• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      從胚胎干細(xì)胞到視網(wǎng)膜

      2014-12-06 03:33:14曹明哲陳舒怡
      關(guān)鍵詞:視桿細(xì)胞光感受器體細(xì)胞

      曹明哲 陳舒怡

      胚胎干細(xì)胞(embryonic stem cell,ES細(xì)胞)是從胚胎發(fā)育初期囊胚的內(nèi)細(xì)胞團(tuán)(inner cell mass)分離出來,在體外培養(yǎng)形成的一類特殊的細(xì)胞。它們具有強(qiáng)大的增生能力,同時(shí)還具有形成機(jī)體所有類型細(xì)胞的巨大分化潛力。這兩個(gè)特性使得ES細(xì)胞從發(fā)現(xiàn)之初就成為醫(yī)學(xué)和生物學(xué)研究領(lǐng)域廣受青睞的細(xì)胞[1-5]。近年來,誘導(dǎo)多能干細(xì)胞(induced pluripotent stem cell,iPS細(xì)胞)研究的飛速進(jìn)展進(jìn)一步推動(dòng)了ES/iPS細(xì)胞的應(yīng)用前景[6-11]。眼睛是人類認(rèn)知世界的窗口,正常視功能是人們進(jìn)行日常生活不可或缺的感官功能,每天有成千上萬的人由于遺傳、生理或環(huán)境等因素失去視力,嚴(yán)重影響患者的生活質(zhì)量。醫(yī)學(xué)的發(fā)展使得人類的平均壽命在不斷提高,隨之而來的是老年病發(fā)病率的不斷攀升,青光眼、色素性視網(wǎng)膜炎、年齡相關(guān)視網(wǎng)膜黃斑變性等視網(wǎng)膜退行性疾病在老年人群中尤其普遍,嚴(yán)重影響老年人群的生活質(zhì)量[12-13]。視網(wǎng)膜是人體再生能力很差的一類組織,成年機(jī)體無法自我更新那些病變中丟失的視網(wǎng)膜細(xì)胞,導(dǎo)致視網(wǎng)膜退行性病變的不可逆性。因此,引入外源細(xì)胞替代丟失的視網(wǎng)膜神經(jīng)元成為恢復(fù)患者視覺的為數(shù)不多的潛在手段之一。此外,相對(duì)于血液系統(tǒng)、內(nèi)臟器官,眼睛的移植排斥反應(yīng)要弱得多。而且,眼科手術(shù)對(duì)全身干擾較小,并發(fā)癥相對(duì)輕微,這些優(yōu)點(diǎn)使得眼睛成為細(xì)胞替代治療嘗試的理想器官。要實(shí)現(xiàn)細(xì)胞替代治療,探索合適、充足的供體細(xì)胞來源是重要的第一步。近年來,人們?cè)谔剿鲗S/iPS細(xì)胞體外定向誘導(dǎo)分化為視網(wǎng)膜神經(jīng)元,甚至整個(gè)視網(wǎng)膜方面已取得多項(xiàng)進(jìn)展。在此篇綜述中,首先簡(jiǎn)要概括哺乳動(dòng)物視網(wǎng)膜的組織結(jié)構(gòu)、發(fā)育過程和調(diào)控機(jī)制,然后,重點(diǎn)闡述近年來科研工作者探索ES/iPS細(xì)胞體外誘導(dǎo)分化為視網(wǎng)膜細(xì)胞和組織的研究進(jìn)展。

      一、神經(jīng)視網(wǎng)膜的結(jié)構(gòu)和發(fā)育

      哺乳動(dòng)物的視網(wǎng)膜組織由神經(jīng)視網(wǎng)膜和視網(wǎng)膜色素上皮層兩大部分組成:視網(wǎng)膜色素上皮層是單層細(xì)胞結(jié)構(gòu),主要對(duì)神經(jīng)視網(wǎng)膜起支持、營(yíng)養(yǎng)和保護(hù)作用;神經(jīng)視網(wǎng)膜層由多層細(xì)胞構(gòu)成,是眼睛接收和初步處理光學(xué)信息的關(guān)鍵神經(jīng)組織。神經(jīng)視網(wǎng)膜層由七大類細(xì)胞構(gòu)成:視錐細(xì)胞、視桿細(xì)胞、水平細(xì)胞、雙極細(xì)胞、無長(zhǎng)突細(xì)胞、Müller膠質(zhì)細(xì)胞和視網(wǎng)膜神經(jīng)節(jié)細(xì)胞。這七種細(xì)胞和它們的細(xì)胞連接有規(guī)律地排列形成三個(gè)細(xì)胞層和兩個(gè)神經(jīng)突觸層:感受光學(xué)信號(hào)的視錐和視桿兩種光感受器的細(xì)胞體形成最外面的外細(xì)胞核層(outer nuclear layer);對(duì)光感受器傳來的光神經(jīng)信號(hào)進(jìn)行初步處理的三種中間神經(jīng)元(水平細(xì)胞、雙極細(xì)胞和無長(zhǎng)突細(xì)胞)以及起支持作用的Müller膠質(zhì)細(xì)胞的細(xì)胞體構(gòu)成內(nèi)細(xì)胞核層(inner nuclear layer);最內(nèi)面靠近玻璃體的是神經(jīng)節(jié)細(xì)胞層(ganglion cell layer);外細(xì)胞核層與內(nèi)細(xì)胞核層細(xì)胞之間的神經(jīng)突觸構(gòu)成外網(wǎng)層(outer plexiform layer);內(nèi)細(xì)胞核層的中間神經(jīng)元與神經(jīng)節(jié)細(xì)胞之間的神經(jīng)突觸構(gòu)成內(nèi)網(wǎng)層(inner plexiform layer)。哺乳動(dòng)物視網(wǎng)膜高度有序的組織排列從結(jié)構(gòu)上保障了光信號(hào)的有效接收、傳遞和處理。

