哪個(gè)信號(hào)物質(zhì),哪些物質(zhì)又是第二、第三被依次誘導(dǎo)產(chǎn)生?基因的改變受哪個(gè)/些信號(hào)物質(zhì)誘導(dǎo)產(chǎn)生?定位、篩選出AM真菌誘導(dǎo)表達(dá)的相關(guān)抗性基因,探究其產(chǎn)物的結(jié)構(gòu)、功能及誘導(dǎo)表達(dá)機(jī)制。

      [1] Huang N X, Enkegaard A, Osborne L S, Ramakers P M J, Messelink G J, Pijnakker J, Murphy G. The banker plant method in biological control. Critical Reviews in Plant Sciences, 2011, 30(3): 259- 278.

      [2] van Driesche R G, Carruthers R I, Center T, Hoddle M S, Hough-Goldstein J, Morin L, Smith L, Wagner D L, Blossey B, Brancatini V, Casagrande R, Causton C E, Coetzee J A, Cuda J, Ding J, Fowler S V, Frank J H, Fueste R, Goolsby J, Grodowitz M, Heard T A, Hilll M P, Hoffmann J H, Hubert J, Julien M, Kairo M T K, Kenis M, Mason P, Medal J, Messing R, Miller R, Moore A, Neuenschwander P, Newman R, Norambuena H, Palmer W A, Pemberton R, Panduro A P, Pratt P D, Rayamajhi M, Salom S, Sands D, Schooler S, Schwarzl?nder M, Sheppard A, Shaw R, Tipping P W, van Klinkeni R D. Classical biological control for the protection of natural ecosystems. Biological Control, 2010, 54(S1): 2- 33.

      [3] Obrycki J J, Harwood J D, Kring T J, O′Neil R J. Aphidophagy by coccinellidae: application of biological control in agroecosystems. Biological Control, 2009, 51(2): 244- 254.

      [4] Gabriele B. Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Applied Microbiology and Biotechnology, 2009, 84(1): 11- 18.

      [5] Smith S E, Read D J. Mycorrhizal Symbiosis. 3rd ed. New York: Academic Press, 2008.

      [6] Grunwald U, Guo W B, Fischer K, Isayenkov S, Ludwig-Müller J, Hause B, Yan X L, Küster H, Franken P. Overlapping expression patterns and differential transcript levels of phosphate transporter genes in arbuscular mycorrhizal, Pi-fertilised and phytohormone-treatedMedicagotruncatularoots. Planta, 2009, 229(5): 1023- 1034.

      [7] Gianinazzi S, Gollotte A, Binet M N, van Tuinen D, Redecker D, Wipf D. Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza, 2010, 20(8): 519- 530.

      [8] Lu X P, Du Q, Yan Y L, Ma K, Wang Z J, Jiang Q. Effects of soil rhizosphere microbial community and soil factors on arbuscular mycorrhizal fungi in different salinized soils. Acta Ecologica Sinica, 2012, 32(13): 4071- 4078.

      [9] Hildebrandt U, Regvar M, Bothe H. Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry, 2007, 68(1): 139- 146.

      [10] Jung S C, Martinez-Medina A, Lopez-Raez J A, Pozo M J. Mycorrhiza-induced resistance and priming of plant defenses. Journal of Chemical Ecology, 2012, 38(6): 651- 664.

      [11] Miransari M. Interactions between arbuscular mycorrhizal fungi and soil bacteria. Applied Microbiology and Biotechnology, 2011, 89(4): 917- 930.

      [12] Huang J H, Luo S M, Zeng S S. Mechanisms of plant disease resistance induced by arbuscular mycorrhizal fungi. Chinese Journal of Applied Ecology, 2003, 14(5): 819- 822.

      [13] Garg N, Chandel S. Arbuscular mycorrhizal networks: process and functions. A review. Agronomy for Sustainable Development, 2010, 30(3): 581- 599.

      [14] Artursson V, Finlay R D, Jansson J K. Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environmental Microbiology, 2006, 8(1): 1- 10.

      [15] Wang C X, Li X L, Qin L, Wang G Q, Zhou J C, Yang H M. Review on increasing resistance to pathogens by arbuscular mycorrhizal fungi. Chinese Journal of Biological Control, 2007, 23(s1): 64- 69.

