李盛村,鮑捷,王靜,王國祥
骨保護素/核因子-κB受體活化因子配體/核因子-κB受體活化因子信號通路與骨質(zhì)疏松的研究進展①
李盛村,鮑捷,王靜,王國祥
運動對骨質(zhì)疏松癥有積極作用,但其治療的分子生物學機制仍未清楚。骨保護素/核因子-κB受體活化因子配體/核因子-κB受體活化因子(OPG/RANKL/RANK)信號通路的發(fā)現(xiàn),有助于骨質(zhì)疏松癥的治療。機械應力可以調(diào)節(jié)OPG/RANKL/RANK信號通路,參與預防和治療骨質(zhì)疏松進程。本文就應力敏感信號通路OPG/RANKL/RANK與骨質(zhì)疏松的關(guān)系進行綜述。
骨質(zhì)疏松癥;應力;骨保護素;核因子-κB受體活化因子配體;核因子-κB受體活化因子;信號通路;綜述
[本文著錄格式]李盛村,鮑捷,王靜,等.骨保護素/核因子-κB受體活化因子配體/核因子-κB受體活化因子信號通路與骨質(zhì)疏松的研究進展[J].中國康復理論與實踐,2014,20(3):250-252.
骨質(zhì)疏松癥(osteoporosis)是一種骨代謝障礙疾病,它以骨量減少、骨脆性增加和骨折風險增加為主要特征。骨質(zhì)疏松癥好發(fā)于絕經(jīng)后婦女和老年人群[1]。正常骨組織中新骨與舊骨更替而保持動態(tài)平衡[2]。骨吸收異常增加或骨形成異常減少,均是骨質(zhì)疏松發(fā)生的生理學基礎。
適宜運動是骨質(zhì)疏松癥的有效療法,然而有關(guān)其治療的分子生物學機制尚未清楚。近年來的研究發(fā)現(xiàn),骨保護素/核因子-κB受體活化因子配體/核因子-κB受體活化因子(OPG/ RANKL/RANK)信號通路與骨質(zhì)疏松的發(fā)生和治療有密切聯(lián)系[3],而運動應力可以調(diào)節(jié)OPG/RANKL/RANK信號通路。因此,綜合分析應力刺激和OPG/RANKL/RANK信號通路的關(guān)系以及兩者對骨質(zhì)疏松的影響,可以為骨質(zhì)疏松的治療提供新的線索[4]。
骨保護素(osteoprotegerin,OPG)是Simonet在給新生大鼠腸cDNA測序時發(fā)現(xiàn)的,包含5個外顯子,其N端D1~D4區(qū)富含半胱氨酸,結(jié)構(gòu)與腫瘤壞死因子受體2(tumor necrosis factor receptor 2,TNFR2)和CD40有高度的保守性,為發(fā)揮生理功能所必需[5]。OPG可抑制破骨細胞活性,也被稱為骨保護蛋白或護骨素[6]。OPG前體是包含401個氨基酸的糖蛋白,去除21個信號肽后,形成含380個氨基酸的成熟OPG蛋白[7]。OPG基因敲除小鼠出現(xiàn)嚴重的骨質(zhì)疏松癥,骨皮質(zhì)和骨小梁均減少;而過度表達OPG的轉(zhuǎn)基因小鼠則出現(xiàn)嚴重的骨硬化癥[8]??梢奜PG在骨代謝中起重要作用。
人核因子-κB(NF-κB)受體活化因子(receptor activator of NF-κB,RANK)是Ⅰ型跨膜糖蛋白,其cDNA由616個密碼子編碼而成,屬于TNF超家族成員[9]。RANK編碼基因組成包含29個氨基酸信號肽、細胞外編碼區(qū)183個氨基酸、跨膜區(qū)21個氨基酸和細胞質(zhì)區(qū)383個氨基酸[10]。RANK蛋白和其他TNF超家族成員一樣,以三聚體形式實現(xiàn)對細胞外信號進行接收和轉(zhuǎn)導[11]。
人NF-κB受體活化因子配體(receptor activator of NF-κB ligand,RANKL)是由317個氨基酸構(gòu)成的Ⅱ型跨膜蛋白,在基質(zhì)/成骨細胞、軟骨細胞和淋巴細胞中廣泛表達[12]。骨中的RANKL可結(jié)合破骨細胞表面受體RANK,激活破骨細胞?;罨钠乒羌毎置诖罅縃+、Cl-等離子進入骨陷窩,從而溶解骨質(zhì)[13]。