      從發(fā)育角度來看,復(fù)雜的視網(wǎng)膜組織是中樞神經(jīng)系統(tǒng)在身體頭部位置向兩側(cè)的延伸:在神經(jīng)胚芽階段,中腦部位的神經(jīng)管向兩側(cè)外伸,形成管狀結(jié)構(gòu)的視泡(optic vesicle)。當(dāng)視泡接近胚胎表面外胚層的時(shí)候,組織遷移模式發(fā)生改變,開始向內(nèi)凹陷,形成雙層結(jié)構(gòu)的視杯(optic cup)。視杯的外層是視網(wǎng)膜色素細(xì)胞層,內(nèi)層是神經(jīng)視網(wǎng)膜層。在視杯內(nèi)凹的同時(shí),與其相鄰的胚胎外胚層也相應(yīng)地向內(nèi)凹陷,形成晶狀體小泡(lens vesicle)。晶狀體小泡繼續(xù)內(nèi)凹并與表面外胚層脫離,最終將形成晶狀體,而晶狀體小泡脫離后剩下的胚胎外胚層將發(fā)育成角膜上皮。這樣,整個(gè)眼睛的大體結(jié)構(gòu)就確立起來[14-17]。在視杯階段,神經(jīng)視網(wǎng)膜層是由假?gòu)?fù)層結(jié)構(gòu)的視網(wǎng)膜前體細(xì)胞組成。視網(wǎng)膜前體細(xì)胞增生快速,并具有分化為所有類別視網(wǎng)膜細(xì)胞的潛能。視網(wǎng)膜的六種神經(jīng)元與一種神經(jīng)膠質(zhì)細(xì)胞的分化是按照一定的時(shí)段順序進(jìn)行的,但彼此的分化時(shí)段又有一定的重合:視網(wǎng)膜神經(jīng)節(jié)細(xì)胞在各類哺乳動(dòng)物中都是最先分化的視網(wǎng)膜神經(jīng)元;接著是無長(zhǎng)突細(xì)胞、水平細(xì)胞和視錐細(xì)胞;最后是視桿細(xì)胞、雙極細(xì)胞和Müller細(xì)胞?,F(xiàn)普遍接受的觀點(diǎn)認(rèn)為,視網(wǎng)膜前體細(xì)胞在發(fā)育過程中逐步經(jīng)歷各種‘感受狀態(tài)(competent state)’階段。所謂的‘感受狀態(tài)’是指視網(wǎng)膜前體細(xì)胞可以接受環(huán)境信號(hào)刺激向某種細(xì)胞發(fā)育的狀態(tài),也就是說,視杯發(fā)育早期的視網(wǎng)膜前體細(xì)胞只能被誘導(dǎo)分化成視網(wǎng)膜神經(jīng)節(jié)細(xì)胞、無長(zhǎng)突細(xì)胞等早期視網(wǎng)膜細(xì)胞,而視網(wǎng)膜發(fā)育晚期的前體細(xì)胞只能被誘導(dǎo)分化為視桿細(xì)胞、Müller細(xì)胞等晚期分化視網(wǎng)膜細(xì)胞。視網(wǎng)膜前體細(xì)胞的這種‘感受狀態(tài)’表明視網(wǎng)膜細(xì)胞的增生和分化是受內(nèi)源因素和外部環(huán)境共同調(diào)控的。各種遺傳學(xué)、細(xì)胞和分子生物學(xué)研究也證實(shí)視網(wǎng)膜前體細(xì)胞的增生與分化是受各種轉(zhuǎn)錄因子和信號(hào)傳導(dǎo)通路調(diào)控的[18-23]。對(duì)于視網(wǎng)膜發(fā)育基本過程和調(diào)控機(jī)制的深入了解有利于我們探尋眼科疾病的發(fā)病機(jī)制和治療新途徑(圖1)。

