• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      干細(xì)胞移植治療青光眼的研究進(jìn)展

      2014-01-23 10:05:46羅靜張慧明魏為周亮張康
      關(guān)鍵詞:體細(xì)胞神經(jīng)節(jié)變性

      羅靜 張慧明 魏為 周亮 張康

      干細(xì)胞移植治療青光眼的研究進(jìn)展

      羅靜 張慧明 魏為 周亮 張康

      不可逆性的視網(wǎng)膜神經(jīng)細(xì)胞死亡和功能喪失是青光眼、老年黃斑變性等致盲性眼病的共同原因,目前沒(méi)有有效的治療方法修復(fù)已有的病變,恢復(fù)受損的視功能。2012年Schwartz等用人胚胎干細(xì)胞來(lái)源的視網(wǎng)膜色素上皮細(xì)胞移植進(jìn)入臨床實(shí)驗(yàn)用于治療年齡相關(guān)性黃斑變性,這標(biāo)志著干細(xì)胞替代治療進(jìn)入一個(gè)新的里程碑,也給青光眼的治療帶來(lái)了希望。本文綜述了干細(xì)胞移植治療青光眼的研究進(jìn)展。近年的研究發(fā)現(xiàn),胚胎干細(xì)胞在治療中樞神經(jīng)系統(tǒng)疾病中具有特別的優(yōu)勢(shì),是細(xì)胞移植治療視神經(jīng)疾病包括青光眼的極具前景的來(lái)源。隨著干細(xì)胞研究的不斷深入,誘導(dǎo)多能干細(xì)胞的問(wèn)世,為研究眼科難治性疾病的發(fā)病機(jī)制、開(kāi)發(fā)藥物治療和進(jìn)行細(xì)胞替代治療提供了新的資源。此外,Müller細(xì)胞,骨髓干細(xì)胞的的研究也為青光眼的干細(xì)胞移植治療提供了更多的干細(xì)胞來(lái)源。

      干細(xì)胞移植;視網(wǎng)膜神經(jīng)節(jié)細(xì)胞;青光眼

      青光眼是以視網(wǎng)膜神經(jīng)節(jié)細(xì)胞(retina ganglion cell,RGC)及其軸突漸進(jìn)變性進(jìn)而導(dǎo)致視盤(pán)的獨(dú)特表現(xiàn)并伴隨視力損失為特征的一組視神經(jīng)病變疾病[1]。它是一類(lèi)復(fù)雜的多因素導(dǎo)致的不可逆的致盲性疾病。雖然青光眼在我國(guó)的發(fā)病率低于白內(nèi)障,但由于手術(shù)可以有效地解決白內(nèi)障帶來(lái)的視力障礙,因此青光眼成為我國(guó)首要的不可逆性的致盲性疾病,其中原發(fā)性開(kāi)角型青光眼(POAG)最為普遍,但該疾病的生物學(xué)機(jī)制尚不清楚。年齡增長(zhǎng)、非洲后裔、家族史及眼內(nèi)壓(IOP)升高均是POAG的主要危險(xiǎn)因素。

      不可逆性的視網(wǎng)膜神經(jīng)細(xì)胞死亡和功能喪失是青光眼、老年黃斑病變、遺傳性視網(wǎng)膜色素變性、糖尿病視網(wǎng)膜病變、原發(fā)或繼發(fā)性視網(wǎng)膜變性疾病、視神經(jīng)損傷等眼部疾病的共同原因,從而導(dǎo)致永久性的視力喪失。而目前還沒(méi)有有效的技術(shù)和方法能阻止病變進(jìn)展,并有效恢復(fù)視網(wǎng)膜功能,從而給患者和社會(huì)帶來(lái)了巨大的經(jīng)濟(jì)負(fù)擔(dān)和社會(huì)負(fù)擔(dān)。

      青光眼的常規(guī)治療方案是通過(guò)藥物或者手術(shù)降低眼壓,這些治療可以有效控制這些疾病的病程進(jìn)展,但卻不能阻止由神經(jīng)節(jié)細(xì)胞死亡導(dǎo)致的視力喪失。在青光眼的晚期,超過(guò)90﹪的視網(wǎng)膜神經(jīng)節(jié)細(xì)胞被累及、凋亡,少量存活的神經(jīng)節(jié)細(xì)胞已經(jīng)無(wú)法逆轉(zhuǎn)青光眼導(dǎo)致的病理性改變[2-3]。雖然這些治療可以暫時(shí)控制這些疾病但不能修復(fù)已有的病變,阻止視力的喪失。RGC的損傷通常發(fā)生在兩個(gè)步驟:原發(fā)性的損傷和繼發(fā)于凋亡的變性。目前的治療大部分是針對(duì)前者,然而即使是原發(fā)性的損傷被控制,繼發(fā)性的病變?nèi)匀淮嬖?,因此,人們急切需要找到新的辦法,減少視網(wǎng)膜神經(jīng)節(jié)細(xì)胞原發(fā)和繼發(fā)性的損傷,從而挽救視功能。

      一、用于青光眼細(xì)胞替代治療的供體干細(xì)胞的研究進(jìn)展

      (一)干細(xì)胞替代治療進(jìn)展飛速

      干細(xì)胞是當(dāng)今細(xì)胞生物學(xué)乃至整個(gè)生命科學(xué)研究的主要熱點(diǎn)和前沿,干細(xì)胞因其具有自我更新、高度增殖及多向分化潛能,體內(nèi)移植后可以修復(fù)和替代受損的神經(jīng)細(xì)胞,使神經(jīng)再生成為可能,干細(xì)胞對(duì)治療以不可逆的細(xì)胞損傷為特點(diǎn)的疾病,具有極大的應(yīng)用價(jià)值。多數(shù)致盲性眼病,如青光眼、黃斑變性和視網(wǎng)膜色素變性等,均存在著細(xì)胞損傷和變性的病理過(guò)程,干細(xì)胞移植修復(fù)和替代變性缺失的神經(jīng)細(xì)胞為治療這類(lèi)致盲性眼病提供了可能性。

      2010年美國(guó)食品及藥物管理局批準(zhǔn)了用胚胎干細(xì)胞來(lái)源的RPE細(xì)胞治療黃斑變性的Ⅰ期和Ⅱ期臨床試驗(yàn),并取得良好的效果。2012年Schwartz等[4]用人胚胎干細(xì)胞來(lái)源的視網(wǎng)膜色素上皮細(xì)胞移植已經(jīng)進(jìn)入臨床實(shí)驗(yàn)用于治療年齡相關(guān)性黃斑變性,這標(biāo)志著眼科領(lǐng)域干細(xì)胞替代治療進(jìn)入一個(gè)新的里程碑,也給青光眼的細(xì)胞替代治療帶來(lái)了希望。