在骨組織中,多種因素均可以通過調(diào)節(jié)OPG/RANKL之間的比例而影響骨的生理和病理[14]。成骨/基質(zhì)細胞分泌RANKL與破骨細胞表面的RNAK結(jié)合,導致骨吸收增強[15];成骨細胞分泌OPG可以結(jié)合RANKL,阻礙RANKL與RANK結(jié)合,從而抑制破骨細胞活性[16]。如果RANKL過度表達或OPG異常降低,骨吸收大于骨形成,最終發(fā)生以骨量和骨密度減少為特征的骨質(zhì)疏松癥[7,17]。
2.1 OPG/RANKL/RANK信號通路與骨質(zhì)疏松發(fā)生
研究發(fā)現(xiàn),可溶性RANKL過量表達的大鼠,骨骼組織中出現(xiàn)類似絕經(jīng)后骨質(zhì)疏松癥狀,包括骨吸收增加、骨密度減少和骨骼脆性增加[18]。Bashir等發(fā)現(xiàn),骨質(zhì)疏松模型大鼠骨組織中RANKL表達升高,而采用雌激素和雷洛昔芬(raloxifene)治療12個月后,骨密度增加,同時RANKL降低[19]。由此可知,RANKL的異常增加和骨質(zhì)疏松發(fā)生密切相關(guān),而雌激素或適宜應力刺激均可以降低骨組織中RANKL水平,起到延緩骨質(zhì)疏松進程的作用。
有研究發(fā)現(xiàn),OPG基因敲除大鼠產(chǎn)生骨質(zhì)疏松癥狀[20],這與缺乏OPG而不能阻止RANKL和RANK的結(jié)合有關(guān)。程少丹等通過非頻密繁殖法獲得OPG-/-小鼠,發(fā)現(xiàn)與同齡野生型小鼠比較,OPG基因缺失小鼠骨密度、股骨承受最大載荷、股骨剛度、腰椎椎體骨小梁數(shù)目和腰椎椎體骨小梁厚度均顯著下降[21],證實與大鼠一樣,OPG基因缺失的小鼠也產(chǎn)生骨質(zhì)疏松初期癥狀。Bergstrm等將112名絕經(jīng)后婦女隨機分為對照組和運動組,分別在實驗初期和1年運動訓練結(jié)束后檢測血清OPG、RANKL水平,發(fā)現(xiàn)與對照組相比,運動組OPG明顯增加,但RANKL水平變化不顯著[22]。
2.2 OPG/RANKL/RANK信號通路與骨質(zhì)疏松治療
OPG/RANKL/RANK信號通路的發(fā)現(xiàn)為闡明骨質(zhì)疏松癥的分子機制奠定了基礎,也可能為骨質(zhì)疏松的靶向治療提供理論依據(jù)[23]。OPG被認為是RANKL的天然拮抗劑,在一期臨床試驗中發(fā)現(xiàn),OPG可以降低尿中80%的骨吸收標志物urinary NTx[24]。West等發(fā)現(xiàn),OPG感應運動應力刺激而抑制骨吸收;然而隨著時間的延長,特異性OPG抗體也增加,從而削弱其長期治療效果[25]。董潔瓊發(fā)現(xiàn),大鼠切除卵巢后,成骨細胞和骨髓基質(zhì)細胞OPG蛋白和mRNA表達降低;運動3個月后,成骨細胞和骨髓基質(zhì)細胞OPG蛋白和mRNA表達升高[26]。
RANKL在骨質(zhì)疏松患者骨組織中異常升高,研究特異性RANKL抑制劑對骨質(zhì)疏松治療有重要意義。目前,正在開發(fā)的Denosumab(AMG162)單克隆抗體[27],可通過結(jié)合RANKL,抑制破骨細胞活性[28]。Lewiecki等對絕經(jīng)后骨質(zhì)疏松婦女每6個月皮下注射Denosumab 60 mg,可以增加她們的骨密度,減少骨吸收標志物[29]。
以往認為,通過運動改善絕經(jīng)后婦女雌激素的分泌,可改善骨質(zhì)疏松患者骨密度[30-32]。值得注意的是,不同的運動方式改變骨密度有明顯的部位特異性,即受力越集中的骨骼,骨密度越高[33-34]。房冬梅等對105名不同專項女子運動員7個部位的骨密度進行檢測,發(fā)現(xiàn)舉重運動員整體承受應力最大,各部位骨密度絕對值都高于其他運動員組;自行車運動員前臂骨密度較高,腰椎骨密度較低[35]。此外,網(wǎng)球運動員持拍手的骨密度高于非持拍手,劃船運動員脊椎骨密度高于舞蹈和徑賽運動員[36]。這種應力引起的骨密度改變不僅僅是激素的全身性效應,也存在力對局部骨組織的直接效應。