      [16] Li H Y, Liu R J, Su H R. Mechanism of increaseing plant disease resistance by AM fungi. Mycosystema, 2001, 20(3): 435- 439.

      [17] Liu R J, Chen Y L. Mycorrhizology. Beijing: Science Press, 2007.

      [18] Toljander J F. Interactions between Soil Bacteria and Arbuscular Mycorrhizal Fungi [D]. Uppsala: Swedish University of Agricultural Sciences, 2006.

      [19] Cui W D, Long X Q, Hou X Q, Yang R, Bu J, Luo M. Effect ofVerticilliumwilt pathogen stress on the defensive enzymes and ultramicrostructure in the cotton root inoculated with AMF. Xinjiang Agricultural Sciences, 2009, 46(6): 1235- 1244.

      [20] Pozo M J, Cordier C, Dumas-Gaudot E, Gianinazzi S, Barea J M, Azcon-aguilar C. Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses toPhytophthorainfection in tomato plants. Journal of Experimental Botany, 2002, 53(368): 525- 534.

      [21] Pamiske M. Molecular genetics of the arbuscular mycorrhizal symbiosis. Current Opinion in Plant Biology, 2004, 7(4): 414- 421.

      [22] Pozo M J, Azcón-Aguilar C, Dumas-Gaudot E, Barea J M. β- 1, 3-glucanase activities in tomato roots inoculated with arbuscular mycorrhizal fungi and/orPhytophthoraparasiticaand their possible involvement in bioprotection. Plant Science, 1999, 141(2): 149- 157.

      [23] Zubek S, Stojakowska A, Anielska T, Turnau K. Arbuscular mycorrhizal fungi alter thymol derivative contents ofInulaensifoliaL. Mycorrhiza, 2010, 20(7): 497- 504.

      [24] Pozo M J, Azcón-Aguilar C. Unravelling mycorrhiza-induced resitance. Current Opinion in Plant Biology, 2007, 10(4): 393- 398.

      [25] Jaiti F, Meddich A, El-Hadrami I. Effectiveness of arbuscular mycorrhizal fungi in the protection of date palm (Phoenixdactylifera L.) against bayoud disease. Physiological and Molecular Plant Pathology, 2007, 71(4/6): 166- 173.

      [26] Song Y Y, Cao M, Xie L J, Liang X T, Zeng R S, Su Y J, Huang J H, Wang R L, Luo S M. Induction of DIMBOA accumulation and systemic defense responses as mechanism of enhanced resistance of mycorrhizal corn (ZeamaysL.) to sheath blight. Mycorrhiza, 2011, 21(8): 721- 731.

      [27] Lee C S, Lee Y J, Jeun Y C. Observations of infection structures on the leaves of cucumber plants pre-treated with arbuscular mycorrhizaGlomusintraradicesafter challenge inoculation withColletotrichumorbiculare. The Plant Pathology, 2005, 21(3): 237- 243.

      [28] de la Rosa-Mera C J, Ferrera-Cerrato R, Alarcón A, Sánchez-Colín M D, Muoz-Muiz O D. Arbuscular mycorrhizal fungi and potassium bicarbonate enhance the foliar content of the vinblastine alkaloid in Catharanthus roseus. Plant and Soil, 2011, 349(1/2): 367- 376.

      [29] Shaw L J, Morris P, Hooker J E. Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environmental Microbiology, 2006, 8(11): 1867- 1880.

      [30] Scervino J M, Ponce M A, Erra-Bassells R, Bompadre J, Vierheilig H, Ocampo J A, Godeas A. The effect of flavones and flavonols on colonization of tomato plants by arbuscular mycorrhizal fungi of the generaGigaspora andGlomus. Canadian Journal of Microbiology, 2007, 53(6): 702- 709.

      [31] Bu J, Cui W D, Luo M, Long X Q, Yang R. The effect of inoculation with AMF inoculum on growth andVerticilliumwilt of cotton. Xinjiang Agricultural Sciences, 2009, 46(3): 549- 555.

      [32] Li Y H, Yanagi A, Miyawaki Y, Okada T, Matsubara Y. Disease tolerance and changes in antioxidative abilities in mycorrhizal strawberry plants. Journal of the Japanese Society for Horticultural Science, 2010, 79(2): 174- 178.