      (二)供體干細(xì)胞的來(lái)源

      成功的干細(xì)胞替代治療依賴于供體細(xì)胞能在移植后存活、移行入理想的部位,并且分化成為視網(wǎng)膜細(xì)胞來(lái)挽救視功能。目前報(bào)道用于視網(wǎng)膜移植的干細(xì)胞主要包括胚胎干細(xì)胞(embryonic stem cells,ESCs)、造血干細(xì)胞(hematopoietic stem cell,HSC)、骨髓間充質(zhì)干細(xì)胞(bone mesenchymal stem cell,BMSC)。以下將對(duì)這些細(xì)胞進(jìn)行綜述。

      1.胚胎干細(xì)胞(ESCs):ESCs是從哺乳動(dòng)物早期胚胎內(nèi)細(xì)胞團(tuán)(inner cell mass,ICM)或原始生殖細(xì)胞(primary germ cell,PGC)經(jīng)體外分離,抑制分化培養(yǎng)獲得的一種具有多向分化潛能的細(xì)胞,幾乎可以向所有的成年組織分化。在中樞神經(jīng)系統(tǒng),從小鼠、猴、人的ESCs來(lái)源的多巴胺能神經(jīng)元已被顯示在移植后可以在腦組織內(nèi)分化并在帕金森病的動(dòng)物模型中部分挽救其功能[5-9]。此外,從ESCs來(lái)源的少突細(xì)胞能修復(fù)脊髓外傷帶來(lái)的損害[10-12]。

      在確定的培養(yǎng)條件下,人胚胎干細(xì)胞(hESCs)可能分化為RGC細(xì)胞,因此有可能成為RGC移植的無(wú)限供體細(xì)胞來(lái)源。對(duì)于ESCs分化成RGC細(xì)胞的可行性已經(jīng)有一些評(píng)價(jià)指標(biāo)。研究發(fā)現(xiàn)培養(yǎng)的視網(wǎng)膜祖細(xì)胞可重復(fù)生成具有RGC細(xì)胞特有標(biāo)記Tuj,Islet1和Thy1的陽(yáng)性細(xì)胞,因此對(duì)于視網(wǎng)膜祖細(xì)胞而言分化成RGC細(xì)胞似乎存在一個(gè)特定的途徑[13]。將這些視網(wǎng)膜祖細(xì)胞注射到小鼠玻璃體腔后可與RGC層整合。

      與自發(fā)分化相比,小鼠PA6細(xì)胞系的間質(zhì)細(xì)胞衍生誘導(dǎo)活性(SDIA)使得ESCs細(xì)胞向RGC細(xì)胞的分化更快且更有效[14]。Haruta及團(tuán)隊(duì)[15]利用SDIA使猴ESCs向RX+/PAX6+視網(wǎng)膜祖細(xì)胞分化。Aoki等[16]用SDIA處理小鼠ESCs,證明生成的RPE65陽(yáng)性的RPE細(xì)胞可以整合到發(fā)育中的小雞眼球RPE層中。利用SDIA將人ESCs細(xì)胞分化成CRALBP/bestrophin+ RPE細(xì)胞已見(jiàn)報(bào)道[17]。

      胚胎發(fā)育學(xué)研究發(fā)現(xiàn)[18]脊椎動(dòng)物中六種主要的視網(wǎng)膜神經(jīng)元和一種膠質(zhì)細(xì)胞是以恒定有序的方式生成的:視網(wǎng)膜神經(jīng)節(jié)細(xì)胞(RGCs)通常最先產(chǎn)生。前腦的發(fā)育需要同時(shí)拮抗BMP和WNT信號(hào)通道[19-24]。為驅(qū)使ESCs向前部神經(jīng)元分化,Lamba小組研究了視網(wǎng)膜特定的分化條件,也就是將小分子藥物noggin(BMP通道的潛在的內(nèi)源性的抑制劑)和Dickkopf-1[25](DKK1,Wnt/B-catenin信號(hào)通道的拮抗劑),還有胰島素樣生長(zhǎng)因子(insulinlike growth factor-1,IGF-1)[26]添加入hESCs細(xì)胞體,培養(yǎng)3 d后轉(zhuǎn)入包被了Matrigel或是lamin的六孔板中讓其粘附。然后加入bFGF培養(yǎng)3周。在ESCs暴露于特定的分化條件1周,2周,3周后提取細(xì)胞RNA并分析眼源性轉(zhuǎn)錄因子(eye fi eld transcription factors,EFTFs)的表達(dá),結(jié)果發(fā)現(xiàn)在分化后的細(xì)胞中這些轉(zhuǎn)錄因子,包括Rx、Pax6、Lhx2、Six3比未分化或者未干預(yù)分化的ESCs表達(dá)量增加了75 ~ 165倍。雖然以前的研究表明Noggin或者Dkk1可以促進(jìn)前部神經(jīng)元的分化,IGF-1的加入尤其促進(jìn)了ESCs向視網(wǎng)膜前體細(xì)胞分化。去除該因子將急劇減少視網(wǎng)膜前體細(xì)胞基因表達(dá)。通過(guò)免疫組織化學(xué)染色,分化后的ESCs表達(dá)視網(wǎng)膜前體細(xì)胞的標(biāo)記物如Pax6和Chx10。定量分析顯示,條件培養(yǎng)液培養(yǎng)3周后,82﹪的細(xì)胞表達(dá)Pax6,其中,86﹪同時(shí)表達(dá)Chx10,多數(shù)Pax6 表達(dá)的細(xì)胞同時(shí)也表達(dá)Sox2。