大量研究表明,OPG/RANKL/RANK信號通路是力學敏感通路[37]。Kaneuji等發(fā)現(xiàn),對大鼠骨祖細胞施加持續(xù)3D機械應力,骨祖細胞OPG基因表達增加[38]。Hou等應用不同振幅機械力(40 Hz,30 min/d)刺激成骨細胞3 d以上,發(fā)現(xiàn)成骨細胞表達OPG蛋白增加,RANKL蛋白表達減少;在mRNA轉(zhuǎn)錄水平,OPG mRNA表達增強比RANKL表達降低幅度更加明顯[39]。Li等探索不同方式的流體剪切力對骨細胞的影響,發(fā)現(xiàn)OPG mRNA表達隨頻率加快和持續(xù)時間延長及應力刺激強度加大而下降[40]。Yamamoto等采用自制的靜水壓力裝置模擬牙齒咬合力,對下頜骨來源的成骨細胞施加壓力,發(fā)現(xiàn)RANKL/OPG比例上升,其中RANKL mRNA和蛋白都上調(diào)[41]。Sanchez等采用3D加力方式研究高強度外力(1 MPa和1.6 MPa)對成骨細胞基因表達的影響,發(fā)現(xiàn)成骨細胞受大強度應力刺激后,OPG mRNA表達下降,而RANKL mRNA表達沒有發(fā)生明顯變化,RANKL/OPG比例上升[42]。
雖然上述研究結(jié)果之間還存在一定分歧,特別是應力刺激對RANKL的影響還不一致,但大部分研究表明,適宜的中等強度應力刺激引起RANKL/OPG比值下降,有利于骨骼發(fā)展;而大強度應力刺激引起RANKL/OPG比值升高,不利骨骼發(fā)展。此外,有研究認為雌激素對骨骼發(fā)揮的作用,可能也與OPG/RANKL/RANK信號通路有關(guān)[43-44]。通過適宜應力刺激調(diào)節(jié)或直接靶向干預OPG、RANKL有望成為治療骨質(zhì)疏松的新方法。深入研究骨質(zhì)疏松和OPG/RANKL/RANK的關(guān)系,對預防和治療骨質(zhì)疏松癥有重要意義。
[1]孔祥鶴,牛銀波,李宇華,等.OPG/RANK/RANKL系統(tǒng)與骨質(zhì)疏松研究最新進展[J].生命科學研究,2011,15(1):80-85.
[2]Wright HL,Mccarthy HS,Middleton J,et al.RANK,RANKL and osteoprotegerin in bone biology and disease[J].Curr Rev Musculoskelet Med,2009,2(1):56-64.
[3]Nakamura M,Udagawa N.Osteoporosis and RANKL signal[J].Clin Calcium,2011,21(8):1149-1155.
[4]Boyce BF,Xing L.Functions of RANKL/RANK/OPG in bone modeling and remodeling[J].Arch Biochem Biophys,2008,473(2):139-146.
[5]Yamaguchi M.RANK/RANKL/OPG during orthodontic tooth movement[J].Orthod Craniofac Res,2009,12(2):113-119.
[6]Harada S,Takahashi N.Control of bone resorption by RANKL-RANK system[J].Clin Calcium,2011,21(8):1121-1130.
[7]Narducci P,Bareggi R,Nicolin V.Receptor activator for nuclear factor kappa B ligand(RANKL)as an osteoimmune key regulator in bone physiology and pathology[J].Acta Histochemica,2011,113(2):73-81.
[8]Dempster DW,Lambing CL,Kostenuik PJ,et al.Role of RANK ligand and denosumab,a targeted RANK ligand inhibitor,in bone health and osteoporosis:a review of preclinical and clinical data[J].Clin Ther, 2012,34(3):521-536.