      二、ES/iPS細(xì)胞體外誘導(dǎo)分化成視網(wǎng)膜神經(jīng)元

      圖1 視網(wǎng)膜發(fā)育過程

      ES細(xì)胞具有強(qiáng)大的分化潛能:將小鼠ES細(xì)胞注射入早期胚胎中形成嵌合體,再將其移植入代孕母鼠子宮中后,ES細(xì)胞可以分化為包括視網(wǎng)膜組織在內(nèi)的各種組織和細(xì)胞。然而,若要在體外將ES細(xì)胞特異性地誘導(dǎo)分化為視網(wǎng)膜神經(jīng)元,如何在體外模擬體內(nèi)視網(wǎng)膜細(xì)胞分化各階段的環(huán)境是解決問題的關(guān)鍵。最初,人們嘗試將ES細(xì)胞與胚胎發(fā)育階段的視網(wǎng)膜組織共培養(yǎng)以模擬體內(nèi)視網(wǎng)膜前體細(xì)胞分化環(huán)境[24-25],或與間充質(zhì)細(xì)胞共培養(yǎng)[26],或過表達(dá)視網(wǎng)膜前體細(xì)胞關(guān)鍵調(diào)控轉(zhuǎn)錄因子,期待激活細(xì)胞的視網(wǎng)膜細(xì)胞轉(zhuǎn)錄基因組活性[27]。然而,這些方法所得到的細(xì)胞雖然表達(dá)某些視網(wǎng)膜細(xì)胞特異性基因,但是細(xì)胞形態(tài)和功能等方面與體內(nèi)視網(wǎng)膜細(xì)胞相差很大。在人們探索誘導(dǎo)ES細(xì)胞向視網(wǎng)膜細(xì)胞分化的同時(shí),多個(gè)研究組成功地在體外將ES細(xì)胞定向分化為神經(jīng)細(xì)胞[28-30]。這些實(shí)驗(yàn)提示,在ES細(xì)胞分化初期抑制Wnt和Nodal信號(hào)通路可以促進(jìn)神經(jīng)外胚層的發(fā)育。視網(wǎng)膜是神經(jīng)管在胚胎發(fā)育早期向兩側(cè)延伸繼續(xù)發(fā)育而形成的神經(jīng)組織。如果參照體內(nèi)神經(jīng)組織發(fā)育不同階段對(duì)信號(hào)通路的需求,將體外初步發(fā)育的神經(jīng)外胚層先向中腦組織命運(yùn)狀態(tài)誘導(dǎo),再進(jìn)一步誘導(dǎo)分化成視網(wǎng)膜細(xì)胞,有可能提高誘導(dǎo)分化效率。正是基于這樣的思路,Ikeda等[31]通過向懸浮培養(yǎng)的小鼠ES細(xì)胞聚集團(tuán)添加Dkk1來抑制Wnt信號(hào)通路,LeftyA來抑制Nodal信號(hào)通路,將ES細(xì)胞誘導(dǎo)分化為Six3+的中腦細(xì)胞。隨后,他們?cè)偬砑觓ctivin和血清,將Six3+中腦細(xì)胞繼續(xù)培養(yǎng),終于獲得Rx+、Pax6+的視網(wǎng)膜前體細(xì)胞。如果將這些ES細(xì)胞分化而來的視網(wǎng)膜前體細(xì)胞與發(fā)育階段的視網(wǎng)膜組織共培養(yǎng),這些細(xì)胞可以分化為各種視網(wǎng)膜細(xì)胞,證明他們的前體細(xì)胞特性。緊接著,用類似的方法,Lamba等[32]將人ES細(xì)胞在體外也成功誘導(dǎo)分化為視網(wǎng)膜前體細(xì)胞。在人視網(wǎng)膜前體細(xì)胞的誘導(dǎo)方案中,LeftyA被Noggin取代來抑制BMP信號(hào)通路活性,另外IGF-1被用來激活胰島素樣信號(hào)通路。在這樣的培養(yǎng)條件下,人ES細(xì)胞表達(dá)視網(wǎng)膜前體細(xì)胞特異性基因,包括 ET、Rx、Six3、Pax6、Lhx2、Optx2、Chx10和Sox2。同時(shí),有些細(xì)胞表達(dá)視網(wǎng)膜神經(jīng)元特異性蛋白,如無長(zhǎng)突細(xì)胞特異性Hu C/D、神經(jīng)節(jié)細(xì)胞特異性NF-M、雙極細(xì)胞特異性α-PKC、光感受器特異性Crx、視錐細(xì)胞特異性S-Opsin、視桿細(xì)胞特異性Nrl和Rhodopsin。