      這些數(shù)據(jù)顯示在視網(wǎng)膜條件培養(yǎng)液的影響下,大部分hESCs可分化成各種類(lèi)型的視網(wǎng)膜前體細(xì)胞。通過(guò)免疫熒光染色檢測(cè)發(fā)現(xiàn),這些視網(wǎng)膜前體細(xì)胞大部分都表達(dá)Pax6,尤其表達(dá)增高的細(xì)胞同時(shí)還表達(dá)神經(jīng)節(jié)細(xì)胞和無(wú)長(zhǎng)突細(xì)胞的標(biāo)記物如HuC/D、Neuro fi lament-M和Tuj-1。其他細(xì)胞則表達(dá)感光細(xì)胞的標(biāo)記物如Crx、Nrl、recoverin、S-opsin、rhodopsin以及水平細(xì)胞和無(wú)長(zhǎng)突細(xì)胞的標(biāo)記物Proxl、雙極細(xì)胞的標(biāo)記物PKCa。此外,qPCR的結(jié)果顯示在視網(wǎng)膜條件培養(yǎng)液下培養(yǎng)1周,Crx的水平顯著而穩(wěn)定地增高,而感光細(xì)胞的其他分化標(biāo)記物如opsins、PDE-B和recovery僅中度增加,但隨著體外培養(yǎng)時(shí)間的延長(zhǎng),它們的表達(dá)穩(wěn)定地增長(zhǎng)。這一發(fā)現(xiàn)也符合視網(wǎng)膜發(fā)育過(guò)程中基因表達(dá)的特點(diǎn):首先是Crx,然后是recoverin,PDE-B,最后是opsin。人91 d胚胎視網(wǎng)膜EFTF的表達(dá)和分化3周hESCs的視網(wǎng)膜前體細(xì)胞基因表達(dá)類(lèi)似。這一結(jié)果顯示hESCs在條件視網(wǎng)膜培養(yǎng)液的影響下,其基因和蛋白表達(dá)譜和人視網(wǎng)膜的前體細(xì)胞,神經(jīng)元細(xì)胞以及感光細(xì)胞高度一致。因此,hESCs是提供視網(wǎng)膜神經(jīng)元和感光細(xì)胞損傷后修復(fù)的優(yōu)良的來(lái)源。

      Lamb的研究最具突破性的地方是同正常視網(wǎng)膜胚胎發(fā)育相比,這種培養(yǎng)方法加速了視網(wǎng)膜的“發(fā)展”時(shí)間,在分化后不到2周的時(shí)間,細(xì)胞已經(jīng)獲得眼源的特征,并且可特定分化為神經(jīng)視網(wǎng)膜。在人的胚胎期,視神經(jīng)泡直到Streeter的水平11或者12[27],或者是排卵后24 ~ 25 d才出現(xiàn)。內(nèi)層的“原始神經(jīng)母細(xì)胞層”和視神經(jīng)纖維的發(fā)育,預(yù)示著視網(wǎng)膜神經(jīng)節(jié)細(xì)胞的發(fā)生,通常在排卵后大約第6周才出現(xiàn)。hESC在培養(yǎng)3周后和91 d胎齡的人的視網(wǎng)膜的基因表達(dá)一致,可見(jiàn)hESCs加速了3 ~ 4周的正常視網(wǎng)膜的發(fā)育時(shí)間進(jìn)程。

      然而,ESCs植入視網(wǎng)膜下腔后容易形成玫瑰花結(jié)樣的結(jié)構(gòu),且有成瘤化傾向,使得它的研究和使用受到了一定的限制。此外,ESCs的倫理學(xué)問(wèn)題也仍然是目前的爭(zhēng)論焦點(diǎn)之一。

      2.誘導(dǎo)多能干細(xì)胞(induced pluripotent stem cell,iPSC):Takahashi等[28]于2006年報(bào)道了iPSC的發(fā)現(xiàn),一些研究[29-32]也證實(shí)通過(guò)四種轉(zhuǎn)錄因子,oct-3/4,Sox2,c-Myc和Klf4,可使自體細(xì)胞轉(zhuǎn)化為iPSC。這些細(xì)胞在與ESCs培養(yǎng)條件相同的條件下表現(xiàn)出與ESCs形態(tài)、生長(zhǎng)特性相似的特點(diǎn),并表達(dá)ESCs標(biāo)志基因,而且在移植到裸鼠皮下后形成的腫瘤樣結(jié)構(gòu)中包括了來(lái)自3個(gè)胚層的多種類(lèi)型的組織,將其注入小鼠胚泡后發(fā)現(xiàn)iPSC可參與到小鼠的胚胎發(fā)育過(guò)程中。該研究證明了已分化的細(xì)胞通過(guò)細(xì)胞重新編程可重回到類(lèi)似ESCs的未分化狀態(tài)。2010年,美國(guó)學(xué)者Lamba等[33]從人成纖維細(xì)胞誘導(dǎo)產(chǎn)生誘導(dǎo)多能干細(xì)胞,進(jìn)而誘導(dǎo)其向視網(wǎng)膜干細(xì)胞及感光細(xì)胞分化。他們將這些細(xì)胞移植到正常成年小鼠視網(wǎng)膜下腔,觀察到供體細(xì)胞能夠整合到受體并表達(dá)視網(wǎng)膜感光細(xì)胞標(biāo)記物。這些細(xì)胞具備胚胎干細(xì)胞的特征,同時(shí)避免了使用胚胎干細(xì)胞所涉及的倫理問(wèn)題。另外,可以制備針對(duì)患者的無(wú)免疫原性細(xì)胞,使自體細(xì)胞移植成為可能,避免移植后的免疫排斥反應(yīng)。

      目前研究認(rèn)為,iPSC與ESCs相似,可被誘導(dǎo)分化為多種細(xì)胞類(lèi)型,在眼科領(lǐng)域,iPSC可被誘導(dǎo)分化成為多種視網(wǎng)膜細(xì)胞類(lèi)型。Parameswaran等[34]研究認(rèn)為,iPSC可分化為視網(wǎng)膜前體樣細(xì)胞,進(jìn)而分化為包括光感受器(視錐、視桿)及視網(wǎng)膜神經(jīng)節(jié)細(xì)胞在內(nèi)的多種視網(wǎng)膜細(xì)胞類(lèi)型,而且iPSC可對(duì)視網(wǎng)膜組織發(fā)生早期或晚期的微環(huán)境做出反應(yīng),使其分化為視網(wǎng)膜細(xì)胞類(lèi)型具有時(shí)期特異性。iPSC的研究進(jìn)展使體細(xì)胞直接編程并使其成為具有多向分化潛能的狀態(tài)。