[9]Coluzzi F,Di Bussolo E,Mandatori I,et al.Bone metastatic disease: taking aim at new therapeutic targets[J].Curr Med Chem,2011,18 (20):3093-3115.
[10]Anastasia P,Ioannis P,Kelly M,et al.High levels of synovial fluid osteoprotegerin(OPG)and increased serum ratio of receptor activator of nuclear factor-κB ligand(RANKL)to OPG correlate with disease severity in patients with primary knee osteoarbritis[J].Clin Biochem, 2008,41(9):746-749.
[11]Sadahiro K,Masae O,Yukino C,et al.IL-27 suppresses RANKL expression in CD4+T cells in part through STAT3[J].Immunol Lett,2011, 38(1):47-53.
[12]Ryser MD,Qu Y,Komarova SV.Osteoprotegerin in bone metastases: mathematical solution to the puzzle[J].PLoS Comput Biol,2012,8 (10):e1002703.
[13]Roux S.New treatment targets in osteoporosis[J].Joint Bone Spine, 2010,77(3):222-228.
[14]Burkiewicz JS,Scarpace SL,Bruce SP.Denosumab in osteoporosis and oncology[J].Ann Pharmacother,2009,43(9):1445-1455.
[15]Huang YL,Liu YW,Huang YJ,et al.A special ingredient(VtR)containing oligostilbenes isolated from vitis thunbergii prevents bone loss in ovariectomized mice:in vitro and in vivo study[J].Evid Based ComplementAlternat Med,2013,2013:409421.
[16]Malliga DE,Wagner D,Fahrleitner PA.The role of osteoprotegerin (OPG)receptor activator for nuclear factor kappaB ligand(RANKL)in cardiovascular pathology-a review[J].Wien Med Wochenschr,2011, 161(23-24):565-570.
[17]Tat SK,Pelletier JP,Velasco CR,et al.New perspective in osteoarthritis:the OPG and RANKL system as a potential therapeutic target[J]. Keio J Med,2009,58(1):29-40.
[18]Enomoto T,Furuya Y,Tomimori Y,et al.Establishment of a new murine model of hypercalcemia with anorexia by overexpression of soluble receptor activator of NF-κB ligand using an adenovirus vector[J].J Bone Miner Metab,2011,29(4):414-412.
[19]Bashir A,Mak YT,Sankaralingam S,et al.Changes in RANKL/OPG/ RANK gene expression in peripheral mononuclear cells following treatment with estrogen or raloxifene[J].Steroids,2005,70(13):847-855.
[20]Furuya Y,Inagaki A,Khan M,et al.Stimulation of bone formation in cortical bone of mice treated with a receptor activator of nuclear factorκB ligand(RANKL)-binding peptide that possesses osteoclastogenesis inhibitory activity[J].J Biol Chem,2013,288(8):5562-5571.
[21]程少丹,王擁軍,唐德志,等.OPG基因敲除小鼠骨質(zhì)疏松情況的研究[J].中國骨質(zhì)疏松雜志,2008,14(1):16-19.
[22]Bergstrm I,Parini P,Gustafsson SA,et al.Physical training increases osteoprotegerin in postmenopausal women[J].J Bone Miner Metab, 2012,30(2):202-207.
[23]Miller PD.Anti-resorptives in the management of osteoporosis[J]. Best Pract Res Clin Endocrinol Metab,2008,22(5):849-868.
[24]Gallagher JC,Sai AJ.Molecular biology of bone remodeling:implications for new therapeutic targets for osteoporosis[J].Maturitas,2010, 65(4):301-307.
[25]West SL,Scheid JL,Souza MJ,et al.The effect of exercise and estrogen on osteoprotegerin in premenopausal women[J].Bone,2009,44 (1):137-144.
[26]董潔瓊.運動對去卵巢骨質(zhì)疏松大鼠OPG,RANKL表達的影響[D].上海:上海體育學院,2011.
[27]Wensel TM,Iranikhah MM,Wilborn TW,et al.Effects of denosumab on bone mineral density and bone turnover in postmenopausal women[J].Pharmacotherapy,2011,31(5):510-523.
[28]Orcel P.Advances treatment of osteoporosis:new molecules,new strategies[J].BullAcad Natl Med,2010,194(8):1516-1518.
[29]Lewiecki EM.Treatment of osteoporosis with denosumab[J].Maturitas,2010,66(2):182-186.