      [33] Zhu H H, Yao Q. Localized and systemic increase of phenols in tomato roots induced byGlomusversiformeinhibitsRalstoniasolanacearum. Journal of Phytopathology, 2004, 152(10): 537- 542.

      [34] Jaiti F, Kassami M, Meddich A, Hadrami I E. Effect of arbuscular mycorrhization on the accumulation of hydroxycinnamic acid derivatives in data palm seedlings challenged withFusariumoxysporumf. sp.Albedinis. Journal of Phytopathology, 2008, 156(11/12): 641- 646.

      [35] Bais H P, Weir T L, Perry L G, Gilroy S, Vivanco J M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 2006, 57(1): 233- 266.

      [36] Martínez-Medina A, Pascual J A, Pérez-Alfocea F, Albacete A, Roldán A.TrichodermaharzianumandGlomusintraradicesmodify the hormone disruption induced byFusariumoxysporuminfection in melon plants. Phytopathology, 2010, 100(7): 682- 688.

      [37] Gao L L, Smith A F, Smith S E. Thermclocus does not affect plant interactions or defence- related gene expression when tomato (Solanumlycopersicum) is infected with the root fungal parasite, Rhizoctonia. Functional Plant Biology, 2006, 33(3): 289- 296.

      [38] Vos C, Claerhout S, Mkandawire R, Panis B, de Waele D, Elsen A. Arbuscular mycorrhizal fungi reduce root-knot nematode penetration through altered root exudation of their host. Plant and Soil, 2011, 354(1/2): 335- 345.

      [39] Kohler J, Caravaca F, Carrasco L, Roldán A. Interactions between a plant growth-promoting rhizobacterium, an AM fungus and a phosphate-solubilising fungus in the rhizosphere ofLactucasativa. Applied Soil Ecology, 2007, 35(3): 480- 487.

      [40] Lioussanne L, Jolicoeur M, St-Arnaud M. Mycorrhizal colonization withGlomusintraradicesand development stage of transformed tomato roots significantly modify the chemotactic response of zoospores of the pathogenPhytophthoranicotianae. Soil Biology and Biochemistry, 2008, 40(9): 2217- 2224.

      [41] Chandanie W A, Kubota M, Hyakumachi M. Interactions between the arbuscular mycorrhizal fungusGlomusmosseaeand plant growth-promoting fungi and their significance for enhancing plant growth and suppressing damping-off of cucumber (CucumissativusL.). Applied Soil Ecology, 2009, 41(3): 336- 341.

      [42] Liu R J, Dai M, Wu X, Li M, Liu X Z. Suppression of the root-knot nematode [Meloidogyneincognita(Kofoid amp; White) Chitwood] on tomato by dual inoculation with arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria. Mycorrhiza, 2012, 22(4): 289- 296.

      [43] Vigo C, Norman J R, Hooker J E. Biocontrol of the pathogenPhytophthoraparasiticaby arbuscular mycorrhizal fungi is a consequence of effects on infection loci. Plant Pathology, 2000, 49(4): 509- 514.

      [44] Whipps J M. Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Canadian Journal of Botany, 2004, 82(8): 1198- 1227.

      [45] Tabin T, Arunachalam A, Shrivastava K, Arunachalam K. Effect of arbuscular mycorrhizal fungi on damping-off disease inAquilariaagallochaRoxb. Seedlings. Tropical Ecology, 2009, 50(2): 243- 248.

      [46] Francl L J, Dropkin V H.Glomusfasciculatum, a weak pathogen ofHeteroderaglycines. Journal of Nematology, 1985, 17(4): 470- 475.

      [47] Li X Z, Liu R, Qin Z L. Discovery of vesicular-arbuscular mycorrhizal fungi colonized inHeteroderaglycinesin China. Acta Pedologica Sinica, 1994, 31(S1): 230- 233.

      [48] Eissenstat D M, Graham J H, Syvertsen J P, Drouillard D L. Carbon economy of sour orange in relation to mycorrhizal colonization and phosphprus status. Annals of Botany, 1993, 71(1): 1- l0.