      視網(wǎng)膜細(xì)胞的分化在分子水平被精確地調(diào)控。以前的研究證實(shí)幾種眼源性的轉(zhuǎn)錄因子(EFTFs)-包括Pax6、Rx1、Lbx2、otx2、Six3、ET和Six6-是眼形成所必須的[35],并且ERTFs形成了眼的自我調(diào)節(jié)系統(tǒng)。視網(wǎng)膜神經(jīng)節(jié)細(xì)胞是視網(wǎng)膜形成過(guò)程中最先產(chǎn)生的細(xì)胞。Pax6、Mathematical和Notch是調(diào)節(jié)形成視網(wǎng)膜神經(jīng)節(jié)細(xì)胞的主要特定轉(zhuǎn)錄調(diào)控因子[36-37]。在誘導(dǎo)重組的四種轉(zhuǎn)錄因子中,Sox2是其中一種基本的重組因子并且可能致力于使iPS細(xì)胞分化為神經(jīng)源性的細(xì)胞[38-39]。Sox2在中樞神經(jīng)系統(tǒng)的神經(jīng)干細(xì)胞中表達(dá),同時(shí)也是神經(jīng)視網(wǎng)膜前體細(xì)胞的標(biāo)記物[40-41]。Sox2在人眼的發(fā)育過(guò)程中起著關(guān)鍵的作用,其變異將導(dǎo)致無(wú)眼畸形[42]。Sox2是維持神經(jīng)前體細(xì)胞的特性所必須的,條件性去除視網(wǎng)膜中的Sox2會(huì)導(dǎo)致神經(jīng)前體細(xì)胞喪失競(jìng)爭(zhēng)性分化的能力[43]。

      Sox2和Pax6及Otx2相關(guān),表達(dá)在神經(jīng)盤(pán)中,并且相互配合控制眼的發(fā)育[44]。Sox2自發(fā)調(diào)節(jié)或者交叉調(diào)節(jié)Pax6,并且Sox2的表達(dá)激活Pax6在Y79細(xì)胞中的表達(dá)。此外,Sox2和Otx2蛋白直接上調(diào)和共同調(diào)節(jié)視網(wǎng)膜同源性基因Rx[45]。這些研究認(rèn)為通過(guò)包含Sox2的轉(zhuǎn)錄因子產(chǎn)生的重組多能干細(xì)胞也許可以分化為視網(wǎng)膜神經(jīng)細(xì)胞。Math5在決定視網(wǎng)膜神經(jīng)節(jié)細(xì)胞形成的基因調(diào)節(jié)中起著重要的作用[46-47]。Pax6直接激活Math5[48-49],Hes1、Hes5通過(guò)在小鼠視網(wǎng)膜形成過(guò)程中抑制Math5維持前體細(xì)胞的特性[50],并且Notch活性剛好在視網(wǎng)膜神經(jīng)節(jié)細(xì)胞分化前下調(diào)[51]。Math5在視網(wǎng)膜神經(jīng)節(jié)前體細(xì)胞中的表達(dá)增加,啟動(dòng)了iPS定向分化為RGC的轉(zhuǎn)錄調(diào)控。

      研究顯示iPS細(xì)胞自身能表達(dá)視網(wǎng)膜前體細(xì)胞相關(guān)的基因,如Pax6、Rx、Otx2、Lbx2和nestin。通過(guò)轉(zhuǎn)染Dkk1+ Lefty A(DL)和Dkk1 +Noggin(DN)上調(diào)Pax6,通過(guò)促使Math5的過(guò)量表達(dá)激活了iPS細(xì)胞中視網(wǎng)膜神經(jīng)節(jié)細(xì)胞的基因表達(dá),此外DAPT(r-secretase inhibitor)的應(yīng)用可抑制Hes1,從而促使iPS細(xì)胞分化成神經(jīng)元樣的細(xì)胞。這種細(xì)胞顯示有長(zhǎng)的突觸并表達(dá)Brn3b、Islet-1和Thy1.2等視網(wǎng)膜神經(jīng)節(jié)細(xì)胞的標(biāo)記物。在玻璃體腔注射細(xì)胞四周后,免疫化學(xué)檢測(cè)證實(shí)細(xì)胞能夠存活但不能分化整合進(jìn)入正常的視網(wǎng)膜。分析認(rèn)為正常視網(wǎng)膜環(huán)境能阻礙移植物的整合,但視網(wǎng)膜的損傷模型也許能使細(xì)胞的整合成為可能。如果受體和供體視網(wǎng)膜處于發(fā)育相當(dāng)?shù)臅r(shí)期,那么移植的細(xì)胞整合入成人或變性的視網(wǎng)膜中的幾率將增高[52]。同樣 GFAP和Vimentin缺陷的小鼠為移植細(xì)胞存活,移行和形成neuritis提供了可能的環(huán)境[53]。在缺氧損傷的條件下神經(jīng)前體細(xì)胞移植入視網(wǎng)膜下腔的環(huán)境時(shí)能整合入受體的視網(wǎng)膜[54]。這些研究認(rèn)為缺陷或變性的視網(wǎng)膜有利于移植細(xì)胞的移行,因此在小鼠的青光眼模型中移植分化的iPS細(xì)胞有可能增加移植細(xì)胞整合的效率。

      3.Müller細(xì)胞:在低等脊椎動(dòng)物,Müller細(xì)胞可以產(chǎn)生RGCs,甚至成年動(dòng)物的視神經(jīng)可以再生。而在脊椎動(dòng)物,Müller細(xì)胞可能同樣具有成為神經(jīng)再生的細(xì)胞來(lái)源之一[55]。一種自發(fā)性的永生型Müller細(xì)胞系顯示了干細(xì)胞樣的特征,它在合適的培養(yǎng)條件下能移行和分化為不同的視網(wǎng)膜細(xì)胞類(lèi)型[56-57]。在青光眼的動(dòng)物模型中,通過(guò)調(diào)節(jié)細(xì)胞外基質(zhì)和控制微膠質(zhì)的活性,可以促進(jìn)Müller細(xì)胞移行入RGC層[58-59]。