      雖然結(jié)合細(xì)胞聚集團(tuán)懸浮培養(yǎng),以及抑制Wnt和TGF-β信號(hào)通路可以有效地將ES細(xì)胞誘導(dǎo)分化為視網(wǎng)膜前體細(xì)胞,但是,在這些培養(yǎng)條件下,視網(wǎng)膜前體細(xì)胞分化為成熟視網(wǎng)膜細(xì)胞的效率非常低下。體外培養(yǎng)和小鼠遺傳學(xué)實(shí)驗(yàn)都表明Notch信號(hào)通路抑制視網(wǎng)膜光感受器的發(fā)育[33-34]。為了提高ES細(xì)胞向光感受器分化的效率,Osakada等[35]對(duì)ES細(xì)胞向視網(wǎng)膜前體細(xì)胞誘導(dǎo)培養(yǎng)條件進(jìn)行了優(yōu)化。他們將經(jīng)過Dkk1、LeftyA、activin和血清誘導(dǎo)分化的ES細(xì)胞通過細(xì)胞分選富集Rx+視網(wǎng)膜前體細(xì)胞,再添加DAPT來抑制Notch信號(hào)通路的活性。在DAPT的作用下,有20﹪的Rx+視網(wǎng)膜前體細(xì)胞分化為Crx+的光感受器前體細(xì)胞。如果將Crx+的光感受器前體細(xì)胞繼續(xù)培養(yǎng),約一半的細(xì)胞發(fā)育為視錐細(xì)胞,但是視桿細(xì)胞的比率非常低。為了提高視桿細(xì)胞的分化效率,Osakada等[35]向培養(yǎng)體系中添加了retinoic acid、aFGF、bFGF、taurine 和Shh多種促進(jìn)視桿細(xì)胞發(fā)育的因子。在這些因子的作用下,有近20﹪的細(xì)胞最終分化為Rhodopsin+的視桿細(xì)胞。采用相似的培養(yǎng)體系,人和猴子的ES細(xì)胞可以被誘導(dǎo)分化為視網(wǎng)膜前體細(xì)胞和光感受器[35-36]。為了探索更適合臨床治療應(yīng)用的人視網(wǎng)膜光感受器細(xì)胞制備方法,Takahashi研究組嘗試用小分子化合物替代在細(xì)菌中合成的重組蛋白,來誘導(dǎo)視網(wǎng)膜細(xì)胞分化。他們用Casein激酶抑制劑-CKI-7替代Dkk1抑制Wnt信號(hào)通路,用SB-431542替代LeftyA抑制Nodal通路,在光感受器細(xì)胞分化階段只保留retinoic acid和taurine兩種小分子。研究結(jié)果表明,CKI-7和SB-431542兩個(gè)小分子化合物完全可以取代Dkk1和LeftyA誘導(dǎo)視網(wǎng)膜前體細(xì)胞的分化。這種條件下得到的視網(wǎng)膜前體細(xì)胞在retinoic acid 和taurine的作用下也可以分化為光感受器細(xì)胞[37]。實(shí)際上,懸浮培養(yǎng)的ES細(xì)胞本身也會(huì)產(chǎn)生Dkk和Lefty,即使沒有外源的Wnt和Nodal抑制劑,一部份的ES細(xì)胞也可以沿著視網(wǎng)膜發(fā)育的進(jìn)程向視網(wǎng)膜細(xì)胞命運(yùn)發(fā)展[38]。

      ES細(xì)胞以其多能性而廣受青睞,在體內(nèi)它可以形成整個(gè)機(jī)體,然而,在體外ES細(xì)胞的分化大多限于單個(gè)細(xì)胞個(gè)體。2011年,Sasai研究小組在原有的視網(wǎng)膜細(xì)胞誘導(dǎo)分化的結(jié)果基礎(chǔ)上,繼續(xù)摸索優(yōu)化培養(yǎng)條件,利用并不復(fù)雜的培養(yǎng)體系使小鼠ES細(xì)胞在體外自我組織形成了與體內(nèi)視網(wǎng)膜組織極其相似的組織,成為ES細(xì)胞體外分化研究的突破性進(jìn)展。他們發(fā)現(xiàn)在培養(yǎng)體系中添加細(xì)胞外基質(zhì)成分,如Matrigel、Laminin或entactin,可以顯著促進(jìn)小鼠ES細(xì)胞向Rx+視網(wǎng)膜前體細(xì)胞分化。將這些Rx+細(xì)胞繼續(xù)培養(yǎng),原本形態(tài)均一的ES細(xì)胞團(tuán)開始形成中空并具極性的神經(jīng)上皮結(jié)構(gòu)。令人驚訝的是,如果繼續(xù)培養(yǎng),中空的神經(jīng)上皮開始向內(nèi)凹陷形成與體內(nèi)胚胎發(fā)育期的視杯十分相似的組織構(gòu)造 :外層是 Mitf+、Pax6+、Coup-TF2+的單層視網(wǎng)膜色素上皮細(xì)胞,內(nèi)層是增生活躍的Rx+、Pax6+、Six3+、Chx10+神經(jīng)視網(wǎng)膜前體細(xì)胞層。更加令人驚訝的是,如果將這些視杯樣組織分離出來繼續(xù)培養(yǎng),視杯樣組織將發(fā)育成和新生小鼠的視網(wǎng)膜組織類似的包含有六種視網(wǎng)膜神經(jīng)元(視網(wǎng)膜神經(jīng)節(jié)細(xì)胞、無軸突細(xì)胞、水平細(xì)胞、雙極細(xì)胞和兩種感光細(xì)胞)和Müller膠質(zhì)細(xì)胞,并且分層排列的組織結(jié)構(gòu)[39]。不久以后,同一個(gè)研究小組成功地證明人的ES細(xì)胞在體外同樣也可以自主組織形成視網(wǎng)膜組織[40]。人ES細(xì)胞體外自主形成視網(wǎng)膜組織的培養(yǎng)條件與小鼠ES細(xì)胞培養(yǎng)條件略有不同,形態(tài)發(fā)生進(jìn)程不盡相同,所需時(shí)間也要長(zhǎng)的多,這也顯示出物種差別也影響組織體外發(fā)育進(jìn)程。