      [49] Smith S E, Jakobssen I, Gr?nlund M, Smith F A. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiology, 2011, 156(3): 1050- 1057.

      [50] Harrier L A, Watson C A. The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Management Science, 2004, 60(2): 149- 157.

      [51] El-Khallal S M. Induction and modulation of resistance in tomato plants againstFusariumwilt disease by bioagent fungi (arbuscular mycorrhiza) and/ or hormonal elicitors (jasmine acid amp; salicylic acid): 1-changes in growth, some metabolic activities and endogenous hormones related to defence mechanism. Australian Journal of Basic and Applied Sciences, 2007, 1(4): 691- 705.

      [52] Castillo P, Nico A I, Azcón-Aguilar C, Del Río Rincón C, Calvet C, Jiménez-Díaz R M. Protection of olive planting stocks against parasitism of root-knot nematodes by arbuscular mycorrhizal fungi. Plant Pathology, 2006, 55(5): 705- 713.

      [53] Hause B, Mrosk C, Isayenkov S, Strack D. Jasmonates in arbuscular mycorrhizal interactions. Phytochemistry, 2007, 68(1): 101- 110.

      [54] He Z Q, Li H X, Tang H R. Effect of arbuscular mycorrhizal fungi on endogenous in Cucumber afterRhizoctoniasolaniinoculation. Chinese Agricultural Science Bulletin, 2010, 26(17): 187- 190.

      [55] Ortu G, Balestrini R, Pereira P A, Becker J D, Küster H, Bonfante P. Plant genes related to gibberellin biosynthesis and signaling are differentially regulated during the early stages of AM fungal interactions. Molecular Plant, 2012, 5(4): 951- 954.

      [56] Dugassa G D, Vonalten H, Schonbeck F. Effects of arbuscular mycorrhizal (AM) on health of linumusita tissimuml infected by fungal pathogens. Plant and Soil, 1996, 185(2): 173- 182.

      [57] Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology, 2005, 43(1): 205- 227.

      [58] Calcagno C, Novero M, Genre A, Bonfante P, Lanfranco L. The exudate from an arbuscular mycorrhizal fungus induces nitric oxide accumulation inMedicagotruncatularoots. Mycorrhiza, 2012, 22(4): 259- 269.

      [59] Besson-Bard A, Pugin A, Wendehenne D. New insights into nitric oxide signaling in plants. Annual Review of Plant Biology, 2008, 59(1): 2l- 39.

      [60] Kapoor R. Induced resistance in mycorrhizal tomato is correlated to concentration of jasmonic acid. Online Journal of Biological Sciences, 2008, 8(3): 49- 56.

      [61] Jalali B L, Bhargava S, Kamble A. Signal transduction and transcriptional regulation of plant defence responses. Journal of Phytopathology, 2006, 154(2): 65- 74.

      [62] Riedel T, Groten K, Baldwin I T. Symbiosis betweenNicotianaattenuataandGlomusintraradices: ethylene plays a role, jasmonic acid does not. Plant, Cell and Environment, 2008, 31(9): 1203- 1213.

      [63] Li H Y, Liu R J, Shu H R, Li Y.Chib1 andPAL5 directly involved in the defense responses induced by the arbuscular mycorrhizal fungusGlomusfasciculatusagainst nematode. Mycosystema, 2005, 24(3): 385- 393.

      [64] Liu J Y, Maldonado-Mendoza I, Lopez-Meyer M, Cheung F C, Town C D, Harrison M J. Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. The Plant Journal, 2007, 50(3): 529- 544.

      [65] Tahiri-Alaoui A, Frigotto L, Manville N, Ibrahim J, Romby P, James W. High affinity nucleic acid aptamers for streptavidin incorporated into bi-specific capture ligands. Nucleic Acids Research, 2002, 30(10): 30- 45.

      [66] Gallou A, Mosquera H P L, Cranenbrouck S, Suárezb J P, Declerck S. Mycorrhiza induced resistance in potato plantlets challenged byPhytophthorainfestans. Physiological and Molecular Plant Pathology, 2011, 76(1): 20- 26.

      [67] Isayenkov S, Mrosk C, Stenzel I, Strack D, Hause B. Suppression of allene oxide cyclase in hairy roots ofMedicagotruncatulareduces jasmonate levels and the degree of mycorrhization withGlomusintraradices. Plant Physiology, 2005, 139(3): 1401- 1410.