      Müller細(xì)胞是視網(wǎng)膜干細(xì)胞/前體細(xì)胞產(chǎn)生的膠質(zhì)細(xì)胞[60],它從內(nèi)界膜一直延伸到外界膜貫穿了整個(gè)視網(wǎng)膜。Müller細(xì)胞的神經(jīng)突在視網(wǎng)膜不同類(lèi)型的神經(jīng)元細(xì)胞胞體中分布,并且和視網(wǎng)膜神經(jīng)元形成進(jìn)一步的連接[61-62]。近年的研究表明Müller細(xì)胞是潛在的視網(wǎng)膜干細(xì)胞,不同類(lèi)型的刺激物可以誘導(dǎo)斑馬魚(yú)、雞和成年大鼠視網(wǎng)膜Müller細(xì)胞的再分化[63-65]。這些重新分化的視網(wǎng)膜Müller細(xì)胞呈現(xiàn)出干細(xì)胞的特性,并能分化為神經(jīng)元,包括視網(wǎng)膜神經(jīng)節(jié)細(xì)胞。然而,在上述研究中神經(jīng)節(jié)細(xì)胞分化的效率太低,不足以替代和補(bǔ)償在神經(jīng)元疾病包括青光眼中受損或者死亡的視網(wǎng)膜神經(jīng)節(jié)細(xì)胞。因此,促進(jìn)Müller細(xì)胞向視網(wǎng)膜神經(jīng)節(jié)細(xì)胞的分化也將成為青光眼或者視神經(jīng)變性疾病的另一種方法。

      目前有兩種方法用于誘導(dǎo)視網(wǎng)膜Müller細(xì)胞的重新分化,一種是使用N-methyl-D-aspartate(NMDA)或者其他化學(xué)物誘導(dǎo)損傷,另一種方法是加入不同的細(xì)胞生長(zhǎng)因子。最近,Song等[66]使用無(wú)血清的培養(yǎng)基DMEM/F12中添加EGF、bFGF、BDNF和RA,從而誘導(dǎo)出視網(wǎng)膜Müller細(xì)胞的再分化。Atoh通過(guò)抑制Notch1的表達(dá),促進(jìn)了具有干細(xì)胞分化特性的Müller細(xì)胞體外向中視網(wǎng)膜神經(jīng)節(jié)細(xì)胞分化,使分化后的細(xì)胞表達(dá)特異性的標(biāo)記物Brn3b和Isl-1。

      4.骨髓干細(xì)胞:骨髓中至少存在2種多能干細(xì)胞,即造血干細(xì)胞(HSC)和骨髓間充質(zhì)干細(xì)胞(bone mesenchymal stem cell,BMSC)。

      HSC是目前研究最成熟的干細(xì)胞類(lèi)型,容易獲得,體外培養(yǎng)能大量擴(kuò)增并保持多向分化的潛能,能分化為神經(jīng)細(xì)胞和神經(jīng)膠質(zhì)細(xì)胞。HSC是體內(nèi)各種血細(xì)胞的唯一來(lái)源,主要存在于骨髓、外周血、臍帶血中,是最早應(yīng)用于臨床治療的干細(xì)胞。在小鼠和人中已經(jīng)有多種方法用來(lái)分離和標(biāo)記HSC。在多種視網(wǎng)膜變性疾病中,除光感受器細(xì)胞變性外,還常常伴隨著視網(wǎng)膜血管萎縮的出現(xiàn)。研究表明,骨髓來(lái)源的Lin-HSC含有內(nèi)皮祖細(xì)胞,能夠穩(wěn)定和恢復(fù)變性的視網(wǎng)膜血管,同時(shí)還具有神經(jīng)保護(hù)作用。

      BMSC則是骨髓中一類(lèi)可以向多種非造血細(xì)胞分化的干細(xì)胞,數(shù)量少,成人骨髓平均每10萬(wàn)個(gè)有核細(xì)胞中含有1個(gè),隨著年齡的增加,細(xì)胞數(shù)量逐漸減少,且在生理狀態(tài)下20﹪為靜止期細(xì)胞,具有強(qiáng)大的擴(kuò)增能力。BMSC不僅具有較強(qiáng)的自我復(fù)制能力,而且在體內(nèi)外還具有多分化潛能,在體外不同的誘導(dǎo)條件下可分化為骨細(xì)胞、軟骨細(xì)胞、脂肪細(xì)胞、肌腱、肌肉細(xì)胞和神經(jīng)細(xì)胞等多種細(xì)胞。此外,作為中胚葉干細(xì)胞在一定的微環(huán)境和(或)誘導(dǎo)劑存在時(shí),能跨系分化為外胚葉的視網(wǎng)膜細(xì)胞,并具有較強(qiáng)的分化潛能。研究者將BMSC移植至視網(wǎng)膜損傷或變性大鼠的玻璃體腔或視網(wǎng)膜下腔后,觀察到移植細(xì)胞主要與視網(wǎng)膜外核層發(fā)生整合,并表達(dá)成熟視網(wǎng)膜神經(jīng)細(xì)胞的標(biāo)記物。Li等[67]在動(dòng)物模型中證實(shí):成人骨髓來(lái)源的干細(xì)胞能夠在體內(nèi)誘導(dǎo)成RPE。

      骨髓干細(xì)胞既可以用于細(xì)胞替代治療,也可以通過(guò)分泌細(xì)胞因子發(fā)揮神經(jīng)保護(hù)作用。玻璃體腔注射神經(jīng)營(yíng)養(yǎng)因子可以在動(dòng)物模型如RP、青光眼模型、視神經(jīng)損傷模型中減少感光細(xì)胞的變性,但其效果是短暫的。緩釋藥物和基因治療是兩種長(zhǎng)期作用的誘導(dǎo)細(xì)胞分化神經(jīng)營(yíng)養(yǎng)因子的辦法,第三種辦法是使用干細(xì)胞作為長(zhǎng)期傳遞系統(tǒng),因?yàn)楣撬韪杉?xì)胞自身就分泌神經(jīng)營(yíng)養(yǎng)因子或者可被誘導(dǎo)分泌神經(jīng)營(yíng)養(yǎng)因子[68-70]。

      二、目前存在的問(wèn)題和挑戰(zhàn)

      盡管干細(xì)胞的替代治療有迷人的前景,但在當(dāng)前干細(xì)胞研究中也存在著大量亟待解決的問(wèn)題,如取材和移植的方法、誘導(dǎo)分化、功能重建和消除免疫排斥反應(yīng)等。因此仍有許多因素如安全等需要慎重考慮并嚴(yán)格進(jìn)行驗(yàn)證。