      三、利用ES/iPS細(xì)胞治療視網(wǎng)膜疾病

      英國(guó)的Ali研究組證明外源移植的視網(wǎng)膜細(xì)胞可以整合入小鼠視網(wǎng)膜組織中,分化為形態(tài)結(jié)構(gòu)完全正常的視桿細(xì)胞。他們的研究表明,選擇合適發(fā)育階段的供體細(xì)胞是移植成功的決定因素之一。對(duì)于視網(wǎng)膜感光細(xì)胞來說,只有已經(jīng)退出細(xì)胞周期但尚未終末分化的視桿前體細(xì)胞才能夠成功整合入視網(wǎng)膜外細(xì)胞核層并分化為成熟視桿細(xì)胞[41]。接著,他們證明這些移植的視桿細(xì)胞與受體小鼠的雙極細(xì)胞和水平細(xì)胞形成神經(jīng)突觸連接,能夠?qū)Π倒獯碳ば纬缮窠?jīng)電生理反應(yīng),所形成的電生理信號(hào)能夠一直傳至大腦視覺中樞,形成視覺反射[42-43]。與視桿細(xì)胞類似,成功視錐細(xì)胞移植也需要選擇剛剛退出細(xì)胞周期的視錐前體細(xì)胞[44]。最近有研究表明,成熟的視桿細(xì)胞也可以被成功移植并整合入體內(nèi)視網(wǎng)膜外細(xì)胞核層中[45],這大大擴(kuò)展了可被移植的供體細(xì)胞范圍。光感受器移植實(shí)驗(yàn)有力地證明細(xì)胞移植治療視網(wǎng)膜感光細(xì)胞退行性疾病的技術(shù)可行性。

      如前所述,多個(gè)研究已實(shí)現(xiàn)在體外將人ES細(xì)胞高效定向誘導(dǎo)分化為視網(wǎng)膜前體細(xì)胞,并能進(jìn)一步形成視網(wǎng)膜光感受器。結(jié)合ES細(xì)胞體外培養(yǎng)技術(shù)、光感受器前體細(xì)胞移植技術(shù),人們開始測(cè)試是否可以用ES細(xì)胞治療光感受器退行性疾病。出于倫理考慮,這些探索性實(shí)驗(yàn)多是在正常小鼠或光感受器退行性病變模型小鼠中進(jìn)行。Reh研究小組用他們之前發(fā)表的誘導(dǎo)方法[32]將人ES細(xì)胞在體外分化為視網(wǎng)膜細(xì)胞,然后移植入小鼠眼內(nèi)。如果進(jìn)行玻璃體腔移植,體外分化的人視網(wǎng)膜細(xì)胞可以整合入小鼠視網(wǎng)膜各個(gè)細(xì)胞層中,并表達(dá)相應(yīng)層細(xì)胞的標(biāo)志性基因,但光感受器的整合分化在這種移植方式下都比較低,如果移植入視網(wǎng)膜下腔,體外分化的人視網(wǎng)膜細(xì)胞大多整合入外細(xì)胞核層,并分化為成熟的光感受器細(xì)胞[46]。但奇怪的是,由小鼠ES細(xì)胞體外分化的光感受器細(xì)胞反而不能整合入小鼠視網(wǎng)膜組織中[47]。這兩個(gè)實(shí)驗(yàn)結(jié)果的差異可能反映了物種的差異,也可能是由于體外培養(yǎng)方法或移植方式的差別造成的。但是,如果用體外3D培養(yǎng)的方法先培養(yǎng)出視網(wǎng)膜組織,再?gòu)呐囵B(yǎng)視網(wǎng)膜組織中純化光感受器前體細(xì)胞,這樣獲得的小鼠細(xì)胞可以有效地整合入小鼠外細(xì)胞核層中[48]。異體細(xì)胞移植都會(huì)面臨免疫排斥反應(yīng),人ES細(xì)胞來源十分有限,且存在倫理頸瓶。這兩方面的問題極大限制ES細(xì)胞替代治療應(yīng)用前景。Yamanaka研究組誘導(dǎo)多能干細(xì)胞(iPS)的開創(chuàng)性的研究成果緩解了困擾ES細(xì)胞研究的醫(yī)學(xué)倫理問題和移植免疫排斥問題[6-7]。現(xiàn)在人們已經(jīng)能夠?qū)ㄑ?、?nèi)臟器官、神經(jīng)組織,甚至是尿液中提取的細(xì)胞誘導(dǎo)重編程為多能干細(xì)胞[8-11],使得這項(xiàng)技術(shù)的應(yīng)用越來越廣泛。在人們探索出將ES細(xì)胞誘導(dǎo)分化為視網(wǎng)膜細(xì)胞或組織,以及光感受器移植治療視網(wǎng)膜退行性疾病的有效方案后,人們將這些研究成果也應(yīng)用于iPS細(xì)胞上,證實(shí)iPS細(xì)胞同樣可以被有效地誘導(dǎo)分化為視網(wǎng)膜細(xì)胞和組織[36-38,49-51],并用來治療視網(wǎng)膜退行性疾病[49,52],這大大擴(kuò)展了應(yīng)用ES/iPS細(xì)胞治療視網(wǎng)膜疾病的前景(圖2)。