      [68] Fester T, Hause G. Accumulation of reactive oxygen species in arbuscular mycorrhizal roots. Mycorrhiza, 2005, 15(5): 373- 379.

      [69] de Román M, Fernández I, Wyatt T, Sahrawy M, Heil M, Poze M J. Elicitation of foliar resistance mechanisms transiently impairs root association with arbuscular mycorrhizal fungi. Journal of Ecology, 2011, 99(1): 36- 45.

      [70] Schwarz D, Welter S, George E, Franken P, Lehmann K, Weckwerth W, D?lle S, Worm M. Impact of arbuscular mycorrhizal fungi on the allergenic potential of tomato. Mycorrhiza, 2011, 21(5): 341- 349.

      [71] Kloppholz S, Kuhn H, Requena N. A secreted fungal effector ofGlomusintraradicespromotes symbiotic biotrophy. Current Biology, 2011, 21(14): 1204- 1209.

      參考文獻(xiàn):

      [8] 盧鑫萍, 杜茜, 閆永利, 馬琨, 王占軍, 蔣齊. 鹽漬化土壤根際微生物群落及土壤因子對(duì)AM真菌的影響. 生態(tài)學(xué)報(bào), 2012, 32(13): 4071- 4078.

      [12] 黃京華, 駱世明, 曾任森. 叢枝菌根菌誘導(dǎo)植物抗病的內(nèi)在機(jī)制. 應(yīng)用生態(tài)學(xué)報(bào), 2003, 14(5): 819- 822.

      [15] 王倡憲, 李曉林, 秦嶺, 王貴強(qiáng), 周建朝, 楊慧民. 利用叢枝菌根真菌提高植物抗病性研究進(jìn)展. 中國生物防治, 2007, 23(S1): 64- 69.

      [16] 李海燕, 劉潤進(jìn), 束懷瑞. 叢枝菌根真菌提高植物抗病性的作用機(jī)制. 菌物系統(tǒng), 2001, 20(3): 435- 439.

      [17] 劉潤進(jìn), 陳應(yīng)龍. 菌根學(xué). 北京: 科學(xué)出版社, 2007.

      [19] 崔衛(wèi)東, 龍宣杞, 侯新強(qiáng), 楊蓉, 補(bǔ)娟, 羅明. 黃萎病原菌脅迫對(duì)叢枝菌根化棉花幼苗根部防御性酶及超微結(jié)構(gòu)的影響. 新疆農(nóng)業(yè)科學(xué), 2009, 46(6): 1235- 1244.

      [31] 補(bǔ)娟, 崔衛(wèi)東, 羅明, 龍宣杞, 楊蓉. 接種叢枝菌根真菌對(duì)棉花生長和黃萎病的影響. 新疆農(nóng)業(yè)科學(xué), 2009, 46(3): 549- 555.

      [47] 李杏忠, 劉潤進(jìn), 秦志林. VAM真菌定殖于大豆胞囊線蟲在我國發(fā)現(xiàn). 土壤學(xué)報(bào), 1994, 31(S1): 230- 233.

      [54] 賀忠群, 李煥秀, 湯浩茹. 立枯絲核菌侵染下AMF對(duì)黃瓜內(nèi)源激素的影響. 中國農(nóng)學(xué)通報(bào), 2010, 26(17): 187- 190.

      Mechanismofbiologicalcontroltoplantdiseasesusingarbuscularmycorrhizalfungi

      LUO Qiaoyu, WANG Xiaojuan, LI Yuanyuan, LIN Shuangshuang, SUN Li, WANG Qiang, WANG Qian, JIN Liang*

      StateKeyLaboratoryofGrasslandAgro-Ecosystem,SchoolofPastoralAgricultureScienceandTechnology,LanzhouUniversity,Lanzhou730020,China