      從hESCs分化生成RGCs并作為健康的移植物取代青光眼中喪失的RGCs為患者帶來(lái)希望,但是這種方法仍存在局限性。不同hESC細(xì)胞系生成的RGCs的質(zhì)量存在著相當(dāng)大的差異,而且使用新鮮的胎兒組織有明顯的局限性[71-72]。更重要的是,來(lái)源于hESCs的RGC不再是自體同源,RGC細(xì)胞移植可能導(dǎo)致急促而顯著的移植排斥反應(yīng)。利用自體的體細(xì)胞誘導(dǎo)形成iPSC,從而生成RGC是免除RGC移植后需要長(zhǎng)期全身使用免疫抑制的一種方法。但是由于iPS細(xì)胞的轉(zhuǎn)化中使用癌基因及逆轉(zhuǎn)錄病毒,腫瘤形成的危險(xiǎn)性有待進(jìn)一步確定。HSC容易獲得、體外擴(kuò)增培養(yǎng)并可自體移植,在體外培養(yǎng)條件下多代擴(kuò)增后仍保持多向分化潛能的特點(diǎn),且體內(nèi)植入免疫排斥反應(yīng)弱,不存在倫理學(xué)問(wèn)題等特點(diǎn)賦予它誘人的應(yīng)用前景。缺點(diǎn)是中胚葉起源的HSC向神經(jīng)外胚葉起源的視網(wǎng)膜細(xì)胞分化率低。

      此外,更要清醒地認(rèn)識(shí)到,體外誘導(dǎo)RGC的分化,只是干細(xì)胞替代治療的第一步。如何提高其轉(zhuǎn)化效率、尋找到有效的移植途徑、利用生物材料促進(jìn)體內(nèi)RGCs的存活和體內(nèi)分化、生長(zhǎng)并形成功能性的連接,從而使RGC的治療能夠真正應(yīng)用于臨床治療青光眼或者其他視神經(jīng)疾病將是人們進(jìn)一步探索的方向。

      1 Weinreb RN,Khaw PT.Primary open-angle glaucoma[J].Lancet,2004,363(9422):1711-1720.

      2 Brubaker RF.Delayed functional loss in glaucoma.LII Edward Jackson Memorial Lecture[J].Am J Ophthalmol,1996,121(5):473-483.

      3 Kato K,Sasaki N,Shastry.BS.Retinal ganglion cell (RGC) death in glaucomatous beagles is not associated with mutations in p53 and NTF4 genes[J].Vet Ophthalmol,2012,15(suppl 2):8-12.

      4 Schwartz SD,Hubschman JP,Heilwell G,et al.Embryonic stem cell trials for macular degeneration: a preliminary report[J].Lancet,2012,379(9817):713-720.

      5 Bjorklund LM,Sanchez-Pernaute R,Chung S,et al.Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model[J].Proc Natl Acad Sci USA,2002,99(4): 2344-2349.

      6 Kim JH,Auerbach JM,Rodríguez-Gómez JA,et al.Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease[J].Nature,2002,418(6893):50-56.

      7 Nishimura F,Yoshikawa M,Kanda S,et al.Potential use of embryonic stem cells for the treatment of mouse parkinsonian models: improved behavior by transplantation of in vitro differentiated dopaminergic neurons from embryonic stem cells[J].Stem Cells,2003,21(2):171-180.

      8 Takagi Y,Takahashi J,Saiki H,et al.Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model[J].J.Clin.Invest,2005,115(1):102-109.

      9 Sanchez-Pernaute R,Studer L,Ferrari D,et al.Long-term survival of dopamine neuron derived from parthenogenetic primate embryonic stem cells[J].Stem Cells,2005,23(7):914-922.

      10 Nistor GI,Totoiu MO,Haque N,et al.Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation[J].Glia,2005,49(3):385-396.

      11 Liu S,Qu Y,Stewart TJ,et al.Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation[J].Proc Natl Acad Sci USA,2000,97(11):6126-6131.

      12 Mueller D,Shamblott MJ,Fox HE,et al.Transplanted human embryonic germ cell-derived neural stem cells replace neurons and oligodendrocytes in the forebrain of neonatal mice with excitotoxic brain damage[J].J Neurosci Res,2005,82(5):592-608.

      13 Lund RD,Wang S,Klimanskaya I,et al.Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats[J].Cloning Stem Cells,2006,8(3):189-199.

      14 Kawasaki H,Mizuseki K,Nishikawa S,et al.Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity[J].Neuron,2000,28 (1):31-40.

      15 Haruta M,Sasai Y,Kawasaki H,et al.In vitro and in vivo characterization of pigment epithelial cells differentiated from primate embryonic stem cells[J].Invest Ophthalmol Vis Sci,2004,45(3):1020-1025.

      16 Aoki H,Hara A,Nakagawa S,et al.Embryonic stem cells that differentiate into RPE cell precursors in vitro develop into RPE cell monolayers in vivo[J].Exp Eye Res,2006,82(2):265-274.

      17 Gong J,Sagiv O,Cai H,et al.Effects of extracellular matrix and neighboring cells on induction of human embryonic stem cells into retinal or retinal pigment epithelial progenitors[J].Exp Eye Res,2008,86(6):957-965.

      18 Zaghloul NA,Yan B,& Moody SA.Step-wise speci fi cation of retinal stem cells during normal embryogenesis[J].Biol.Cell,2005,97(5):321-337.

      19 Mukhopadhyay M,Shtrom S,Rodriguez-Esteban C,et al.Dickkopfl is required for embryonic head induction and limb morphogenesis in the mouse[J].Dev Cell,2001,1(3):423-434.

      20 Anderson RM,Lawrence AR,Stottmann RW,et al.Chordin and noggin promote organizing centers of forebrain development in the mouse[J].Development (Cambridge,U.K.),2002,129(21):4975-4987.

      21 Bachiller D,Klingensmith J,Kemp C,et al,The organizer factors Chordin and Noggin are required for mouse forebrain development[J].Nature,2000,403(6770): 658-661.

      22 Lamb TM,Knecht AK,Smith WC,et al.Neural induction by the secreted polypeptide noggin[J].Science,1993,262(5134):713-718.

      23 Smith WC,Knecht AK,Wu M,et al.Secreted noggin protein mimics the Spemann organizer in dorsalizing Xenopus mesoderm[J].Nature,1993,361(6412):547-549.

      24 Hemmati-Brivanlou A,Kelly OG,Melton DA.Follistatin,an antagonist of activin,is expressed in the Spemann organizer and displays direct neuralizing activity[J].Cell,1994,77(2):283-295

      25 Glinka A,Wu W,Delius H,et al.Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction[J].Nature,1998,391(6665):357-362.

      26 Pera EM,Wessely O,Li SY,et al.Neural and Head Induction by Insulin-like Growth Factor Signals[J].Dev Cell,2001,1(5):655-665.