      四、總結(jié)

      ES/iPS細(xì)胞由于其強(qiáng)大的增生和分化能力成為細(xì)胞替代療法的理想的供體細(xì)胞。通過長(zhǎng)期的探索,現(xiàn)在人們已經(jīng)能夠?qū)S/iPS細(xì)胞誘導(dǎo)分化為視網(wǎng)膜細(xì)胞,甚至是整個(gè)視網(wǎng)膜組織?,F(xiàn)有的研究已經(jīng)顯示由ES/iPS細(xì)胞體外形成的視網(wǎng)膜細(xì)胞具有細(xì)胞替代治療視網(wǎng)膜退行性疾病的潛力。然而,要實(shí)現(xiàn)ES/iPS細(xì)胞替代療法治療視網(wǎng)膜退行性疾病,仍有許多問題需要解決。例如,對(duì)于特定的視網(wǎng)膜細(xì)胞,體外誘導(dǎo)分化的效率仍有待提高,特別是視網(wǎng)膜神經(jīng)節(jié)細(xì)胞至今仍缺乏高效誘導(dǎo)方案,雖然,光感受器細(xì)胞已可以被成功移植并整合入視網(wǎng)膜組織中,但人光感受器細(xì)胞的整合效率仍然低下,視網(wǎng)膜神經(jīng)節(jié)細(xì)胞的整合結(jié)果更加差強(qiáng)人意,ES/iPS細(xì)胞替代療法伴隨的風(fēng)險(xiǎn)是殘留的干細(xì)胞會(huì)導(dǎo)致眼內(nèi)腫瘤的發(fā)生,如何掌握體外分化時(shí)程,純化篩選視網(wǎng)膜細(xì)胞,監(jiān)測(cè)排除干細(xì)胞是實(shí)現(xiàn)臨床應(yīng)用必須考慮的問題。

      圖2 ES/iPS細(xì)胞可以逐步誘導(dǎo)分化為視網(wǎng)膜前體細(xì)胞,進(jìn)而發(fā)育形成各種視網(wǎng)膜神經(jīng)元

      1 Evans MJ ,Kaufman MH.Establishment in culture of pluripotential cells from mouse embryos[J].Nature,1981,292(5819):154-156.

      2 Martin GR.Isolation of pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells[J].Proc Natl Acad Sci U S A,1981,78(12):7634-7638.

      3 Bradley A,Evans M, Kaufman MH,et al.Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines[J].Nature,1984,309(5965):255-256.

      4 Thomson JA,Itskovitz-Eldor J,Shapiro SS,et al.Embryonic stem cell lines derived from human blastocysts[J].Science,1998,282(5391):1145-1147.

      5 Daley GQ.Prospects for stem cell therapeutics: myths and medicines[J].Curr Opin Genet Dev,2002,12(5):607-613.

      6 Takahashi K,Yamanaka S.Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J].Cell,2006,126(4):663-676.

      7 Takahashi K,Tanabe K,Ohnuki M,et al.Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J].Cell,2007,131(5):861-872.

      8 Hanna J,Markoulaki S,Schorderet P,et al.Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency[J].Cell,2008,133(2):250-264.