[30]Blahos J.Current and future options for treatment of osteoporosis[J]. Vnitr Lek,2011,57(11):888-890.
[31]Rudic JS,Poropat G,Krstic MN,et al.Hormone replacement for osteoporosis in women with primary biliary cirrhosis[J].Cochrane Database Syst Rev,2011,(12):CD009146.
[32]Duggan ST,McKeage K.Bazedoxifene:a review of its use in the treatment of postmenopausal osteoporosis[J].Drugs,2011,71(16):2193-2212.
[33]李世昌,季瀏,劉體偉,等.不同方式運動對去卵巢大鼠骨密度、骨生物力學及代謝指標的影響[J].體育學刊,2012,19(2):132-137.
[34]Iwamoto J.Effect of exercise on developing bone mass and cortical bone geometry[J].Clin Calcium,2011,21(9):1323-1328.
[35]房冬悔.生長期骨量與不同沖擊力運動的關(guān)系[J].中國組織工程研究與臨床康復,2007,11(36):7248-7251.
[36]樓紅侃,成羿,黃良夫.運動對骨質(zhì)疏松的影響和機制[J].浙江臨床醫(yī)學,2008,10(8):1009-1011.
[37]Zhang Y,Paul EM,Sathyendra V,et al.Enhanced osteoclastic resorption and responsiveness to mechanical load in gap junction deficient bone[J].PLoS One,2011,6(8):e23516.
[38]Kaneuji T,Ariyoshi W,Okinaga T,et al.Mechanisms involved in regulation of osteoclastic differentiation by mechanical stress-loaded osteoblasts[J].Biochem Biophys Res Commun,2011,408(1):103-109.
[39]Hou WW,Zhu ZL,Zhou Y,et al.Involvement of Wnt activation in the micromechanical vibration-enhanced osteogenic response of osteoblasts[J].J Orthop Sci,2011,16(5):598-605.
[40]Li J,Rose E,Frances D,et al.Effect of oscillating fluid flow stimulation on osteocyte mRNA expression[J].J Biomech,2012,45(2):247-251.
[41]Yamamoto K,Yamamoto T,Ichioka H,et al.Effects of mechanical stress on cytokine production in mandible-derived osteoblasts[J].Oral Dis,2011,17(7):712-719.
[42]Sanchez C,Gabay O,Salvat C,et al.Mechanical loading highly increase IL-6 production and decrease OPG expression by osteoblasts[J]. Osteoarthritis Cartilage,2009,17(4):473-481.
[43]Jules J,Ashley JW,Feng X.Selective targeting of RANK signaling pathways as new therapeutic strategies for osteoporosis[J].Expert Opin Ther Targets,2010,14(9):923-934.
[44]Frenkel B,Hong A,Baniwal SK,et al.Regulation of adult bone turnover by sex steroids[J].J Cell Physiol,2010,224(2):305-310.
Stress Sensitive Signal Pathway Osteoprotegerin/ReceptorActivator of Nuclear Factor-κB ligand/ReceptorActivator of Nuclear Factor-κB and Osteoporosis(review)
LI Sheng-cun,BAO Jie,WANG Jing,et al.School of Physical Education of Soochow University,Suzhou 215021,Jiangsu,China
Exercise is benefic for osteoporosis,without clear molecular biology mechanism.The osteoprotegerin/receptor activator of nuclear factor-κB ligand/receptor activator of nuclear factor-κB(OPG/RANKL/RANK)signal pathway contributes to osteoporosis,which can be mediated by mechanical force.Research progress on osteoporosis and the stress sensitive signal pathway OPG/RANKL/RANK were reviewed in this paper.
osteoporosis;stress;osteoprotegerin;receptor activator of nuclear factor-κB ligand;receptor activator of nuclear factor-κB; signal pathway;review
R681
A
1006-9771(2014)03-0250-03
2013-09-02
2013-11-01)
江蘇省2012年度普通高校研究生科研創(chuàng)新計劃項目(No.CXZZ12_0787)。
蘇州大學體育學院,江蘇蘇州市215021。作者簡介:李盛村(1985-),男,漢族,浙江溫州市人,博士研究生,主要研究方向:運動醫(yī)學。通訊作者:王國祥,男,教授,博士生導師。
10.3969/j.issn.1006-9771.2014.03.013