      27 O’Rahilly R.The timing and sequence of events in the development of the human eye and ear[J].Anat Embryol (Berlin),1983,168(1):87-99.

      28 Takahashi K,Yamanaka S.Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by de fi ned factors[J].Cell,2006,126(4):663-676.

      29 Takahashi K,Tanabe K,Ohnuki M,et al.Induction of pluripotent stem cells from adult human fibroblasts by de fi ned factors[J].Cell,2007,131(5):861-872.

      30 Yu J,Vodyanik MA,Smuga-Otto K,et al.Induced pluripotent stem cell lines derived from human somatic cells[J].Science,2007,318((5858):1917-1920.

      31 Park IH,Zhao R,West JA,et al.Reprogramming of human somatic cells to pluripotency with defined factors[J].Nature,2008,451(7175):141-146.

      32 Lowry WE,Richter L,Yachechko R,et al.Generation of human induced pluripotent stem cells from dermal fibroblasts[J].Proc Natl Acad Sci USA,2008,105(8):2883-2888.

      33 Lamba DA,McUsic A,Hirata RK,et al.Generation,puri fi cation and transplantation of photoreceptors derived from human induced pluripotent stem cells[J].PLoS One,.2010,5(1):e8763.

      34 Parameswaran S,Balasubramanian S,Babai N,et al.Induced pluripotent stem cells generate both retinal ganglion cells and photoreceptors: therapeutic implications in degenerative changes in glaucoma and age-related macular degeneration.Stem Cells.2010 ,28(4):695-703.

      35 Zuber ME,Gestri G,Viczian AS,et al.Specification of the vertebrate eye by a network of eye field transcription factors[J].Development,2003,130(21):5155-5167.

      36 Mu X,Klein WH.A gene regulatory hierarchy for retinal ganglion cell specification and differentiation[J].Semin Cell Dev Biol,2004,15(1):115-123.

      37 Mu X,Fu X,Sun H,et al.A gene network downstream of transcription factor Math5 regulates retinal progenitor cell competence and ganglion cell fate[J].Dev Biol,2005,280(2):467-481.

      38 Yamanaka S.Strategies and new developments in the generation of patient-speci fi c pluripotent stem cells[J].Cell Stem Cell,2007,1(1): 39-49.

      39 Huangfu D,Osafune K,Maehr R,et al.Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2[J].Nat Biotechnol,2008,26:1269-1275.

      40 Ferri AL,Cavallaro M,Braida D,et al.Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain[J].Development,2004,131(15):3805-3819.

      41 Ellis P,Fagan BM,Magness ST,et al.Sox2,a persistent marker formultipotential neural stem cells derived from embryonic stem cells,the embryo or the adult[J].Dev Neurosci,2004,26(2-4):148-165.

      42 Fantes J,Ragge NK,Lynch SA,et al.Mutations in Sox2 cause anophthalmia[J].Nat Genet,2003,33(4):461-463.

      43 Taranova OV,Magness ST,Fagan BM,et al.Sox2 is a dose-dependent regulator of retinal neural progenitor competence[J].Genes Dev,2006,20(9):1187-1202.

      44 Hever AM,Williamson KA,van Heyningen V.Developmental malformations of the eye: the role of Pax6,Sox2 and Otx2[J].Clin Genet,2006,69(6):459-470.

      45 Danno H,Michiue T,Hitachi K,et al.Molecular links among the causative genes for ocular malformation: Otx2 and Sox2 coregulate Rax expression[J].Proc Natl Acad Sci USA,2008,105(14):5408-5413.

      46 Mu X,Klein WH.A gene regulatory hierarchy for retinal ganglion cell specification and differentiation[J].Semin Cell Dev Biol,2004,15(1):115-123.

      47 Mu X,Fu X,Sun H,et al.A gene network downstream of transcription factor Math5 regulates retinal progenitor cell competence and ganglion cell fate[J].Dev Biol,2005,280(2):467-481

      48 Marquardt T,Ashery-Padan R,Andrejewski N,et al.Pax6 is required for the multipotent state of retinal progenitor cells[J].Cell,2001,105(1):43-55.

      49 Riesenberg AN,Le TT,Willardsen MI,et al.Pax6 regulation of Math5 during mouse retinal neurogenesis[J].Genesis,2009,47(3):175-187.

      50 Mu X,Klein WH.A gene regulatory hierarchy for retinal ganglion cell specification and differentiation[J].Semin Cell Dev Biol,2004,15(1):115-123.

      51 Nelson BR,Gumuscu B,Hartman BH,et al.Notch activity is downregulated just prior to retinal ganglion cell differentiation[J].Dev Neurosci,2006,28(1-2):128-141.

      52 MacLaren RE,Pearson RA,MacNeil A,et al.Retinal repair by transplantation of photoreceptor precursors[J].Nature,2006,444(7116):203-207.

      53 Kinouchi R,Takeda M,Yang L,et al.Robust neural integration from retinal transplants in mice deficient in GFAP and vimentin[J].Nat Neurosci,2003,6(8):863-868.

      54 Guo Y,Saloupis P,Shaw SJ,et al.Engraftment of adult neural progenitor cells transplanted to rat retina injured by transient ischemia[J].Invest Ophthalmol Vis Sci,2003,44(7):3194-3201.

      55 Wohl SG,Schmeer CW,Kretz A,et al.Optic nerve lesion increases cell proliferation and nestin expression in the adult mouse eye in vivo[J].Exp.Neurol,2009,219(1):175-186.

      56 Limb GA,Salt TE,Munro PM,et al.In vitro characterization of a spontaneously immortalized human Muller cell line (MIO-M1)[J].Invest.Ophthalmol.Vis.Sci,2002,43(3):864-869.

      57 Lawrence JM,Singhal S,Bhatia B,et al.MIO-M1 cells and similar muller glial cell lines derived from adult human retina exhibit neural stem cell characteristics[J].Stem Cells,2007,25(8):2033-2043.

      58 Singhal S,Lawrence JM,Bhatia B,et al.Chondroitin sulfate proteoglycans and microglia prevent migration and integration of grafted Muller stem cells into degenerating retina[J].Stem Cells,2008,26(4):1074-1082.

      59 Bull ND,Limb GA,Martin KR.Human Muller stem cell (MIO-M1) transplantation in a rat model of glaucoma: survival,differentiation,and integration[J].Invest.Ophthalmol.Vis.Sci,2008,49(8):3449-3456.