      Arbuscular mycorrhizal (AM) fungi are one of the widely spread micro-organisms, which could form symbionts with more than 80% of the vascular plants in natural ecosystems. It has been showed that AM symbionts could improve plant nutrients and water absorption; increase the resistance ability to stress conditions, thus AM fungi could enhance the host plant growth. The plant soil-borne diseases caused by soil-borne pathogens, including fungi, nematodes and bacteria, are considered as one of the most difficult controlling diseases in agriculture ecosystem. Previous studies have been demonstrated that AM symbionts could increase plant resistance to diseases, and to antagonize soil-borne pathogens. Thus, using AM fungi as a biological control method to antagonize soil-borne pathogens has

      increasing interests by phytopathologists and ecologists. On the basis of this, the mechanisms of resistance to diseases induced by AM fungi were summarized in this paper. Mechanisms covered in this review include root morphology alteration, regulation of secondary metabolite production, improvement of rhizosphere environments, competition with pathogenic microorganisms on invasive sites and on nutrition distribution in host plants, and formation of defense systems in plants. Firstly, the characteristics of root morphology alterations were explained, including how AM fungi influence their structures and functions. Secondly, the regulation of AM fungi to secondary metabolites was illustrated. Several types of products, including phytoalexin, callose, alkaloid and phenols were reviewed. Thirdly, AM fungi could improve the rhizosphere environments by influence soil physical and chemical proprieties, and enhance the growth of other beneficial microorganism in rhizosphere soil. Fourth, AM fungi could compete with pathogenic microorganisms. The two kinds of microorganisms maybe compete for the same invasive sites in root systems, and thus they could regulate the nutrition distribution. Fifth, AM fungi could induced the host plant to form the defense systems in plants, including improvement the concentrations of phytohormone, induced the production of signal substrates, regulation of genes expression and enhanced the proteins production, thus AM fungi could enhance the resistance ability of host plant to pathogenic microorganisms. The aim of this paper was to enhance the potential use of AM fungi as a biological control method for preventing plant diseases in future.

      arbuscular mycorrhizal fungi; host plants; pathogens; resistance to disease; biological control

      國家自然科學(xué)基金資助項(xiàng)目(No.31270558); 國家公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)經(jīng)費(fèi)資助(201203041); 蘭州大學(xué)中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金資助(lzujbky- 2013- 86)

      2013- 05- 30;

      2013- 07- 23

      *通訊作者Corresponding author.E-mail: liangjin@lzu.edu.cn

      10.5846/stxb201305301232

      羅巧玉, 王曉娟, 李媛媛, 林雙雙, 孫莉, 王強(qiáng), 王茜, 金樑.AM真菌在植物病蟲害生物防治中的作用機(jī)制.生態(tài)學(xué)報(bào),2013,33(19):5997- 6005.

      Luo Q Y, Wang X J, Li Y Y, Lin S S, Sun L, Wang Q, Wang Q, Jin L.Mechanism of biological control to plant diseases using arbuscular mycorrhizal fungi.Acta Ecologica Sinica,2013,33(19):5997- 6005.

      猜你喜歡
      菌根生物防治侵染
      揭示水霉菌繁殖和侵染過程
      植物內(nèi)生菌在植物病害中的生物防治
      外生菌根真菌菌劑的制備及保存研究
      園林科技(2020年2期)2020-01-18 03:28:26
      淺談林業(yè)有害生物防治
      蕓薹根腫菌侵染過程及影響因子研究
      甘藍(lán)根腫病菌休眠孢子的生物學(xué)特性及侵染寄主的顯微觀察
      植物病害生物防治
      重金屬污染土壤的生物修復(fù)——菌根技術(shù)的應(yīng)用
      棉花黃萎病拮抗菌的篩選及其生物防治效果
      煙草靶斑病(Thanatephorus cucumeris)侵染特性研究
      延津县| 宁都县| 孝昌县| 石家庄市| 富平县| 博爱县| 阿瓦提县| 齐齐哈尔市| 成武县| 晋宁县| 凯里市| 正安县| 兴宁市| 南澳县| 阿勒泰市| 丰城市| 教育| 全南县| 葫芦岛市| 南丹县| 满洲里市| 彰化县| 河北区| 东乌| 静宁县| 朝阳市| 鄂温| 西吉县| 长武县| 井冈山市| 汝州市| 二手房| 怀化市| 剑河县| 衡山县| 濮阳市| 广德县| 新安县| 西乌珠穆沁旗| 万宁市| 彭州市|