      9 Aoi T,Yae K,Nakagawa M,et al.Generation of pluripotent stem cells from adult mouse liver and stomach cells[J].Science,2008,321(5889):699-702.

      10 Stadtfeld M,Brennand K,Hochedlinger K.Reprogramming of pancreatic beta cells into induced pluripotent stem cells[J].Curr Biol,2008,18(12):890-894.

      11 Kim JB,Zaehres H,Wu G,et al.Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors[J].Nature,2008,454(7204):646-650.

      12 de Jong PT.Age-related macular degeneration[J].N Engl J Med,2006,355(14):1474-1485

      13 Varma R,Lee PP,Goldberg I,et al.An assessment of the health and economic burdens of glaucoma[J].Am J Ophthalmol,2011,152(4):515-522.

      14 Martinez-Morales JR,Wittbrodt J.Shaping the vertebrate eye[J].Curr Opin Genet Dev,2009,19(5):511-517.

      15 Chow RL,Lang RA.Early eye development in vertebrates[J].Annu Rev Cell Dev Biol,2001,17:255-296.

      16 Adler R,Canto-Soler MV.Molecular mechanisms of optic vesicle development: complexities,ambiguities and controversies[J].Dev Biol,2007,305(1):1-13.

      17 Fuhrmann S.Eye morphogenesis and patterning of the optic vesicle[J].Curr Top Dev Biol,2010,93:61-84.

      18 Esteve P,Bovolenta P.Secreted inducers in vertebrate eye development: more functions for old morphogens[J].Curr Opin Neurobiol,2006,16(1):13-19.

      19 Agathocleous M,Harris WA.From progenitors to differentiated cells in the vertebrate retina[J].Annu Rev Cell Dev Biol,2009,25:45-69.

      20 Cayouette M,Poggi L,Harris WA.Lineage in the vertebrate retina[J].Trends Neurosci,2006,29(10):563-570.

      21 Cepko CL,Austin CP,Yang X,et al.Cell fate determination in the vertebrate retina[J].Proc Natl Acad Sci U S A,1996,93(2):589-595.

      22 Harada T,Harada C,Parada LF.Molecular regulation of visual system development: more than meets the eye[J].Genes Dev,2007,21(4):367-378.

      23 Xiang M.Intrinsic control of mammalian retinogenesis[J].Cell Mol Life Sci,2013,70(14):2519-2532.

      24 Zhao X,Liu J,Ahmad I.Differentiation of embryonic stem cells into retinal neurons[J].Biochem Biophys Res Commun,2002,297(2):177-184.

      25 Sugie Y,Yoshikawa M,Ouji Y,et al.Photoreceptor cells from mouse ES cells by co-culture with chick embryonic retina[J].Biochem Biophys Res Commun,2005,332(1):241-247.

      26 Hirano M,Yamamoto A,Yoshimura N,et al.Generation of structures formed by lens and retinal cells differentiating from embryonic stem cells[J].Dev Dyn,2003,228(4):664-671.

      27 Tabata Y,Ouchi Y,Kamiya H,et al.Specification of the retinal fate of mouse embryonic stem cells by ectopic expression of Rx/rax,a homeobox gene[J].Mol Cell Biol,2004,24(10):4513-4521.

      28 Watanabe K,Kamiya D,Nishiyama A,et al.Directed differentiation of telencephalic precursors from embryonic stem cells[J].Nat Neurosci,2005,8(3):288-296.

      29 Ying QL,Stavridis M,Griffiths D,et al.Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture[J].Nat Biotechnol,2003,21(2):183-186.

      30 Aubert J,Dunstan H,Chambers I,et al.Functional gene screening in embryonic stem cells implicates Wnt antagonism in neural differentiation[J].Nat Biotechnol,2002,20(12):1240-1245.

      31 Ikeda H,Osakada F,Watanabe K,et al.Generation of Rx+/Pax6+ neural retinal precursors from embryonic stem cells[J].Proc Natl Acad Sci U S A,2005,102(32):11331-11336.

      32 Lamba DA,Karl MO,Ware CB,et al.Efficient generation of retinal progenitor cells from human embryonic stem cells[J].Proc Natl Acad Sci U S A,2006,103(34):12769-12774.

      33 Yaron O,Farhy C,Marquardt T,et al.Notch1 functions to suppress cone-photoreceptor fate specification in the developing mouse retina[J].Development,2006,133(7):1367-1378.

      34 Jadhav AP,Mason HA,Cepko CL.Notch 1 inhibits photoreceptor production in the developing mammalian retina[J].Development,2006,133(5):913-923.

      35 Osakada F,Ikeda H,Mandai M,et al.Toward the generation of rod and cone photoreceptors from mouse,monkey and human embryonic stem cells[J].Nat Biotechnol,2008,26(2):215-224.