      60 Bull ND,Martin KR.Using stem cells to mend the retina in ocular disease[J].Regen Med,2009,4(6):855-864.

      61 Das AV,Mallya KB,Zhao X,et al.Neural stem cell properties of Müller glia in the mammalian retina: regulation by Notch and Wnt signaling[J].Dev Biol,2006,299(1):283-302.

      62 Bull ND,Limb GA,Martin KR.Human Müller stem cell (MIO-M1) transplantation in a rat model of glaucoma: survival,differentiation,and integration[J].Invest Ophthalmol Vis Sci,2008,49(8):3449-3456

      63 Fischer AJ,McGuire CR,Dierks BD,et al.Insulin and fibroblast growth factor 2 activate a neurogenic program in Müller glia of the chicken retina[J].J Neurosci,2002,22(21):9387-9398.

      64 Lawrence JM,Singhal S,Bhatia B,et al.MIO-M1 cells and similar Müller glial cell lines derived from adult human retina exhibit neural stem cell characteristics[J].Stem Cells,2007,25(8):2033-2043.

      65 Karl MO,Hayes S,Nelson BR,et al.Stimulation of neural regeneration in the mouse retina[J].Proc Natl Acad Sci USA,2008,105(49):19508-19513.

      66 Song WT,Zhang XY,Xia XB.Atoh7 promotes the differentiation of retinal stem cells derived from Müller cells into retinal ganglion cells by inhibiting Notch signaling[J].Stem Cell Research & Therapy,2013,4(4):94.

      67 Li H,Yan Z,Cao H,Wang Y.Effective mobilisation of bone marrow-derived cells through proteolytic activity: a new treatment strategy for age-related macular degeneration.Med Hypotheses.2012,78(2):286-90.

      68 Dahlmann-Noor A,Vijay S,Jayaram H,et al.Current approaches and future prospects for stem cell rescue and regeneration of the retina and optic nerve[J].Can J Ophthalmol,2010,45(4):333-341.

      69 Otani A,Dorrell MI,Kinder K,et al.Rescue of retinal degeneration by intravitreally injected adult bone marrowderived lineagenegative hematopoietic stem cells[J].J Clin Invest,2004,114(6):765-774..

      70 Otani A,Kinder K,Ewalt K,et al.Bone marrow-derived stem cells target retinal astrocytes and can promote or inhibit retinal angiogenesis[J].Nat Med,2002,8(9):1004-1010.

      71 Osakada F,Ikeda H,Mandai M,et al.Toward the generation of rod and cone photoreceptors from mouse,monkey and human embryonic stem cells[J].Nat Biotechnol,2008,26(2): 215-224.

      72 Lamba DA,Karl MO,Ware CB,et al.Efficient generation of retinal progenitor cells from human embryonic stem cells[J].Proc Natl Acad Sci USA,2006,103(34):12769-12774.

      Current approaches and future prospects of stem cells for glaucoma

      Luo Jing*,Zhang Huiming ,Wei Wei,Zhou Liang,Zhang Kang.*Department of ophthalmology,The Second Xiangya Hospital,Central South University,Changsha 410011,China

      Zhang Kang,Email:kang.zhang@gmail.com

      Irreversible retina neuron cell damage and dysfunction is the main pathology of blindness eye diseases such as glaucoma and age related retinopathy.However,no treatment showed efficiency to replace the damaged cells and restore the visual function.In 2012,human embryonic stem cells (hESCs) were successfully differentiated into retina pigment epithelial cells and were evaluated in a clinical trial for human age related macular disease.It’s a milestone of stem cell regenerative medicine,which also brought hope for glaucoma treatment.Our review focused on the progress of stem cell transplantation strategy on retina ganglion cell replacement research.Recent studies found that ESCs have advantage in differentiation and function on rescuing central nervous system disease,which indicates that ESCs are excellent resource for treatment of neuron diseases including glaucoma.Furthermore,induced progenitor cells also provided new resource for studies of mechanism of eye diseases,drug delivery system and cell replacement treatment.In addition,Müller cells and bone marrow stem cells provided more stem cell resource for the future cell regenerative medicine.

      Stem cell transplantation;Retinal ganglion cells;Glaucoma

      2014-02-10)

      (本文編輯:蔡曉珍)

      10.3877/cma.j.issn.2095-1221.2014.02.009

      410011 長(zhǎng)沙,中南大學(xué)湘雅二院眼科(羅靜、張慧明、魏為、周亮);四川大學(xué)華西醫(yī)院眼科(張康);美國(guó)加州大學(xué)圣地亞哥分?;蜥t(yī)學(xué)和Shiley眼科中心

      張康,Email: kang.zhang@gmail.com

      羅靜,張慧明,魏為,等.干細(xì)胞移植治療青光眼的研究進(jìn)展[J/CD].中華細(xì)胞與干細(xì)胞雜志:電子版,2014,4(2):130-137.

      猜你喜歡
      體細(xì)胞神經(jīng)節(jié)變性
      椎神經(jīng)節(jié)麻醉的應(yīng)用解剖學(xué)研究
      晉州市大成變性淀粉有限公司
      GM1神經(jīng)節(jié)苷脂貯積癥影像學(xué)表現(xiàn)及隨訪研究
      蝶腭神經(jīng)節(jié)針刺術(shù)治療動(dòng)眼神經(jīng)麻痹案1則
      浙江:誕生首批體細(xì)胞克隆豬
      新型冠狀病毒入侵人體細(xì)胞之謎
      科學(xué)(2020年4期)2020-11-26 08:27:10
      征兵“驚艷”
      當(dāng)變性女遇見(jiàn)變性男 一種奇妙的感覺(jué)產(chǎn)生了
      內(nèi)皮前體細(xì)胞亞型與偏頭痛的相關(guān)性分析
      非洲菊花托的體細(xì)胞胚發(fā)生及植株再生
      达州市| 措勤县| 辽阳县| 盐源县| 鄂尔多斯市| 孝昌县| 靖远县| 长葛市| 雷山县| 郎溪县| 鹤峰县| 乐昌市| 平南县| 揭阳市| 东丰县| 安泽县| 行唐县| 邢台县| 酉阳| 昆明市| 彝良县| 南华县| 柞水县| 拉孜县| 蒲江县| 江北区| 墨玉县| 孝感市| 营口市| 华容县| 临西县| 兴安县| 新河县| 罗田县| 蓝田县| 渝北区| 九江县| 拉孜县| 繁昌县| 普格县| 邵东县|