      36 Boucherie C,Mukherjee S,Henckaerts E,et al.Brief report:self-organizing neuroepithelium from human pluripotent stem cells facilitates derivation of photoreceptors[J].Stem Cells,2013,31(2):408-414.

      37 Osakada F,Jin ZB,Hirami Y,et al.In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction[J].J Cell Sci,2009,122(17):3169-3179.

      38 Meyer JS,Shearer RL,Capowski EE,et al.Modeling early retinal development with human embryonic and induced pluripotent stem cells[J].Proc Natl Acad Sci U S A,2009,106(39):16698-16703.

      39 Eiraku M,Takata N,Ishibashi H,et al.Self-organizing optic-cup morphogenesis in three-dimensional culture[J].Nature,2011,472(7341):51-56.

      40 Nakano T,Ando S,Takata N,et al.Self-Formation of Optic Cups and Storable Stratified Neural Retina from Human ESCs[J].Cell Stem Cell,2012,10(6):771-785.

      41 MacLaren RE,Pearson RA,MacNeil A,et al.Retinal repair by transplantation of photoreceptor precursors[J].Nature,2006,444(7116):203-207.

      42 Pearson RA,Barber AC,Rizzi M,et al.Restoration of vision after transplantation of photoreceptors[J].Nature,2012,485(7396):99-103.

      43 Barber AC,Hippert C,Duran Y,et al.Repair of the degenerate retina by photoreceptor transplantation[J].Proc Natl Acad Sci U S A,2013,110(1):354-359.

      44 Lakowski J,Baron M,Bainbridge J,et al.Cone and rod photoreceptor transplantation in models of the childhood retinopathy Leber congenital amaurosis using flow-sorted Crx-positive donor cells[J].Hum Mol Genet,2010,19(23):4545-4559.

      45 Gust J,Reh TA.Adult donor rod photoreceptors integrate into the mature mouse retina[J].Invest Ophthalmol Vis Sci,2011,52(8):5266-5272.

      46 Lamba DA,Gust J,Reh TA.Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-deficient mice[J].Cell Stem Cell,2009,4(1):73-79.

      47 West EL,Gonzalez-Cordero A,Hippert C,et al.Defining the integration capacity of embryonic stem cell-derived photoreceptor precursors[J].Stem Cells,2012,30(7):1424-1435.

      48 Gonzalez-Cordero A,West EL,Pearson RA,et al.Photoreceptor precursors derived from three-dimensional embryonic stem cell cultures integrate and mature within adult degenerate retina[J].Nat Biotechnol ,2013,31(8):741-747.

      49 Lamba DA,McUsic A,Hirata RK,et al.Generation,purification and transplantation of photoreceptors derived from human induced pluripotent stem cells[J].PloS one,2010,5(1):e8763.

      50 Chen M,Chen Q,Sun X,et al.Generation of retinal ganglion-like cells from reprogrammed mouse fibroblasts[J].Invest Ophthalmol Vis Sci,2010,51(11):5970-5978.

      51 Hirami Y,Osakada F,Takahashi K,et al.Generation of retinal cells from mouse and human induced pluripotent stem cells[J].Neurosci Lett,2009,458(3):126-131.

      52 Tucker BA,Park IH,Qi SD,et al.Transplantation of adult mouse iPS cell-derived photoreceptor precursors restores retinal structure and function in degenerative mice[J].PloS one,2011,6(4):e18992.

      猜你喜歡
      視桿細(xì)胞光感受器體細(xì)胞
      軟體動(dòng)物光感受器的多樣性
      浙江:誕生首批體細(xì)胞克隆豬
      新型冠狀病毒入侵人體細(xì)胞之謎
      科學(xué)(2020年4期)2020-11-26 08:27:10
      你是如何分辨各種顏色的?
      眼睛是怎么看見各種顏色的?
      為什么不直視,反而能看到暗淡的星星?
      中國(guó)學(xué)者用人工光感受器助失明小鼠復(fù)明
      年齡對(duì)斑馬魚視網(wǎng)膜光感受器細(xì)胞密度的影響
      內(nèi)皮前體細(xì)胞亞型與偏頭痛的相關(guān)性分析
      非洲菊花托的體細(xì)胞胚發(fā)生及植株再生
      米泉市| 合作市| 镇雄县| 桓仁| 虎林市| 合水县| 河东区| 寻乌县| 郸城县| 讷河市| 如皋市| 北流市| 增城市| 贵定县| 门头沟区| 巴塘县| 房山区| 新乐市| 元江| 贵南县| 蓬溪县| 临漳县| 顺平县| 阿克陶县| 深水埗区| 吴旗县| 财经| 信宜市| 闸北区| 女性| 双流县| 麻城市| 和政县| 全南县| 开江县| 临桂县| 临西县| 多伦县| 阳山县| 海兴县| 潞城市|